
A Retrospective on Developing Hybrid System
Provers in the KeYmaera Family?

A Tale of Three Provers

Stefan Mitsch1 and André Platzer1

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
smitsch@cs.cmu.edu,aplatzer@cs.cmu.edu

Abstract. This chapter provides a retrospective on the developments
of three theorem provers for hybrid systems. While all three theorem
provers implement closely related logics of the family of differential dy-
namic logic, they pursue fundamentally different styles of theorem prover
implementations. Since the three provers KeYmaera, KeYmaeraD, and
KeYmaera X share a common core logic, yet no line of code, and differ
vastly in prover implementation technology, their logical proximity yet
technical distance enables us to draw conclusions about the various ad-
vantages and disadvantages of different prover implementation styles for
different purposes, which we hope are of generalizable interest.

Keywords: History of formal methods · Theorem provers · Differential dynamic
logic · Hybrid systems

1 Introduction

Hybrid systems verification is demanding, because the joint discrete and contin-
uous dynamics of hybrid systems bring about significant challenges that merit
nothing less than the best support in formal verification. The two primary ap-
proaches for hybrid systems verification are model checking based on set-valued
search through their state space [3,15,18] and theorem proving based on deduc-
tive proofs decomposing the system [45,51].

While a few prior approaches defined parts of hybrid systems in other provers,
KeYmaera [56] was the first dedicated theorem prover for hybrid systems. This
chapter takes a retrospective on the development of the KeYmaera family of
provers for hybrid systems. This is one of the few occasions where the same logic
(with only slight variations) has been implemented as theorem provers in widely
different styles, enabling us to draw conclusions about the respective advantages
and downsides about the different prover implementation styles. With KeYmaera

? This material is based upon work supported by the Air Force Office of Scientific Re-
search under grant number FA9550-16-1-0288 and FA9550-18-1-0120. Any opinions,
finding, and conclusion or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Air Force.

c© Springer Nature Switzerland AG 2020
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 12345, pp. 21–64, 2020.
DOI: 10.1007/978-3-030-64354-6 2

https://orcid.org/0000-0002-3194-9759
https://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-030-64354-6_2

22 Stefan Mitsch and André Platzer

[56] first released on 2007-11-02, KeYmaeraD [62] first released on 2011-10-29,
and KeYmaera X [20] first released on 2015-04-18, this chapter is reflecting on
experience with more than 12 years of KeYmaera implementation and usage.

The name KeYmaera is a pun on Chimera, a hybrid monster from Classi-
cal Greek mythology. As the name suggests, KeYmaera is based on the KeY
prover [1], which is a dedicated theorem prover for dynamic logic for Java pro-
grams covered in many other chapters of this book. Even if that common code
basis with KeY was limited to the original KeYmaera prover, the name stuck with
its subsequent clean-slate implementations of KeYmaeraD and KeYmaera X.

The third time’s the charm, but a lot can be learned about the relative
advantages and disadvantages from the different prover designs that may help
make informed tradeoffs in other projects for other purposes. KeYmaera is built
as a sequent calculus prover for differential dynamic logic [43] making ample
use of the taclet mechanism [5] that KeY offers to concisely write proof rule
schemata with side conditions and schema variable matching conditions that
are checked by Java code. KeYmaeraD is built as a sequent calculus prover for
(quantified [46]) differential dynamic logic [43] by directly implementing its rule
schemata in the host language Scala. Finally, KeYmaera X is built as a uniform
substitution calculus prover for differential dynamic logic [50] whose axioms and
proof rules are concrete formulas or pairs of formulas and need no schemata. In
addition to their different rule application mechanisms do all three provers reach
fundamentally different decisions for their style of basic proof data structures.
The experience with the implications of these different prover implementation
styles enables us to draw conclusions that we hope to be of generalizable interest.

2 Differential Dynamic Logic and its Proofs in a Nutshell

Differential dynamic logic (dL) [43, 45, 48, 50, 51, 59] supports specification and
verification of hybrid systems written in a programming language. Differential
dynamic logic provides a direct syntactic representation of hybrid systems along
with logical formulas that express properties of their behavior. Polynomials can
be used as terms and, with sufficient care about avoiding divisions by zero [10],
also rational functions etc. The syntax of hybrid programs (HP) is described
by the following grammar where α, β are hybrid programs, x is a variable and
e, f(x) are terms, Q is a logical formula:

α, β ::= x := e | ?Q | x′ = f(x) &Q | α ∪ β | α;β | α∗

Assignments x := e and tests ?Q (to abort execution and discard the run if
Q is not true) are as usual. Differential equations x′ = f(x) &Q can be followed
along a solution of x′ = f(x) for any amount of time as long as the evolution
domain constraint Q is true at every moment along the solution. Nondetermin-
istic choice α∪β runs either α or β, sequential composition α;β first runs α and
then β, and nondeterministic repetition α∗ runs α any natural number of times.

The KeYmaera Family: A Tale of Three Provers 23

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

Fig. 1: Flow of differential equa-
tion x′=x2yz, y′=z for z = 1

For example, the dynamics depicted in
Fig. 1 is modeled with the differential equa-
tion system x′=x2yz, y′=z, where x deter-
mines the magnitude of repulsive (x ≤ 0) or
attraction force (x ≥ 0) to the center, y de-
termines the position in the force field, and z
controls how quickly to follow the flow (the
system stops when z = 0). The hybrid pro-
gram in (1) repeatedly chooses nondetermin-
istically between z := 0 to stop flow, or z := y
to amplify y in the differential equation:(

(z := 0︸ ︷︷ ︸
stop flow

∪ z := y︸ ︷︷ ︸
amplify

); {x′=x2yz, y′=z}︸ ︷︷ ︸
ODE, see Fig. 1

)∗
(1)

It is important that the right-hand sides of assignments are not simply sub-
stituted into the ODE in all cases, since a wrong substitution z := y results in
a vastly different ODE x′ = x2y2, y′ = y. The assignments z := 0 and z := y
in (1) pick values for z: z is either 0 or equal to the value of y at the time of the
assignment (in this case, equal to the value of y at the beginning of the ODE).
Also, the value of z in this example stays constant throughout the ODE, since
there is no z′ and so implicitly z′ = 0.

The formulas of dL describe properties of hybrid programs. Formulas of dif-
ferential dynamic logic are described by the following grammar where P,Q are
formulas, e, ẽ are terms, x is a variable and α is a hybrid program:

P,Q ::= e ≥ ẽ | ¬P | P ∧Q | P ∨Q | P → Q | P ↔ Q | ∀xP | ∃xP | [α]P | 〈α〉P

The operators of first-order real arithmetic are as usual with quantifiers ranging
over the reals. For any HP α and dL formula P is [α]P true in a state iff P is
true after all ways of running α. Dually, 〈α〉P is true in a state iff P is true
after at least one way of running α. The former is particularly useful for stating
safety properties while the latter is useful for stating liveness properties, but
their mixed use is powerful as well. The semantics and axiomatization of dL
are described elsewhere [43, 45, 47, 48, 50, 51, 59]. For this chapter, it suffices to
understand dL informally and remember, e.g., that dL formula P → [α]Q is valid
(true in all states) iff the postcondition formula Q holds after all runs of hybrid
program α that start in initial states satisfying assumption formula P .

For example, the conjecture that x ≥ 0 always remains true after running
the program (1) if x ≥ 0 was true before is expressed in dL formula (2):

x ≥ 0︸ ︷︷ ︸
assumption formula P

→

all runs of hybrid program α︷ ︸︸ ︷
[
(
(z := 0 ∪ z := y); {x′=x2yz, y′=z}

)∗
]x ≥ 0︸ ︷︷ ︸

postcondition formula Q

(2)

The dL sequent calculus [43,45,51] works with sequents of the form Γ ` ∆ for
a finite set of formulas Γ (antecedent) and a finite set of formulas ∆ (succedent).

24 Stefan Mitsch and André Platzer

([∪]) [α ∪ β]P ↔ [α]P ∧ [β]P

([∪]R)
Γ ` [α]φ,∆ Γ ` [β]φ,∆

Γ ` [α ∪ β]φ,∆

([∪]L)
Γ, [α]φ, [β]φ ` ∆
Γ, [α ∪ β]φ ` ∆

([:=]) [x := e]p(x)↔ p(e)

([;]) [α;β]P ↔ [α][β]P

(loop)
Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆

(dI)
Γ ` F,∆ Q ` [x′:=f(x)](F)′

Γ ` [x′ = f(x) &Q]F,∆

Fig. 2: Some dL axioms and proof rules

The meaning of sequent Γ ` ∆ is that of dL formula (
∧
P∈Γ P) → (

∨
Q∈∆Q).

All assumptions are listed in Γ , the set of alternatives to prove are in ∆.

Some typical axioms and proof rules of dL are listed in Fig. 2. The axiom [∪],
for example, expresses that any formula of the form [α ∪ β]P is equivalent to
the corresponding conjunction [α]P ∧ [β]P . The proof rules [∪]R and [∪]L pro-
vide corresponding decompositions of [α ∪ β]P into [α]P as well as [β]P when
[α ∪ β]P is a succedent formula on the right or an antecedent formula on the left
in sequent calculus, respectively. The [∪]R rule is easiest to understand without
∆, but whenever ∆ is true, the conclusion is true whether or not [α ∪ β]P is.
The loop proof rule expresses that for proving the conclusion Γ ` [α∗]P,∆ below
the rule bar it suffices to pick an invariant formula J and show that J is initially
true or ∆ (left premise above rule bar), that J remains true after any run of
the loop body α (middle premise), and that J implies the desired postcondition
P (right premise). The differential invariant proof rule dI expresses that F is
always true after a differential equation x′ = f(x) &Q if it is true initially (left
premise) and its differential (F)′ is true when Q is after assigning the right-hand
side f(x) of the differential equation to its left-hand side x′ (right premise). The
differential formula (F)′ intuitively expresses that F locally remains true when
following the differential equation x′ = f(x). Rule dI makes it possible to prove
properties of ODEs without having to solve them [59].

Figure 3 illustrates how these axioms and proof rules are used in a sequent
proof of the dL formula (2). In a sequent proof, the conclusion (below the hori-
zontal bar) follows from the premises (above the bar), justified by the axiom or
proof rule annotated to the left of the bar. The first step at the bottom of Fig. 3
(→R) makes the left-hand side of the implication available as assumption. Next,
the loop rule splits the proof into three subgoals: the left premise (base case) and
the right premise (use case) close, because their succedent holds by antecedent
assumption, the middle premise (induction step) details are listed in Fig. 3a.

In the proof of the middle premise (induction step), after splitting the sequen-
tial composition by axiom [;], the nondeterministic choice axiom ([∪]) splits the
proof into two separate modalities. The [:=] axiom applied to the assignment
z := 0 simply replaces the occurrences of z with 0. In the second assignment
(z := y), however, the right-hand side cannot simply replace the left-hand side,
since it is bound in the subsequent differential equation; therefore, we split off

The KeYmaera Family: A Tale of Three Provers 25

∗
x ≥ 0 ` x ≥ 0

∗
` 0 ≥ 0

[:=] ` [x′ := x2y · 0][y′ := 0]x′ ≥ 0
dI x ≥ 0 ` [{x′=x2y · 0, y′=0}]x ≥ 0 . . .

∧Rx ≥ 0 ` [{x′=x2y · 0, y′=0}]x ≥ 0
∧ [z := y][{x′=x2yz, y′=z}]x ≥ 0

[:=]x ≥ 0 ` [z := 0][{x′=x2yz, y′=z}]x ≥ 0
∧ [z := y][{x′=x2yz, y′=z}]x ≥ 0

[∪]x ≥ 0 ` [(z := 0 ∪ z := y)][{x′=x2yz, y′=z}]x ≥ 0
[;] x ≥ 0 ` [(z := 0 ∪ z := y); {x′=x2yz, y′=z}]x ≥ 0

(a) Proof of middle premise of rule loop (induction step)

∗
x ≥ 0 ` x ≥ 0 Induction step (3a)

∗
x ≥ 0 ` x ≥ 0

loop x ≥ 0 ` [
(
(z := 0 ∪ z := y); {x′=x2yz, y′=z}

)∗
]x ≥ 0

→R ` x ≥ 0→ [
(
(z := 0 ∪ z := y); {x′=x2yz, y′=z}

)∗
]x ≥ 0

Fig. 3: Sequent proof of dL formula (2)

this branch using ∧R and omit further steps, but will return to the discussion of
such assignments in later sections. Now the differential equation shape fits the dI
rule: the resulting left branch shows that invariant x ≥ 0 is true initially, while
the right branch shows that the differential (x ≥ 0)′, which expands to x′ ≥ 0,
is true after assigning the right-hand sides of the differential equation.

The provers, KeYmaera 3, KeYmaeraD, and KeYmaera X differ fundamen-
tally in terms of how they implement the dL proof calculus, which also man-
ifests in differences in the concrete mechanics of such sequent proofs, as will
be shown below. Only KeYmaera X uses axioms such as [∪] while KeYmaera 3
and KeYmaeraD implement sequent calculus rules similar to [∪]R,[∪]L instead.
KeYmaera 3 provides a proof rule schema mechanism in which the rules are im-
plemented while KeYmaeraD implements sequent calculus proof rules directly
using the pattern matching variables of the language it is implemented in. A full
list of axioms and proof rules of dL is provided elsewhere [43,45,50,51,59].

3 KeYmaera 3 – A Big Prover With a Big Heart

The KeYmaera 3 theorem prover1 [56] implements the original sequent calculus
of differential dynamic logic for hybrid systems [42, 43, 45] in a mix of Java and
some Scala by extending the KeY prover, a prover for Java programs.

Design Principles. The rationale behind the design of KeYmaera is that
the quickest way of getting a theorem prover for hybrid systems working is
to build it on top of another successful prover. As a dynamic logic prover with a

1 KeYmaera versions 1–3 are available at http://symbolaris.com/info/KeYmaera.html

http://symbolaris.com/info/KeYmaera.html

26 Stefan Mitsch and André Platzer

well-established prover infrastructure and sophisticated user interface, the KeY
prover [1, 2, 6] is the canonical choice. On the highest level of abstraction, the
design of KeYmaera needed the programming language Java within dynamic
logic modalities of KeY to be replaced by hybrid programs. Of course, seman-
tical changes required a move from the arithmetic over integers and object-
oriented data types that are dominant in Java programs to the arithmetic over
reals for hybrid systems instead. But the hope was that KeY’s rule application
mechanism with taclets (lightweight, soundness-critical tactics that can invoke
soundness-critical code, see [5]) and propositional/first-order logic calculus au-
tomation could be retained, and all the considerable effort that went into the
nontrivial user interface design of KeY could be reused directly for hybrid sys-
tems.

Implementation Realities. For KeYmaera 3, the dL sequent calculus rule
[∪]R for programs starting with a nondeterministic choice would be written as:

([∪]R)
` [α]φ ` [β]φ

` [α ∪ β]φ

KeY provides taclets [5], which combine proof rules describing what syntactic
element is replaced by which other transformed element with grouping into proof
rule priorities. The [∪]R rule is implemented in KeYmaera 3 as a taclet:

1 box_choice_right {

2 \find (==> \modality{#boxtr }#dl ++ #dl2\endmodality(post))

3 \replacewith (==> \modality{#boxtr }#dl\endmodality(post));

4 \replacewith (==> \modality{#boxtr }#dl2\endmodality(post))

5 \heuristics (simplify_prog)

6 \displayname "[++] choice"

7 };

Taclet box_choice_right uses \find to search for a succedent formula (as in-
dicated by the occurrence in the right-hand side of the sequent turnstyle `
rendered as ==> in ASCII) with a [·]-type modality whose top-level program
is of a nondeterministic choice form #dl ∪ #dl2 (where ∪ is rendered as ++ in
ASCII, and #dl and #dl2 are hybrid programs) and any formula post as a post-
condition, see Line 2. Each such occurrence will be replaced with two premises
in which the corresponding active formula is, instead, replaced by the same [·]-
type modality and the same postcondition formula that matched post in \find

and with the hybrid program that matched #dl as the hybrid program on the
first premise (Line 3) and with the hybrid program that matched #dl2 as the
hybrid program on the second premise (Line 4), respectively. The declaration
\heuristics (simplify_prog) in Line 5 assigns the use of this taclet to the
group simplify_prog that the proof strategy uses with higher priority than ex-
pensive proof rules. The \displayname in Line 6 shows what name is used for
the rule on the user interface. The presence of the schema variable character #

highlights that an internal matching algorithm will be run in Java to check that

The KeYmaera Family: A Tale of Three Provers 27

what occurs in place of #dl actually is a hybrid program and what occurs in
place of #boxtr actually is a box-type modality, etc. There is a second taclet
that handles nondeterministic choices in box modalities in the antecedent, and
two more taclets that handle nondeterministic choices in diamond modalities.

The proof strategy mechanism that KeYmaera 3 inherits from KeY computes
the priorities of the heuristic groups of all taclets after instantiating them to
the formulas at hand and checking for their applicability. It favors the use of
high priority taclet uses over lower priority taclets. For fair rule selection, lower
priority taclets gain priority over time if they have been applicable to the same
formula in a goal for a long time. When selecting preexisting heuristic groups
such as simplify_prog, taclets will immediately be used by the automatic proof
strategy with the priority associated to that heuristic group. That makes it
easy to add simple proof rules to the proof automation. More advanced proof
strategies that conditionally use proof rules or use proof rules in succession are
much more difficult to encode with priorities. To understand where succession of
proof rules comes in, think of an assumption ∀x (x = e→ φ) where the quantifier
first wants to be instantiated to e and then the resulting equality is subsequently
rewritten. Those cases need new strategy features implemented in Java that add
or subtract cost for the applicability of a rule as a function of the state of the
proof to make it cheaper for proof strategies to apply the taclets in the intended
order. For example with a strategy feature that gives equality rewriting a low
cost if the proof tree has previously instantiated a universal quantifier of an
implicational formula conditioned on an equation for the quantified formula.
Disproving formulas by exhaustion of rule applications is not feasible with such
an approach because many different orderings of applicable proof rules would
have to be considered, so extraneous mechanisms for disproving are required [63].

Successes. The hope of enabling a quick implementation for hybrid systems the-
orem proving by building it on top of KeY was largely met. KeY’s user interface
also proved to be extremely valuable to quickly get visual feedback on what proof
search was doing or where rule applications went wrong. KeY’s taclet mechanism
provides a mechanism to quickly capture proof rules and proof strategy hints
simultaneously in a single place. This makes it easy to add rules to the prover
that are automatically applied by proof search with simple customization of the
priority with which a rule group is used. The direct implementation style of the
taclet application mechanism also makes it reasonably fast. With moderate effort
this leads to a hybrid systems prover that is able to prove moderate-complexity
problems with user-provided invariants and solvable differential equations. More
sophisticated problems needed more sophisticated invasive changes to the prover
to become scalable, but starting from KeY certainly got KeYmaera 3 a leg up.

By design, KeY manages a single proof tree on which a single proof strat-
egy sequentially executes proof rules at a leaf whose premises will be added as
children; KeYmaera inherits this proof management. This explicit proof data
structure can be displayed directly in the user interface and makes it possible to
traverse the proof tree if a proof strategy feature wants to understand the struc-

28 Stefan Mitsch and André Platzer

ture of the proof to determine the priority of a possible taclet application. In
fact, traversal of the proof tree is often crucial to strategically coordinate taclet
uses with one another, because, besides rule cost and heuristic caches, the proof
tree is the only means of communication from one taclet application to another.

After major revisions and additions to the proof strategies with conditional
proof rule application and sequencing, as well as means of conducting separate
hypothetical proofs and caching, it was possible to achieve significant proof au-
tomation in KeYmaera 3, including fixedpoint-based invariant generation [54].

KeYmaera provides a pragmatic combination of built-in proof automation
and click-based user interaction. The underlying KeY prover manages a single
proof and makes it possible to interrupt proof automation at any intermedi-
ate stage. That way, users can complement deficiencies of proof automation
by inspecting how far automation got, then backtracking to some intermediate
proof step before the automation went off the rails, help by selective manual
interaction, and then yield control to proof automation again. Anecdotally, this
capability was one of the most admired features beyond the full automation that
KeYmaera provided. The downside is that novice users, amid the overwhelmingly
large number of automatically created proof obligations, often loose track of the
remaining proof effort and how it relates to the original proof goal, and whether
it would be better to undo automatic proof steps to limit excessive branching.

Challenges. More challenging than anticipated was the correct rendition of
differential dynamic logic sequent calculus rules as taclets. Taclets provide flex-
ibility and apply rules in more general scenarios without having to explicitly
state them. This makes it significantly easier to write taclets. But one of the
unintended consequences of that taclet application mechanism is precisely that
rules can be applied in settings that are more general than what one might have
had in mind. What is useful for locally sound proof rules such as [∪]R can easily
create soundness problems for complicated rules. The taclet for [∪]R can be used
even in scenarios that were not explicitly programmed in, for example under up-
date contexts. Thanks to KeY’s taclet application mechanism, the rule [∪]R can
automatically be applied in a more general style in any additional sequent con-
text Γ ` ∆ with any finite set U of parallel assignments (called update [2,7,43])
that later simultaneously change the values of the affected variables:

[∪]R
Γ ` U [α]φ,∆ Γ ` U [β]φ,∆

Γ ` U [α ∪ β]φ,∆

But the taclet application mechanism can quickly cause unsoundness for
complicated rules such as loop invariants when the taclet implementor does not
explicitly consider all possible generalizations. A loop invariant proof rule for
nondeterministic repetitions in KeYmaera 3 could be phrased, e.g., as:

(loopR)
` J J ` φ J ` [α]J

` [α∗]φ

The KeYmaera Family: A Tale of Three Provers 29

But it would be entirely incorrect if the taclet application mechanism also wraps
rule loopR into a sequent or update context:

loopR
Γ ` UJ,∆ Γ,UJ ` Uφ,∆ Γ,UJ ` U [α]J,∆

Γ ` U [α∗]φ,∆

Every single occurrence of Γ or ∆ or U in the second or third premise causes
unsoundness, so such generalization needs to be prevented at all cost!

Due to its more delicate nature, the loop invariant rule needs more care when
phrased as a taclet to avoid inadvertent taclet generalization like loopR above:

1 loop_inv_box_quan {

2 \find (==> \modality{#boxtr }#dl*\endmodality(post))

3 "Invariant Initially Valid":

4 \replacewith (==> inv);

5 "Use Case":

6 \replacewith (==> #UnivCl(\[#dl\]true , inv ->post , false));

7 "Body Preserves Invariant":

8 \replacewith (==> #UnivCl(

9 \[#dl\]true ,

10 inv -> \modality{#boxtr }#dl\endmodality(inv),

11 true))

12 \heuristics (loop_invariant , loop_invariant_proposal)

13 \onlyRigidFunctions

14 \displayname "ind loop invariant"

15 };

This taclet implements the loop invariant rule loop with generalization resilience:

(ind′)
` φ ` ∀α(ψ → [α]ψ) ` ∀α(ψ → φ)

` [α∗]φ

The universal closure operator ∀α forms the universal closure ∀x1 . . . ∀xn where
x1, . . . , xn are all variables bound / written to by the hybrid program α. The
#UnivCl meta operator2 in Lines 6 and 8 (abbreviating #dlUniversalClosure)
is implemented in 788 complex lines of Java and computes the inverse transitive
closure of the operators of the variable dependencies of the modality passed
in as its first argument over the formula passed in as its second argument and
optimizes some of those dependencies depending on the third argument. The two
alternative names used in the \heuristics group in Line 12 are arbitrary but
used as hooks in the priority-based proof strategy implementation to trigger the
use of the best rules under the present circumstances. The meta operators that
introduce universal closures are crucial to make the implicit taclet generalizations
sound when they wrap the rule into a sequent or update context Γ,∆,U :

ind′
Γ ` UJ,∆ Γ ` U∀α(J → φ), ∆ Γ ` U∀α(J → [α]J), ∆

Γ ` U [α∗]φ,∆

2 The meta operator introduces ∀X [x :=X], because KeY and KeYmaera distinguish
categories of variables. They do not allow quantification over program variables x
and do not allow assignment to logical variables X, so a mix with both is needed.

30 Stefan Mitsch and André Platzer

Any changes in update U to bound variables of α will be overwritten by the
universal quantifiers of the closure ∀α. Likewise any assumptions about the initial
state that reside in Γ,∆ will become obsolete by the quantifiers of ∀α. A downside
of this approach is the abundance of irrelevant formulas it leaves around in Γ,∆.
This also makes the proof steps harder to trace except for expert users. Finally,
the \onlyRigidFunctions constraint in Line 13 triggers a search through the
matched formulas to check no assignable function symbols occur, which would
render the usage of the taclet unsound.

The differential invariants proof rule dI of Fig. 2 is implemented as a taclet:

1 diffind {

2 \find (==> \[#normODE\]post)

3 \varcond (\ isFirstOrderFormula(post))

4 "Invariant Initially Valid":

5 \replacewith (# InvPart(\[#normODE\]post) ==> post);

6 "ODE Preserves Invariant":

7 \replacewith (==> #UnivCl(

8 \[#normODE\]true ,

9 #DiffInd(\[#normODE\]post),

10 false))

11 \heuristics (invariant_diff , diff_rule)

12 \onlyRigidFunctions

13 \displayname "DI differential invariant"

14 };

Upon each use of this taclet, the metaoperator #InvPart in Line 5 triggers
a computation to extract the invariant from the differential equation, whose
schema variable #normODE has a matching algorithm to check that the concrete
differential equation is given in normalized form (so a list of equations with the
only derivatives occurring once as an isolated variable on the left-hand side and
a single formula without derivatives as evolution domain constraint). The meta
operator #UnivCl for universal closure that was already used in the loop taclet
is important for soundness also in the differential invariants taclet, which addi-
tionally uses a meta operator #DiffInd in Line 9 for computing the differential
invariant condition for the postcondition post as a function of the differential
equation matched by #normODE [44,45]. The presence of the \varcond in Line 3
additionally indicates that a meta operator will be run before using the taclet to
check that the postcondition post is a first-order logic formula. Almost all of the
insights behind differential invariants in KeYmaera are provided in the opaque
implementation of the meta operators. The meta operators for the diffind

taclet are implemented in 2413 lines of Java and Scala code.
Assignments can be handled very easily with taclets in KeYmaera but the

main reason is that they are immediately converted to updates {#dlx:=#dle}

who have their own built-in application algorithm called update simplifier:

1 assignment_to_update_right {

2 \find (==> \modality{# allmodal }#dlx :=# dle\endmodality(post))

3 \replacewith (==> {#dlx :=# dle} post)

4 \heuristics(simplify_prog)

The KeYmaera Family: A Tale of Three Provers 31

5 \displayname ":= assign"

6 };

While the taclets give a general idea of the way how a proof rule is applied,
most of their more subtle soundness-critical aspects are hidden in the Java im-
plementation of their corresponding schema matching and meta operators.

Modest modifications of the automatic proof search strategy that derives
from assigning taclets to strategy groups are easy by changing the priority with
which the strategy group of a taclet is being applied. More involved changes of
proof search procedures cannot be encoded well with rule priorities but need
major invasive changes to KeYmaera’s proof strategies. Fixedpoint-based invari-
ant search procedures [54] required multiple proofs to be formed and quickly
discarded if unsuccessful, which is counter to the sequential intention of proof
search within a proof tree in KeYmaera. Every time the proof search strategy
needs to decide whether to apply, say, an invariant proof rule with a member
J1 of a stream of generated invariants, it would start a new hypothetical proof
in the background to see if that proof with that invariant candidate J1 would
succeed. And if it does succeed, the prover discards the entire hypothetical proof
(hence the name) and commits to making the first proof step with that invariant
J1, otherwise it tries a hypothetical proof with another invariant candidate J2.

The downside of such a sequential emulation of parallel proof exploration
in KeYmaera’s sequential proof engine is the large number of repeated steps.
This is especially true when nested loops and differential equations occur in
more complex hybrid systems, so that an entire nested chain of proofs needs
to be finished and then discarded to commit to the first proof step; most of
the discarded steps need to be repeated later at the next important turn of the
proof. Performance mitigation includes a cache that remembers successful and
unsuccessful proof attempts of propositionally similar questions at choice points
to better guide proof search in the future or in later nested hypothetical proofs.

KeYmaera implements a complete deduction modulo theories approach using
free variables and Skolemization with invertible quantifiers and real quantifier
elimination [43]. This approach is instrumental for handling complicated modal-
ity/quantifier nestings and automatically enables sound quantifier shifts while
preventing unsound quantifier rearrangements. The downside is that this requires
a proof-global proof rule for real existential quantifiers over modal formulas.

Both full automation and click-based user interaction are great for novice
users exploring medium complexity problems. More difficult problems come with
more substantial challenges that are more likely out of reach for fully automatic
proof strategies yet too tedious to click through manually.

Another challenge with the design of KeYmaera is the absence of proof tactics
or proof scripts and the fact that all attempts of adding them rendered them
soundness-critical. It is simple to choose from among KeYmaera’s predefined
proof strategies but so hard to add custom proof automation that only three
people succeeded. Even conceptually simple customizations such as noncanonical
decompositions inside out are hard to implement but can have a huge impact
on keeping the branching factor down to save millions of proofs steps [60,61].

32 Stefan Mitsch and André Platzer

Explicit storage of the proof tree with all proof steps makes it easy to inspect
and navigate what was done. Likewise exhaustive applicability checks for taclets
at every proof step make it convenient for users to determine which proof rules
make sense to try. Both decisions are adverse for large proofs with large formulas,
which causes nontrivial memory pressure and wastes an enormous amount of
time with identifying at every step which rules are applicable where and how
and at what cost. These effects accumulate so that KeYmaera 3 may need an
hour per proof step in larger proofs. Storing the full proof tree also requires a
lot of reproving effort when loading a (full or partial) proof, often taking a few
hours on complex case studies. This is an example where different prover design
choices are needed depending on the expected size of proofs.

The biggest downside of the KeYmaera prover design is that its general in-
frastructure and proof mechanisms come at the cost of leading to quite a large
soundness-critical prover kernel. While this kernel is isolated from the rest of the
prover, its taclet infrastructure, schematic matching mechanisms, and built-in
operators not only give the kernel a very central flavor in the entire prover im-
plementation but also lead to its roughly 136k lines of soundness-critical code
written in a mix of mostly Java and some Scala as well as more than 2000 taclets.

Outcomes. Major case studies verified in KeYmaera include safety of a round-
about aircraft collision avoidance system [55], safety, controllability, reactivity
and liveness of the European Train Control System ETCS [57], adaptive cruise
control systems for cars [28], robot obstacle avoidance scenarios [32], basic safety
for the Next-generation Airborne Collision Avoidance System ACAS X [23], and
an adversarial robotic factory automation scenario [61]. KeYmaera is embed-
ded into the hybrid systems modeling environment Sphinx [34], which provides
UML-style graphical and textual modeling of hybrid programs, and interacts
with KeYmaera to discharge proof obligations in dL.

These case studies confirm that differential dynamic logic is versatile for ver-
ifying even complicated hybrid systems. They reassure that KeYmaera has solid
automation capabilities and makes it possible to interactively verify complicated
systems out of reach for automation. What they also confirm is the nuisance of
repetitive interaction that users face when working on complicated applications
far out of reach for the small selection of automatic proof strategies that ship
with KeYmaera. Especially model changes require tedious repetitions of interac-
tive proofs. KeYmaera proofs store every proof step in detail, so are not a very
practical source when redoing proofs making verification results hard to modify.

Other takeaways include the loss of traceability for non-experts caused by the
additional quantifiers, updates, and static-single-assignment variable renaming
that KeYmaera introduces to make local taclet applications sound. Inexperienced
users easily get lost in the proof tree and fail to exercise appropriate branching
control, which significantly increases verification complexity. Even experienced
users may get lost in the details of a complete proof tree with all steps while
missing contextual knowledge when projecting out intermediate proof steps.

The KeYmaera Family: A Tale of Three Provers 33

What Else KeYmaera 3 Offers. Beyond the scope for this chapter is the
fact that KeYmaera 3 also implements the extensions of differential-algebraic
dynamic logic with differential algebraic equations [44], differential temporal dy-
namic logic with safety throughout [45], differential dynamic game logic that
adds separate game constructs on top of dL [61], and was finally also extended
to implement quantified differential dynamic logic for distributed hybrid sys-
tems [46]. KeYmaera links to a large number of real arithmetic decision pro-
cedures and even has a built-in implementation for simple real arithmetic [58].
The implementation of differential temporal dynamic logic is particularly par-
simonious in KeYmaera 3 as, e.g., the #boxtr schema variable used in taclet
box_choice_right can match on either dL’s box modality or the throughout
modality of differential temporal dynamic logic. One taclet implements two rules.

4 KeYmaeraD – An Experiment in Distributed Theorem
Proving With Direct Control

The KeYmaeraD hybrid systems theorem prover3 [62] is a bare-bones prover
with a direct rendition of the differential dynamic logic sequent calculus [43]
(with extensions for distributed hybrid systems [46]) in Scala.

Design Principles. Beyond supporting distributed hybrid systems, KeYmaeraD
was designed with the primary motivation of overcoming inherent scalability lim-
its caused by the sequential prover design of KeYmaera 3. Rather than having a
single proof tree explored sequentially as in KeYmaera 3, KeYmaeraD supports
a more general AND/OR proof tree where some nodes are AND-branching (all
subgoals need to be proved, it suffices to disprove one) and other nodes are OR-
branching (one subgoal needs to be proved, or all need to be disproved). In order
to favor execution speed and retain a lightweight implementation, KeYmaeraD
does not provide a rule application mechanism such as KeYmaera 3 taclets but
entirely relies on the pattern matching capabilities of the host language (Scala).
KeYmaeraD supports a built-in computation unit abstraction that is used to
decide which part of the parallel AND/OR proof tree to explore next. In terms
of user interaction, KeYmaeraD provides basic AND/OR proof tree rendering
with minimalistic goal printing and interaction with the Scala REPL for rule and
tactic application, but does not provide other UI infrastructure like KeYmaera 3
and KeYmaera X to filter rules by applicability or to suggest proof steps.

Successes. KeYmaeraD allows direct programming of proofs in the Scala host
language and provides ways of combining them with simple tactic combinators
in Scala. Its tactic library captures direct proof rule application but does not
implement a sophisticated tactic library combining inferences to achieve higher-
level reasoning. The AND/OR proof tree of KeYmaeraD emphasizes parallel

3 KeYmaeraD is available at http://symbolaris.com/info/KeYmaeraD.html

http://symbolaris.com/info/KeYmaeraD.html

34 Stefan Mitsch and André Platzer

proof search to explore different proof options, which provides significant oppor-
tunities for quickly discovering proofs. For example, KeYmaeraD can efficiently
construct proofs for a given list of loop invariants in parallel. This is a very
powerful mechanism for medium complexity examples where the computational
demand does not significantly exceed the computational resources. The direct
implementation in a host language ensures low computational cost per rule ap-
plication. KeYmaeraD is also the first ever prover for distributed hybrid systems.

Challenges. The biggest downside of KeYmaeraD’s prover design is its inflexi-
ble rule application, limited to top-level sequent calculus uses. Where KeYmaera 3
is sometimes overly permissive, KeYmaeraD is overly narrow-minded in its proof
rules and only supports one style of proofs. For example, it would be impossi-
ble to avoid exponential blowups that some proofs face unless working inside
out [37,61]. While Scala gives a lot of flexibility, the downside is that proofs can
only be conducted by programming them in Scala or typing them into a com-
mand line in Scala’s read-eval-print-loop (REPL), both of which require expert
knowledge about the prover’s internal implementation details. The simplistic
user interface only renders the proof tree and expects REPL commands to apply
proof rules with a goto command to select the proof tree node, thereby making
it comparably hard for novices to get started. Since everything is implemented
explicitly in Scala, it is easy to change the prover, but KeYmaeraD does not
provide sufficient soundness protection because users can create arbitrary new
proof rules in any arbitrary part of the code or they could annotate incorrect
solutions of differential equations that KeYmaeraD will use without checking.

Implementation Realities. KeYmaeraD implements the [∪]∧L,[∪]∧R sequent
calculus proof rule schemata (see below) in Scala as a function mapping a sequent
to a list of sequents:

1 val choose = new ProofRule("choose") {

2 def apply(p: Position) = sq => {

3 val fm = lookup(p, sq)

4 fm match {

5 case Modality(Box , Choose(h1, h2), phi) =>

6 val fm1 = Modality(Box , h1, phi)

7 val fm2 = Modality(Box , h2, phi)

8 val sq1 = replace(p, sq , Binop(And , fm1 , fm2))

9 Some((List(sq1),Nil))

10 case _ => None

11 }

12 }

13 }

Rule choose Line 3 uses lookup to access the sequent sq at position p, and
then matches on the shape of that formula. Extension of the rule to make it
applicable in other contexts or to other shapes with additional match cases is
soundness-critical. This code implements the following sequent calculus proof

The KeYmaera Family: A Tale of Three Provers 35

rule schemata:

([∪]∧L)
Γ, [α]φ ∧ [β]φ ` ∆
Γ, [α ∪ β]φ ` ∆

([∪]∧R)
Γ ` [α]φ ∧ [β]φ,∆

Γ ` [α ∪ β]φ,∆

The loop rule of Fig. 2 is implemented in 61 LOC as a function from the
invariant formula to a proof rule, listing how the rule applies in a sequent:

1 val loopInduction : Formula => ProofRule =

2 inv => new ProofRule("loopInduction[" + inv + "]") {

3 def apply(pos: Position) = sq => (pos , sq) match {

4 case (RightP(n), Sequent(sig , c, s)) =>

5 val fm = lookup(pos , sq)

6 val initial = replace(pos , sq , inv)

7 fm match {

8 case Modality(Box ,Loop(hp, True , inv_hints), phi) =>

9 val inductionstep =

10 Sequent(sig , List(inv),

11 List(Modality(Box , hp, inv)))

12 val closestep =

13 Sequent(sig , List(inv), List(phi))

14 Some((List(initial , inductionstep , closestep), Nil))

15 case _ => None

16 }

17 /* elided lines for diamond modality */

18 case _ => None

19 }

20 }

This loopInduction rule discards all context in Lines 10–13 to avoid uni-
versal closures, which simplifies the implementation considerably but requires
users to tediously retain any information needed from the context as part of the
loop invariant, which is brittle when editing models. This decision makes loop
invariant generation more challenging (not implemented in KeYmaeraD).

KeYmaeraD does not implement differential induction dI of Fig. 2 as a sepa-
rate proof rule, but instead provides that functionality combined with differential
cuts [45, 48, 59] as a diffStrengthen rule that augments the evolution domain
constraint of a differential equation with a condition inv:

1 val diffStrengthen : Formula => ProofRule =

2 inv => new ProofRule("diffStrengthen[" + inv + "]") {

3 def apply(pos: Position) = sq => (pos , sq) match {

4 case (RightP(n), Sequent(sig , c, s)) =>

5 val fm = lookup(pos , sq)

6 fm match {

7 case Modality(Box , Evolve(ode ,h,inv_hints ,sol), p) =>

8 val (ind_asm , ind_cons) = if (Prover.openSet(inv))

9 (List(inv , h),

10 setClosure(totalDeriv(None , ode , inv)))

11 else (List(h), totalDeriv(None , ode , inv))

12 val inv_hints1 = inv_hints.filter(inv != _)

36 Stefan Mitsch and André Platzer

13 val fm1 = Modality(Box ,

14 Evolve(ode ,

15 Binop(And , h, inv),

16 inv_hints1 ,

17 sol),

18 p)

19 val iv = Sequent(sig , h::c, List(inv))

20 val ind = Sequent(sig , ind_asm , List(ind_cons))

21 val str = replace(pos , sq , fm1)

22 Some((List(iv, ind , str), Nil))

23 case _ => None

24 }

25 case _ => None

26 }

27 }

This code implements the following sequent calculus proof rules, where Cl(P)
is the approximate topological closure of P and P θx substitutes term θ for variable
x in P :

(dSc)
Γ,Q ` J,∆ Q ` (J)′

f(x)
x′ Γ ` [x′ = f(x) &Q ∧ J]F,∆

Γ ` [x′ = f(x) &Q]F,∆
(J closed)

(dSo)
Γ,Q ` J,∆ Q, J ` Cl((J)′)

f(x)
x′ Γ ` [x′ = f(x) &Q ∧ J]F,∆

Γ ` [x′ = f(x) &Q]F,∆
(J open)

The diffStrengthen rule distinguishes between open and closed invari-
ants (Lines 8–11): open differential invariants [45] can assume the invariant
in the assumptions ind_asm during their inductive proof, on closed invariants
only the evolution domain h is assumed in ind_asm in the induction step, be-
cause it would be unsound to assume inv [45]. The main implementation in
Prover.totalDeriv computes the differential invariant condition ind_cons for
inv as a function of the differential equation ode and amounts to an extra 1500
lines of Scala code. The result of the diffStrengthen rule are three subgoals
(Lines 19–22): the invariant inv must hold initially from the evolution domain
constraint h and context c; its differential invariant condition ind_cons must be
preserved from the assumptions ind_asm; then inv can strengthen the evolution
domain constraint h in the augmented differential equation (Lines 13–18).

Assignments [:=] are implemented in Scala by turning them into equations:

1 val assign = new ProofRule("assign") {

2 def apply(p: Position) = sq => {

3 val Sequent(sig , c, s) = sq

4 val fm = lookup(p, sq)

5 fm match {

6 case Modality(_, Assign(vs), phi) =>

7 var phi1 = phi;

8 var sig1 = sig;

9 var c1 = c;

10 for(v <- vs) v match {

11 case (Fn(vr, Nil), tm) =>

The KeYmaera Family: A Tale of Three Provers 37

12 val vr1 = Prover.uniqify(vr);

13 phi1 = Prover.renameFn(vr, vr1 , phi1);

14 sig1 = sig.get(vr) match {

15 case Some(sg) => sig1 .+((vr1 , sg))

16 case _ => sig1

17 }

18 val fm1 = Atom(R("=", List(Fn(vr1 , Nil), tm)));

19 c1 = c1 ++ List(fm1);

20 ... /* case (Fn(vr , List(arg)), tm) elided */

21 }

22 val sq1 = replace(p, Sequent(sig1 , c1 , s), phi1)

23 Some((List(sq1), Nil))

24

25 case _ => None

26 }

27 }

28 }

This code implements the following sequent calculus proof rule, where y is
fresh in the sequent and P yx is P with all occurrences of x renamed to y:

([:=]eq)
Γ, y = e ` P yx , ∆
Γ ` [x := e]P,∆

(y fresh)

Rule assign does not attempt any simplification (e.g., substitution), but
chooses to always rename and introduce equations. It obtains a fresh variable
vr1 with Prover.uniqify (Line 12) and then uses Prover.renameFn (Line 13)
to rename vr to vr1 in the postcondition phi. The effect of the assignment is
collected as an equation in the context (Lines 18–19), and the signatures of the
sequent are updated to include the fresh variable (Lines 14–17).

While the challenge of KeYmaeraD’s loop rule is that it discards all infor-
mation from the context, the challenge of KeYmaeraD’s assign is the opposite:
it retains all assumptions, even assumptions that have become irrelevant or, if
substituted, would lead to significantly simpler assumptions. For example, on

x = y ` [x := x+ 1][x := 2x][x := x− 2]x = 2y

repeated application of rule assign results in

x = y, x0 = x+ 1, x1 = 2x0, x2 = x1 − 2 ` x2 = 2y

instead of the simpler x = y ` 2(x+ 1)− 2 = 2y of [:=] substitution of Fig. 2.
Retaining such old versions of variables has a significant impact on the practical
performance of real arithmetic [45, Sect. 5.3.2], where just one formula can be
the difference between termination within a second and no answer within a day.

Outcomes. The prover KeYmaeraD is an interesting experiment to see what
happens when directly implementing a prover to address the shortcomings of

38 Stefan Mitsch and André Platzer

KeYmaera 3, embracing parallel proof search, and generalizing it to distributed
hybrid systems. KeYmaeraD is useful for experts familiar with its implementa-
tion detail and enables proofs of distributed hybrid systems out of reach for all
other verification tools (except later versions of KeYmaera 3). But KeYmaeraD
never attracted a sustainable user base. Its blessing of enabling low-level control
of parallel proof search was simultaneously its curse of requiring low-level con-
trol to benefit from parallel exploration while simultaneously requiring low-level
attention to the logical transformation of formulas. This includes the need for ex-
plicit augmentation of invariants with assumptions about constants and tracking
of static-single-assignment-renamings of variable generations. But KeYmaeraD
is useful for experts who appreciate direct control of proofs close to bare metal.

Statistics. KeYmaeraD comes with 38 built-in proof rules, some of which im-
plement multiple modality cases at once (e.g. choose). The statistics give a ball-
park estimate even if they are not quite comparable with other provers because
KeYmaeraD has only partial support for differential equations and 〈·〉 modalities
and ∃ quantifiers, and does not yet provide invariant generation or proof storage.

What Else KeYmaeraD Offers. Most significantly, KeYmaeraD also im-
plements quantified differential dynamic logic QdL for distributed hybrid sys-
tems [46]. While no interesting hybrid systems were verified with KeYmaeraD,
its primary applications use distributed hybrid systems technology. KeYmaeraD
was used to verify disc-type collision avoidance maneuvers for arbitrarily many
aircraft in QdL [29] as well as safety of a surgical robot controller obeying arbi-
trarily many operating boundaries [25], which are out of scope for all other tools.
Since KeYmaeraD is not based on KeY, it did not inherit KeY’s automatic proof
strategy support and also requires manual instantiation of quantifiers. That is
why, ironically, a subsequent implementation of part of the distributed hybrid
systems logic QdL in the original KeYmaera 3 prover was more practical.

5 KeYmaera X – An aXiomatic Tactical Theorem Prover
With a Small Microkernel

The clean-slate KeYmaera X theorem prover for hybrid systems [20] is a di-
rect implementation of the differential dynamic logic uniform substitution proof
calculus [50], complemented by built-in propositional sequent calculus rules for
performance reasons, and is implemented in Scala. The uniform substitution
style has a significantly simplifying impact on the overall prover design and sub-
stantially simplifies soundness arguments thanks to the resulting minimal kernel.

Design Principles. The most important goal in the design of KeYmaera X is
its systematic attention to a small-core LCF [30] design, identifying the minimal
essential building blocks of a sound hybrid systems prover. An explicit goal of
KeYmaera X is to identify a minimal axiomatic prover core (prover µkernel)

The KeYmaera Family: A Tale of Three Provers 39

based upon which a hybrid systems prover can be built easily that is guaran-
teed to be sound if the µkernel is sound. The crucial ingredient to enable this
is dL’s uniform substitution calculus [50], which made it possible to avoid proof
rule schemata and axiom schemata entirely. Unlike in KeYmaeraD, conceptual
simplicity was not obtained at the expense of flexibility. Unlike KeYmaera 3, no
schematic rule application mechanism such as taclets was used. Uniform substi-
tutions enable a significantly more flexible proof calculus than what KeYmaera 3
had to offer, although never at the expense of soundness. Another goal of the
KeYmaera X prover was to increase modularity by having separate responsibil-
ities, e.g., separate modules for prover µkernel, tactic language, tactic libraries,
persistence layer, communication layer, web user interface, that are each mostly
isolated from one another and, thus, easier to modify or replace separately. For
user interaction purposes, KeYmaera X strives for close mnemonic analogy with
textbooks, favors proof step result simplicity over internal reasoning simplic-
ity, and presents internal automation steps on demand rather than mixed with
user-initiated steps.

Uniform Substitution. The uniform substitution proof rule [50], originally
due to Church for first-order logic [14, §35,40], says that if a formula φ has a proof,
then the result σ(φ) of substituting terms for function symbols, formulas for
predicate symbols, hybrid programs for program constant symbols, and context
formulas for quantifier symbols, according to uniform substitution σ is proved:

(US)
φ

σ(φ)

The big deal about uniform substitution is that it makes superfluous all schemata
and instantiation mechanisms such as taclets and schema variable implemen-
tations of KeYmaera 3 and host-language matching code of KeYmaeraD. The
soundness-critical part of the implementation of the nondeterministic choice ax-
iom [∪], for example, reduces literally to just providing one concrete dL formula:

[a ∪ b]P ↔ [a]P ∧ [b]P

This axiom is an ordinary concrete dL formula in which a, b are program constant
symbols and P is a nullary quantifier symbol (P can also be thought of as a
predicate symbol p(x̄) with the vector x̄ of all variables as arguments). If a
particular instance of this axiom is needed during a proof, all a tactic needs to
do is ask rule US to generate an appropriate instance, e.g., with the uniform
substitution σ = {a 7→ x := x+ 1, b 7→ x′ = x, P 7→ x ≥ 0} as follows:

US
[a ∪ b]P ↔ [a]P ∧ [b]P

[x := x+ 1 ∪ x′ = x]x ≥ 0↔ [x := x+ 1]x ≥ 0 ∧ [x′ = x]x ≥ 0

In KeYmaera X, rule US is mostly used backwards from conclusion to its premise
by identifying which substitution σ reduces σ(φ) to a known or easier for-
mula. Unification outside the soundness-critical µkernel finds the appropriate

40 Stefan Mitsch and André Platzer

uniform substitution σ required for a desired inference step (e.g., after match-
ing [x := x+ 1 ∪ x′ = x]x ≥ 0 against [a ∪ b]P). The same uniform substitution
proof rule US resolves, e.g., all the subtleties with the use of assignment axioms
where the admissibility conditions of US [50, 51] adequately prevent unsound
reasoning. Uniform substitution enables reasoning in context [50], which make
uniformly substituted axioms significantly more versatile and flexible than, e.g.,
the automatic context generalizations of KeYmaera 3, while always rigorously
maintaining soundness of such generalizations.

Implementation Realities. Thanks to uniform substitutions, the implemen-
tation of axioms in KeYmaera X reduces to providing a direct copy of the dL
formula of the axiom given in plain text in the KeYmaera X prover µkernel:

1 Axiom "[++] choice"

2 [a;++b;]p(||) <-> [a;]p(||) & [b;]p(||)

3 End.

4 Axiom "[:=] assign"

5 [x:=f();]p(x) <-> p(f())

6 End.

7 Axiom "[:=] assign equality"

8 [x:=f();]p(||) <-> \forall x (x=f() -> p(||))

9 End.

These are direct ASCII renditions of the [∪] choice axiom and the [:=] assignment
axiom. The ++ symbol is ASCII for ∪ and the notation p(||) indicates that p is
a nullary quantifier symbol (predicational) instead of a nullary predicate symbol
as in p(). This is all there is to the soundness-critical part in the prover µkernel
of the implementation of those axioms, because uniform substitution is available
in the µkernel to soundly put concrete terms in for the function symbol f(), put
concrete formulas in for the predicate symbol p(.) of its argument (.) or for the
predicational symbol p(||), and put concrete hybrid systems in for the program
symbols a; and b;. Thanks to unification outside the soundness-critical µkernel,
using such axioms is easily done with a tactic that instructs the unifier to unify
with and use the appropriate axiom at the position where it will be applied to:4

val choiceb = useAt("[++] choice")

Tactics get more complicated when different circumstances require different
proofs, e.g., assignments sometimes need renaming to avoid conflicts. But tactics
are not soundness-critical, so the µkernel is isolated from such complications:

1 @Tactic("[:=]", conclusion = "__[x:=e]p(x)__<->p(e)")

2 val assignb = anon by { w =>

3 useAt("[:=] assign")(w)

4 | useAt("[:=] self assign")(w)

5 | asgnEq(w)

4 Besides unification, the implementation of the generic useAt tactic identifies the
(blue) key of an axiom to unify with and generically handles, e.g., equivalence trans-
formations and implicational assumptions that arise during the use of the axiom.

The KeYmaera Family: A Tale of Three Provers 41

6 }

7 @Tactic(

8 names = "[:=]=",

9 premises = "G, x=e |- P, D",

10 // [:=]= ------------------

11 conclusion = "G |- [x:=e]P, D",

12 displayLevel = "all"

13)

14 val asgnEq = anon by ((w, seq) => seq.sub(w) match {

15 case Some(Box(Assign(x, t), p)) =>

16 val y = freshNamedSymbol(x, seq)

17 boundRenaming(x, y)(w) &

18 useAt("[:=] assign equality")(w) &

19 uniformRenaming(y, x) &

20 (if (w.isTopLevel &&w.isSucc) allR(w) & implyR(w) else ident)

21 })

The assignb tactic combines axioms and tactics with the | combinator to try
succinct axioms first and fall back to more complicated tactics only when nec-
essary: it first tries axiom [:=] with useAt("[:=] assign")(w) for its succinct
result if it is applicable; upon failure, the tactic tries to resolve self-assignments
of the form x := x, and finally, it applies the generic asgnEq tactic that is ap-
plicable to any assignment in any context. The @Tactic annotations provide
naming and rendering information for registering and displaying tactics.

Axioms that are only sound for hybrid systems but not hybrid games use the
clunky notation a{|^@|}; to indicate that a; cannot mention the game duality
operator d rendered as ^@ in ASCII so a; is a program not a game symbol:

1 Axiom "I induction"

2 p(||)&[{a{|^@|};}*](p(||)->[a{|^@|};]p(||)) ->[{a{|^@|};}*]p(||)

3 End.

Thanks to the syntactic internalization of differential operators in differential
dynamic logic [50], the implementation of differential invariants is quite simple:

1 Axiom "DI differential invariance"

2 ([{c&q(||)}]p(||) <-> [?q(||);]p(||))

3 <- (q(||)->[{c&q(||)}]((p(||)) ’))

4 End.

A few similarly simple further axioms are needed to, then, remove the resulting
differential operator from p(||)’, e.g., for distributing differentials over ∧:

1 Axiom "&’ derive and"

2 (p(||) & q(||)) ’ <-> (p(||)) ’ & (q(||)) ’

3 End.

But the entire construction is syntactic within the logic dL itself [50] instead of as
a soundness-critical algorithm implementing a built-in metaoperator #DiffInd

with a Java program as in KeYmaera 3 or a Scala program as in KeYmaeraD.

42 Stefan Mitsch and André Platzer

Successes. Probably the biggest success of the KeYmaera X design is how
well it has managed to keep the size and complexity of its soundness-critical
prover µkernel at only about 2000 lines of code that are mostly straightforward.
That makes it much easier to check whether a change could damage the prover,
because i) soundness is rarely the issue, as code in the µkernel rarely changes,
ii) completeness is usually the worst that may be affected in most changes,
which is more easily noticed with testing (if something no longer proves that did)
compared to soundness-critical changes (nobody notices if something suddenly
would prove that should not), and iii) many changes are monotonic additions
that add new tactics whose presence, by design, cannot damage the functioning of
the rest of the prover. It is liberating to advance provers under such a design that
encourages fast-paced development and teams. The result is a significantly more
flexible proof calculus that is able to apply axioms in any binding context inside
formulas, checked for soundness by uniform substitution (whereas KeYmaera
and KeYmaeraD are restricted to reasoning at top-level operators).

Another major success of the KeYmaera X prover is its versatile user inter-
face [36], which makes the use of the prover transparent compared to the theory.
In a nutshell, formal proofs and proof rules can be read and understood equally
on paper and in the prover without requiring a shift in perspective.5 One indica-
tion that this design was successful is the fact that undergraduate students are
able to learn how to use KeYmaera X in a course [51] well enough even if almost
all of them have not had any prior exposure to logic or cyber-physical systems.
Contributing in no small part to the successful design of the KeYmaera X user
interface is its modular design separate from all the rest of the prover, enabling
easier experimentation and complete rewrites.

The modular code base of KeYmaera X is fairly resilient to change. Beyond
the intended points of change, it was possible to swap out axioms to prove hybrid
games [52], swap out uniform substitution application mechanisms [53], swap out
unification, swap out central proof data structures and proof storage, change how
formulas in sequents are indexed, and swap out the entire tactic framework.

KeYmaera X has sufficiently modular automatic proof tactics that make it
easy to benefit from automatic invariant generators for continuous dynamics
such as Pegasus [64]. It is also comparably easy to maintain alternative proof
automation tactics in harmonious coexistence, e.g., when it is not clear ahead of
time which approach or which combination of approaches will work best.

Challenges. Its focus on soundness makes it comparably easy to spot sound-
ness bugs in KeYmaera X, because its µkernel is short and structurally simple,
and because all else gets caught when trying to draw incorrect inferences (e.g.,
incorrect tactics). But the same cannot be said for performance and complete-
ness bugs. Because KeYmaera X, for performance reasons, does not memorize its
proof steps and only reports problems if a proof step was unsound, it is hard to

5 Ironically, minor notational differences still exist as concessions to ASCII and curly-
brace language notation, but major changes such as different proof notations, up-
dates or static-single-assignment-renamed versions of variables are avoided.

The KeYmaera Family: A Tale of Three Provers 43

notice where tactics found proofs in unnecessarily complicated yet sound ways.
For example, when a tactic goes in circles a few times before successfully com-
pleting a correct proof, then it is much harder to notice the wasted effort.

Tactic implementation often needs to trade off performance, completeness,
and comprehensibility, because it is not only inherently difficult to enumerate
all the sound ways of applying axioms in diverse contexts (which is exactly the
benefit of using uniform substitution), but also inherently difficult to decide what
of that context information should be kept for completeness and which facts to
discard to increase comprehensibility and scale. These considerations show up
in tactic implementation for KeYmaera X with a performance and completeness
impact. But the same challenges surface in KeYmaera and KeYmaeraD where,
however, they furthermore cause a soundness impact! For example, consider the
following axiom for differential weakening, which allows us to prove postcondition
p(||) from the evolution domain constraint q(||) of an ODE {c&q(||)}.

1 Axiom "DW differential weakening"

2 [{c&q(||)}]p(||) <-> ([{c&q(||)}](q(||)->p(||)))

3 End.

Axiom DW differential weakening by itself does not make the question
much easier, since the differential equation {c&q(||)} is still around even after
applying the axiom from left to right. In order to make progress in the proof, a
tactic will need to combine axiom DW differential weakening with techniques
to abstract the modality away, for example by using axiom V vacuous or rule
G, as put into operation in the example in Fig. 4.

1 Axiom "V vacuous"

2 p() -> [a{|^@|};]p()

3 End.
(G)

` φ
` [α]φ

In this example, the proof in Fig. 4b is more concise than Fig. 4a and gives a
less surprising result without universal quantifiers. Why may we still want to use
the proof technique in Fig. 4a? Consider x0 ≥ 1 ` [x′ = 2 & x ≥ x0]x ≥ 0, where
it is important to retain the initial assumption x0 ≥ 1 (rule G is only applicable
in an empty context, so would discard assumption x0 ≥ 1 by weakening). Many
conjectures are best served (for users and automation) by concise reasoning that
leaves less clutter around, but for completeness it becomes necessary to retain
certain facts. A prover has to decide what is appropriate in which situation.

∗
QE ` ∀x (x ≥ 0→ x ≥ 0)
V ` [x′ = 2 & x ≥ 0]∀x (x ≥ 0→ x ≥ 0)
∀α ` [x′ = 2 & x ≥ 0](x ≥ 0→ x ≥ 0)
DW ` [x′ = 2 & x ≥ 0]x ≥ 0

(a) Abstraction with axiom V vacuous

∗
QE ` x ≥ 0→ x ≥ 0
G ` [x′ = 2 & x ≥ 0](x ≥ 0→ x ≥ 0)

DW ` [x′ = 2 & x ≥ 0]x ≥ 0

(b) Abstraction with rule G

Fig. 4: Tactic alternatives for differential weakening by vacuity or generalization

44 Stefan Mitsch and André Platzer

Learning from the successes of KeYmaeraD, initial attempts on a tactic
framework for KeYmaera X emphasized concurrent and speculative tactic exe-
cution in the spirit of modern processor designs for performance reasons. Relying
only on aggressively concurrent execution turns out to be a misguided idea dur-
ing development, because, even with sound proofs, concurrent execution makes it
near impossible to debug where and why tactics are failing if there is no reliable
way of triggering the same failure in the same order again. The current sequential
tactic framework entirely dismisses all aspirations for concurrent execution (ex-
cept when using explicit parallel tactic combinators), and is significantly more
successful in practice.

For modularity reasons, KeYmaera X has a tactic interpreter that runs a
tactic on a sequent to completion returning the remaining open premises (if any,
else the sequent is proved). This design results in a clear separation of concerns
compared to the rest of the prover. But, unlike in KeYmaera 3, it is difficult
to meaningfully interrupt an automatic proof in the middle and then help out
interactively. This is related to the fact that, other than an exhaustive list of
all individual proof steps, there is no reliable way to record the resulting proof,
because there is no guarantee that interrupting the automatic tactic after the
same amount of time or the same number of inferences in the future will result in
the same remaining open premises. To mitigate, KeYmaera X provides ways of
running tactics in exploratory mode, whether the tactic completes successfully
or not, and a second tactic interpreter records and exposes internal proof steps.

The reliance of the KeYmaera X user interface on a web browser makes
it much easier to distribute proof development to multiple users and provides
browser-powered rendering capabilities. But it requires dealing with the acute id-
iosyncracies of browser dependencies, unreliability of JavaScript and its libraries.

Outcomes. Fairly subtle properties of major complicated systems have been
successfully verified with KeYmaera X, including the Next-generation Airborne
Collision Avoidance Systems ACAS X [24], obstacle avoidance [33] and way-
point navigation [13] for ground robots, and air pressure brakes for trains [31].
The syntactic rendition of proofs as tactics in KeYmaera X was also exploited
to enable provably safe reinforcement learning in cyber-physical systems [21],
as well as tactical verification of component-based hybrid systems models [40].
ModelPlex [37] crucially exploits the axiomatic approach of KeYmaera X that
enables in-context reasoning and avoids splitting ModelPlex proofs into multiple
branches, so that all runtime conditions are collected in a single proof goal. The
first implementation of ModelPlex in KeYmaera [35] with its restriction to top-
level rules branches heavily, which requires a soundness-critical step of collecting
and factoring all open branches from an unfinished proof. The strict separation
of generating invariants, solutions of differential equations, and other proof hints,
from tactically checking them enables KeYmaera X to include numeric and other
potentially unsound methods (e.g., for generating barrier certificates) into its in-
variant generation framework Pegasus [64] for nonlinear ODEs.

The KeYmaera Family: A Tale of Three Provers 45

These case studies confirm the advanced scale at which differential dynamic
logic proving helps make hybrid systems correct even for fairly complex appli-
cations with very subtle properties. The use of tactics in the Bellerophon tactic
language of KeYmaera X [19] played a big role in proving them. When beyond
the reach of full automation, proof tactics are significantly easier to rerun, mod-
ify, and check compared to point-and-click interactive proofs. The comparably
fast-paced development with a small µkernel underneath a large library of tactics
also makes it easier to advance proof automation, including automation of com-
plete differential equation invariant proving [59]. The curse of improving proof
automation, however, is that tactics may have to be adapted when more of a
proof completes fully automatically and the remaining formulas change.

The ARCH competition [38] highlights significant improvements for full au-
tomation of continuous dynamics from KeYmaera to KeYmaera X, but also that
the tactics in KeYmaera X, while more automatic, still lose efficiency compared
to the proof search and checking procedures of KeYmaera. The benefit of sep-
arating proof automation in tactics from the µkernel manifests in performance
and automation improvements between KeYmaera X versions: proof automation
in KeYmaera X improved [38] to the level of scripted proving reported a year
earlier [39], and additional scripted functionality became available.

Statistics. Besides uniform substitution, renaming, and propositional sequent
calculus rules with Skolemization, the KeYmaera X µkernel provides 5 axiomatic
proof rules with concrete dL formulas and 54 concrete dL formulas as axioms.
A large number of tactics (about 400) are built on top of this µkernel and are,
thus, not soundness-critical.

What Else KeYmaera X Offers. Beyond serving as a hybrid systems the-
orem prover, KeYmaera X implements differential game logic for hybrid games
[49], which, quite unlike the case of games added to KeYmaera 3 [61], required
only a minor change. This is an example illustrating why the axiomatic ap-
proach makes it significantly easier to soundly change the capabilities of a prover.
The axiomatic approach is also beneficial to obtain formal guarantees about the
prover µkernel itself [11], and serves as the basis for transforming hybrid systems
proofs to verified machine code through the compilation pipeline VeriPhy [12].

6 Comparison of Underlying Reasoning Principles

In this section, we compare how differences in the underlying reasoning principles
result in differences in the concrete mechanics of conducting sequent proofs and
differences in the code base organization.

Implementation Comparison By Example. We discuss assignments, loops,
and differential equations as illustrative examples of the implementation choices
across KeYmaera, KeYmaeraD, and KeYmaera X.

46 Stefan Mitsch and André Platzer

Assignments. Assignments, even though seemingly simple at first glance, become
tricky depending on the binding structure of the imperative programs that follow.
Let us briefly recap how handling assignments differs across provers:

– KeYmaera turns all assignments into updates, but delegates the soundness-
critical task of how to apply these updates to the update simplifier and leads
to soundness-critical decisions of invisibly leaving updates around all taclets;

– KeYmaeraD opts for the always-safe choice of introducing universal quanti-
fiers and turning all assignments into extra equations, but this results in a
plethora of similar symbols and equation chains that can (i) be confusing for
users, (ii) be exceedingly challenging for real arithmetic solvers, and (iii) in-
crease the complexity of identifying loop invariants and ODE invariants;

– KeYmaera X exploits the safety net of the underlying uniform substitution
algorithm: its tactic replaces the free occurrences of the assigned variable,
and only if the prover kernel rejects this6, falls back to introducing equations.

The following example illustrates the difference in the behavior between
KeYmaera (K3 for short below), KeYmaeraD (KD), and KeYmaera X (KX):

x = 1 ` {x := x+ 1}[?x ≥ 1]x ≥ 0 K3 (update)

x = 1, x1 = x+ 1 ` [?x1 ≥ 1]x1 ≥ 0 KD (equation)

x = 1 ` [?x+ 1 ≥ 1]2 ≥ 0 KX (substitution)
[:=]x = 1 ` [x := x+ 1][?x ≥ 1]x ≥ 0

In this example, the assigned variable x occurs free but not bound in the for-
mula [?x ≥ 1]x ≥ 0 following the assignment and so can be substituted. Despite
this, KeYmaera and KeYmaeraD stick to their fixed behavior of introducing up-
dates and equations, respectively. KeYmaera X uses a substitution in the above
example, and adapts its behavior appropriately using free and (must)bound vari-
ables from the static semantics of dL [50]. The wide variety in the examples below
of how to best handle assignments in sound ways explains why that is best de-
cided outside the soundness-critical prover core.

Must-bound not free: After the assignment, the assigned variable is defi-
nitely bound but not free, so the assignment has no effect:

` [x := 3]x ≥ 3
[:=] ` [x := 2][x := 3]x ≥ 3

Free and must-bound: After the assignment, the assigned variable is free and
definitely bound, so all free occurrences can be substituted:

` [x := 2 + 1]x ≥ 3
[:=] ` [x := 2][x := x+ 1]x ≥ 3

6 Earlier implementations of the KeYmaera X assignment tactic attempted to syn-
tactically analyze the formula to decide which axiom to use, which is essentially
the task of the update simplifier in KeYmaera. This approach turned out to be too
error-prone, unless the tactic exactly mimics the uniform substitution algorithm.

The KeYmaera Family: A Tale of Three Provers 47

Free and maybe-bound: The assigned variable is bound on some but not all
paths of all runs of the program, so not all free occurrences are replaceable
and therefore KeYmaera X introduces an equation (for traceability KeY-
maera X retains original names for the “most recent” variable and renames
old versions in the context; higher index indicates more recent history):

x0 = 1, x = 2 ` [{x′ = x}]x ≥ 2
[:=] x = 1 ` [x := 2][{x′ = x}]x ≥ 2

Free and must-bound before maybe-bound: The assigned variable is def-
initely bound again later, so the free occurrences can be replaced:

` [x := 2 + 1 ∪ x := 3][(x := x+ 1)
∗
]x ≥ 3

[:=] ` [x := 2][x := x+ 1 ∪ x := 3][(x := x+ 1)
∗
]x ≥ 3

In context substitutable: The assignment occurs in the context of a formula
and substitution is applicable:

` [{x′ = −x2}](x+ 1)2 ≥ 2
[:=] ` [{x′ = −x2}][x := x+ 1]x2 ≥ 2

In context not substitutable: The assignment occurs in the context of a for-
mula but substitution is not applicable because the assigned variable is
maybe bound later:

` [(x := x+ 1)
∗
]∀x (x = 2→ [{x′ = 3}]x ≥ 2)

[:=] ` [(x := x+ 1)
∗
][x := 2][{x′ = 3}]x ≥ 2

Right-hand side may be bound: The right-hand side of the assignment can-
not simply be substituted in because it is maybe bound on some paths:

y < 0, x = y2 ` [y :=−x ∪ {y′ = x}]y < 0
[:=] y < 0 ` [x := y2][y :=−x ∪ {y′ = x}]y < 0

Note that a must-bound occurrence before any maybe bound occurrences
again enables plain substitution, as shown below:

y < 0 ` [x := y2 + 1][y :=−x ∪ {y′ = x}]y < 0
[:=]y < 0 ` [x := y2][x := x+ 1][y :=−x ∪ {y′ = x}]y < 0

The benefits and drawbacks of implementations are summarized in Table 1.

Loop Induction. Loop induction showcases how the specific implementations in
the provers result in different demands on user intervention afterwards. KeYmaera
favors completeness and retains all context in the taclet but requires users to dis-
card unwanted assumptions (distracting users and arithmetic procedures [45]).
KeYmaeraD implements the obvious sound rule of removing all context but re-
quires users to explicitly retain any desired assumptions in the loop invariant

48 Stefan Mitsch and André Platzer

Table 1: Assignment comparison

Pros Cons

KeYmaera Common proof step result (up-
dates)

Complexity hidden in critical up-
date simplifier, affects other taclets

KeYmaeraD Common proof step result (equa-
tions)

Creates distracting equations and
Skolem symbols (challenging for
users and QE and invariants)

KeYmaera X Favors simplicity, creates variables
and quantifiers only when neces-
sary, works in context

Less easily predictable proof step
result makes automated follow-up
tactics challenging

(which needs fragile adaptations when the model or proof changes). The KeY-
maera X tactic attempts to strike a balance between the two in the usual cases,
requiring users to retain extra assumptions in unusual cases. KeYmaera X tac-
tics enable additional features, such as referring to the state at the beginning of
the loop with the special function symbol old. The example in Fig. 5 illustrates
the differences in loop induction implementations (the loop invariant x ≥ 1 for
KeYmaeraD needs to be augmented with the additional constant fact . . .∧b > 0).
Completeness of the loop tactic is more challenging than for assignment, since

K3

KD

KX

x = 1, b > 0 ` x ≥ 1

x = 1, b > 0 ` x ≥ 1 ∧ b > 0

x = 1, b > 0 ` x ≥ 1

(a) Base case

K3

KD

KX

x = 1, b > 0 ` ∀x (x ≥ 1→ x ≥ 0)

x ≥ 1 ∧ b > 0 ` x ≥ 0

b > 0, x ≥ 1 ` x ≥ 0

(b) Use case

K3

KD

KX

x = 1, b > 0 ` ∀x (x ≥ 1→ [x := x+ 1/b]x ≥ 1)

x ≥ 1 ∧ b > 0 ` [x := x+ 1/b](x ≥ 1 ∧ b > 0)

b > 0, x ≥ 1 ` [x := x+ 1/b]x ≥ 1

(c) Induction step

Base case (5a) Use case (5b) Induction step (5c)
loop x = 1, b > 0 ` [(x := x+ 1/b)∗]x ≥ 0

Fig. 5: Difference in loop induction: KeYmaera (K3), KeYmaeraD (KD), and
KeYmaera X (KX)

it has to transform sequents into the shapes expected by the axioms used in-
ternally. An early version of the tactic lost constant facts when they were not
isolated or when they were “hidden” in negated form in the succedent (e.g., lost
b > 0 in a sequent x = 1 ∧ b > 0 ` [(x := x+ 1/b)

∗
]x ≥ 1). The current tactic

The KeYmaera Family: A Tale of Three Provers 49

Table 2: Loop induction comparison

Pros Cons

KeYmaera Fast one step rule, common proof
step result (keeps full context, uni-
versal closure for soundness)

Universal closure with new names,
needs manual removal of undesired
assumptions, hard to extend fea-
tures (careful: soundness)

KeYmaeraD Fast one step rule, common proof
step result (discards context)

Needs manual action to retain nec-
essary assumptions, bad for invari-
ant generation, hard to extend fea-
tures (careful: soundness)

KeYmaera X Less user intervention in the usual
cases, easily extensible (e.g., old
terms for ghosts)

Completeness is challenging in un-
usual cases, users may not imme-
diately be able to help since usual
cases work on their own

applies α-rules first to attempt isolating constant facts, so it still loses informa-
tion, e.g., when nested inside (x ≥ 1 ∧ b > 0) ∨ (x ≥ 4 ∧ −b < 0). The benefits
and drawbacks of implementations are summarized in Table 2.

Differential Induction. Similar to loop induction, KeYmaera favors completeness
and retains all context. KeYmaeraD implements differential invariants not as
a separate rule, but integrated with differential cuts in a single “differential
strengthen” rule. KeYmaera X is closer to KeYmaera, but automatically closes
the resulting goals if not explicitly asked to stop at an intermediate result. The
following example illustrates the difference between the differential induction
implementations (X indicates when goals are closed automatically).

K3

KD

KX

(init)

x2 + y2 = 1 ` x2 + y2 = 1

x2 + y2 = 1 ` x2 + y2 = 1

x2 + y2 = 1 ` x2 + y2 = 1 X

(step)

x2 + y2 = 1 ` ∀x∀y (2xy + 2y(−x) = 0)

` 2xy + 2y(−x) = 0

x20 + y20 = 1 ` [x′ := y][y′ :=−x]2xx′ + 2yy′ = 0 X
DI x2 + y2 = 1 ` [x′ = y, y′ = −x]x2 + y2 = 1

Solving ODEs. The intuitively (but not computationally!) easiest way of proving
a property of a differential equation [x′ = f(x) &Q]P is to replace it with a
property of its solution [43,48,50] with a universal quantifier for all times t ≥ 0.
When y(t) is the solution over time t of the above differential equation (and
other side conditions hold [43,48,50]), then [x′ = f(x) &Q]P is equivalent to:

∀t≥0
(
(∀0≤s≤t [x := y(s)]Q)→ [x := y(t)]P

)
The inner quantifier checks that the evolution domain constraint Q was true
at every intermediate time s. It would be correct to prove [x′ = f(x) &Q]P by

50 Stefan Mitsch and André Platzer

proving a formula that merely assumes that Q was true at the end time t:

∀t≥0
(
[x := y(t)]Q→ [x := y(t)]P

)
Often it is more efficient to just consider the endpoint, but sometimes complete-
ness requires the presence of the assumption about all intermediate times s.
That is why all three provers implement both versions. Of course, either rea-
soning principle is only correct when the side conditions hold [43, 43, 48], most
importantly that y(t) actually is a solution of the differential equation (system)
x′ = f(x) and satisfies the symbolic initial value y(0) = x.

KeYmaera trusts the differential equation solver of Mathematica or the Or-
bital7 library to produce correct solutions (the conversions and taclet infrastruc-
ture are about 2k lines of code). KeYmaeraD trusts its builtin integrator and
linear algebra tools (about 1k lines of code), or the user to annotate the correct
solution of the differential equation with @solution in the model. KeYmaera X
implements differential equation solving purely by proofs in tactics (about 1.5k
lines of code) based on one axiom for solving constant differential equations [50]:

1 Axiom "DS& differential equation solution"

2 [{x’=c()&q(x)}]p(|x’|) <-> \forall t (t>=0 ->

3 \forall s (0<=s&s<=t->q(x+c()*s)) -> [x:=x+c()*t;]p(|x’|))

4 End.

Code Structure and Soundness-Critical Proof Infrastructure. Fig. 6
summarizes the code base of the KeYmaera family provers, structured as follows:

Kernel core data structures and soundness-critical rules, parsing and printing,
as well as interfacing and interaction with external tools for arithmetic;

Tactics proof primitives, and framework support for automation and scripting;
UI non-critical user-facing infrastructure and proof presentation.

KeYmaera (Fig. 6a). The KeY core provides data structures to represent se-
quent proofs, express logics and specification languages, as well as soundness-
critical support for taclet implementation and soundness-critical reasoning in-
frastructure to conduct proofs and analyze cases. The KeYmaera core extends
the KeY core with data structures for dL, dL rules and taclets (see Table 3 for de-
tails), as well as reasoning support for dL (formula analysis, computing transition
models of hybrid programs, and image computation). The KeY and KeYmaera
parsers are not strictly soundness-critical, since proofs are rerun from scratch
from pretty-printed input models. KeYmaera interfaces with numerous external
tools for flexible QE support, which results in a considerably larger QE pack-
age than KeYmaeraD and KeYmaera X. The taclet mechanism registers taclets
with proof automation strategies, as well as with UI elements (taclets appear
automatically in context menus, and create dialog boxes and input elements).

7 The Orbital library is a Java library providing object-oriented representations and
algorithms for logic, mathematics, and computer science.

The KeYmaera Family: A Tale of Three Provers 51

Soundness-critical core Correctness-critical tools
Non-critical prover code Non-critical user-facing infrastructure

Core: 105k
Kernel:136k
Total: 182k

Kernel

D
at
a
S
tr
uc

t.

Rules
Reasoning

QE

Auto

dL
KeY

U
I

dL

K
eY

Parser

Tools
Data
Struct.

Rules
Taclets

Reasoning
Parser

KeY Kernel

(a) KeYmaera: extends ex-
isting dynamic logic prover
KeY (extensions critical)

Core: 4k
Kernel: 5k
Total: 7k

Kernel
R
ul

es
Reasoning

Pa
rse

r

QE

T
acticsLib.

U
I

D
a
ta

S
tr
u
ct
.

Tac.Lang.

(b) KeYmaeraD: direct
impl. in host language
(extensions critical)

Core: 2k
Kernel: 7k
Total: 64k

K
er
ne
l

Tactics
ODE

Arith.
L
ib
.

UI

DB
Server

W
eb

Data
Struct.

Axioms
Reasoning

Parser

QE

Infra.
Tac.Lang.

Unif.Tac. Prop.
HP

Ext. Tools

CodeGen
Command

(c) KeYmaera X: small uniform
substitution core (tactic exten-
sions non-critical)

Fig. 6: Source code structure (black/solid arc: soundness-critical core, dark
gray/dotted arc: correctness-critical tools, medium gray/dashed arc: non-critical
prover code, light gray/dashed arc: non-critical user-facing infrastructure),

KeYmaeraD (Fig. 6b). The KeYmaeraD core includes data structures to rep-
resent the dL syntax, sequents, proof trees, and rationals. Differential dynamic
logic is implemented entirely with soundness-critical builtin rules (for details see
Table 3), with reasoning support to apply rules, simplify arithmetic, schedule
reasoning jobs, and propagate results through the proof tree. The KeYmaeraD
parser is not strictly soundness-critical, since proofs cannot be stored, but are al-
ways run from scratch. The QE package is restricted to Mathematica. The tactic
language provides basic combinators and maps dL operators to builtin rules; the
library contains a selection of basic automation procedures (e.g., exhaustively
apply α/β-rules, hybrid program simplifications). The UI renders the proof tree
directly to a scrollable Java JTree but does not allow interaction with the proof.

KeYmaera X (Fig. 6c). The KeYmaera X core includes data structures for the
syntax, nonschematic axioms and rules (see Table 3) together with managing
sequents, and core reasoning functionality to compute static semantics, uniform
substitution, and renaming. Its parser is not strictly soundness-critical, since it is
safeguarded with cryptographic checksums (or print-reparse-checks) on storage
and users can inspect printed outputs. The QE functionality provides transfor-
mations to and from data structures of external solvers and the interaction with
those solvers. The tactics framework includes additional external non-critical
tools for invariant generation, simplification, and counterexample generation. It
provides non-critical but convenient proof infrastructure, such as unification,
expression traversal, combined renaming and substitution. The tactic language
allows users to compose/write new tactics and provides tactic interpreters, ways
to store tactic results as lemmas, and to interface with external tools. Notewor-
thy tactics packages are Unif. Tac. to apply axioms by unification, Prop. for

52 Stefan Mitsch and André Platzer

propositional reasoning, HP for hybrid programs, ODE for substantial differen-
tial equations proof automation, and Arith. for arithmetic, equality rewriting,
quantifier instantiation/Skolemization, interval arithmetic, and simplification.
The tactic library bundles those with a library of lemmas derived from the
core axioms, and provides additional reasoning styles, such as ModelPlex [37],
component-based proofs, and invariant provers for loop/ODE invariant search.

Table 3: Core size LOC:
KeYmaera taclets, KeYmaeraD
rules, KeYmaera X axioms

K3 KD KX

Propositional 140 257 212
HP 1202 352 55
ODE 322 241 122
Arithmetic 1033 103 0

KeYmaera: +39k LOC rule code

Comparison of Core Taclets, Rules, and Ax-
ioms. Table 3 compares the size of the core
dedicated to expressing differential dynamic
logic: KeYmaera taclets are slightly more
verbose8 than KeYmaeraD host-language
rule implementations and KeYmaera X ax-
ioms9. The most noteworthy difference in
the code structure is how soundness-critical
code is scattered across the code base. Both
KeYmaera and KeYmaeraD have soundness-
critical code in the core as well as in the tac-
tics, while, overall, only about a third of their code bases are non-critical. KeY-
maera X, in contrast, confines soundness-critical code entirely to the core data
structures, uniform substitution, bound renaming, and the small set of builtin
rules. The provers differ in their proof manipulation: in KeYmaera the proof
tree data structure keeps track of proof steps and open goals, in KeYmaeraD
the tactic framework with its proof tree is responsible for correctly combining
proof steps into a proof, whereas in KeYmaera X only the core can manipulate
proof objects and a proof is obtained by transforming the original proof object
containing the conjecture into one with an empty list of subgoals. KeYmaera X,
thus, is the only LCF-style prover among the three.

Code Size. In terms of overall size, KeYmaeraD has by far the smallest overall
code base, but, as a bare-bones prover, comes without the convenient user inter-
faces and proof support and automation of KeYmaera and KeYmaera X. More
importantly, however, KeYmaera X comes with the smallest and least complex
soundness-critical core, which has direct consequences for the trustworthiness
and the extensibility of the prover. Extension of KeYmaera requires adding new
soundness-critical taclets and taclet support code, and registering those with
the taclet application mechanism. It is often impossible to extend KeYmaera
without making changes to soundness-critical code. Extension of KeYmaeraD
typically requires adding new soundness-critical rules in the prover core in the
host language, while the primary purpose of the tactics framework is to express
problem-specific proof scripts; tactic registration is only necessary to add tactics

8 The main taclet code complexity, however, is hidden in the soundness-critical imple-
mentation code that is backing the taclets.

9 KeYmaera X, in addition to axioms, uses host-language rule implementations for
propositional rules, which are included in the count.

The KeYmaera Family: A Tale of Three Provers 53

to automation, since proofs are expressed in the host language. Extension of
KeYmaera X typically requires adding new tactics, and registering those with
tactic automation if they should be used automatically; new soundness-critical
axioms are only necessary when extending the underlying logic. Another note-
worthy difference is in the sizes of QE packages: KeYmaera dedicates consider-
able code size to interfacing with numerous external tools; KeYmaeraD focuses
on only Mathematica; KeYmaera X interfaces with Z3 and Mathematica, but its
architecture of reproving inputs of external tools also enables separating critical
QE calls from non-critical invariant and counterexample generation.

Summary. The code bases differ considerably in their size, the way they sep-
arate soundness-critical from non-critical reasoning, and the way they support
extension; the total size of KeYmaeraD may be small enough to justify the use
of soundness-critical builtin rules, but with increasing size at or beyond the
size of KeYmaera, it becomes increasingly difficult to justify the correctness of
extensions. Separation in the style of KeYmaera X enables extensibility and
courageous automation in tactics. The considerable amount of code that both
KeYmaera and KeYmaera X dedicate to the user interface and proof support
results in quite different user interaction experience, as discussed next.

7 User Interaction

The presentation of sequent proofs on limited screen estate is challenging, and the
design choices of which information to readily emphasize and which information
to make available on request considerably influence the user interaction.

KeYmaera. For user interaction, KeYmaera emphasizes the tree structure of
sequent proofs and internal automation steps when presenting proof obligations.
Proof obligations and formulas are rendered almost in ASCII syntax, see Fig. 7.

Users perform proofs by interacting exclusively on the top-level operators by
selecting proof steps from a context menu. A proof tree is beneficial for displaying
the history and source of proof obligations (which steps produced a certain
subgoal), but can be challenging to immediately spot the open proof obligations,
especially those resulting from automation. In KeYmaera, proof automation adds
its internal steps to the proof tree, which is useful to interact with automation,
learn doing proofs by observing proof automation on simple examples, but can
be hard for users to map with their interaction (a single click produces many
steps, where did automation start, which subgoals were there already, which ones
are new). Except for experienced users, it’s also hard to map nodes in the tree to
the input formula and statements in the input program, which, however, is vital
information for users to understand the open goal when their input is required.
The results of intermediate and internal steps are non-persistent, which makes
step-by-step interaction faster but loading and continuing unfinished proofs slow
(all proof steps need to be redone on load). Table 4 summarizes the benefits and
drawbacks of the KeYmaera proof tree presentation, its top-level interaction,
and its presentation of automation internals.

54 Stefan Mitsch and André Platzer

Fig. 7: KeYmaera UI: proof tree left, sequent of selected node right

Table 4: KeYmaera user interaction summary

Pros Cons

Proof tree History and source of proof
obligations obvious

Dissimilar to textbook proofs,
spotting open obligations after
automation challenging

Top-level interaction Next proof step often obvious,
unclear if on formula or up-
date

Duplicate proof effort after
branching

Automation internals Learn proving by observing,
more robust on replay

Challenging to undo

Automation settings Fine-grained automation
steering

Settings are part of proof and
lost if different per branch

Non-persistent interme-
diate steps

Faster on performing steps Slow on proof loading

KeYmaeraD. Proofs in KeYmaeraD are explicitly programmed in Scala, either
as a Scala program or in Scala’s native read-evaluate-print loop and displayed
as a listed tree in its user interface (Fig. 8). In dL, proof steps primarily manipu-
late programs and formulas, but branch only occasionally; rendering such deep
trees verbatim may waste screen estate and require cumbersome horizontal and
vertical scrolling simultaneously to navigate a proof. KeYmaeraD comes with a

The KeYmaera Family: A Tale of Three Provers 55

Fig. 8: KeYmaeraD UI: proof tree left, sequent of selected node right

Table 5: KeYmaeraD user interaction summary

Pros Cons

Proofs in host language Flexible, readily available de-
velopment tools

Hard for novice users

AND/OR proof tree Explore alternatives, history
obvious

Dissimilar to textbook sequent
proofs, spotting open goal
combinations challenging

Top-level interaction Next proof step often obvious Duplicate proof effort after
branching

small library of base tactics corresponding to each proof rule and provides tac-
tic combinators to express proof alternatives, repeat proof steps, compose proof
steps, branch the proof, or try rule applications. Expert users can leverage the
full flexibility of the programming language and its development tools when im-
plementing proofs and tactics, but novice users get little help for getting started.
Table 5 summarizes the benefits and drawbacks of implementing proofs in a host
language on an AND/OR tree with only top-level user interaction in sequents.

KeYmaera X. KeYmaera X emphasizes open proof tasks and close mnemonic
analogy with textbooks and user inputs both in its presentation as a HTML
rendering of sequent proofs and in its user interaction, see Fig. 9. The client-side
JavaScript-based web UI enables flexibility in rendering proofs and is operating-
system independent, but at the cost of additional data structure serialization
(not necessary in a native UI integrated with the prover) and handling browser

56 Stefan Mitsch and André Platzer

Fig. 9: KeYmaera X UI: Proof menu, open goals in tabs with full sequent proof
deduction, proof hints and help in context menu, recorded tactic at the bottom

idiosyncrasies. The user interface design strives for a familiar look-and-feel with
tutoring for novice users, flexibility to accommodate various user preferences in
reasoning styles, traceability of internal automation steps, and experimentation
with custom proof strategies [36]. The internal steps of automation and tactics
are hidden from users and expanded only on demand. Open goals are represented
in tabs on the UI, which, in contrast to a proof tree, emphasizes the remaining
proof agenda. Each tab shows an open goal as the topmost sequent, and renders
the history of proof steps as deduction paths from the proof tree root to that
open goal, and so the proof tree is implicit (for expert users, however, an ex-
plicit proof tree can be beneficial to inspect the structure of the proof [22]). Tab
headings present an opportunity to highlight short summaries about the open
goal and the proof history, but require careful ordering and—just like nodes in a
proof tree—need visual cues to guide user attention (e.g., draw attention to tabs
with counterexamples). Users perform proof steps at any level even in the con-
text of other formulas and programs, which helps reduce duplicate proof effort
for experienced users. Flexible reasoning at any level may help users follow their
natural thought process but may make it harder to discover all applicable proof
steps (which is tackled with redundant information about proof steps in context
menus, proof menus, proof hints, and searchable lists of all available tactics).

The KeYmaera Family: A Tale of Three Provers 57

Table 6: KeYmaera X user interaction summary

Pros Cons

Proof obligations Focus on proof tasks Proof history only shown after
mouse click

Sequent proof rendering Close to textbook sequent
proofs

Separate HTML rendering

Explicit on-demand au-
tomation internals

Presentation corresponds with
user interaction

Recomputes internal steps,
tactic changes may fail replay

Interaction anywhere Reduce proof effort duplica-
tion, follow natural thought
process, beneficial for effi-
ciency and responsiveness

Hard to anticipate all poten-
tial uses of tactics, discov-
erability (menu, proof hints,
context menu)

Persistent intermediate
steps

Fast on proof loading Slower on step-by-step inter-
action

The implementation of in-context proof step application and custom user proof
search strategies crucially requires the safety net of uniform substitution, since
it is otherwise challenging to anticipate all potential tactic uses and safeguard
them to ensure only sound syntactic transformations in sound contexts. Table 6
summarizes the benefits and drawbacks of focusing on presenting proof obliga-
tions in favor of a proof tree, sequent proof rendering, interaction anywhere, and
persistent intermediate steps.

8 Related Work

The development history from LCF to Isabelle/HOL is explained by Paulson et
al. [41] with insights into the design choices and evolution of proof requirements
that drove the development of the tool ecosystem.

The literature [68, 69] compares provers in terms of their library size, logic
strength, and automation on mathematical problems (with references for several
other prover comparisons between Isabelle/Coq/NuPRL/HOL/ALF/PVS). A
qualitative comparison of the Isabelle, Theorema, Mizar, and Hets/CASL/TPTP
theorem provers [26] highlights user-facing differences in expressiveness, effi-
ciency, proof development and management, library coverage, documentation,
comprehensibility, and trustworthiness. Comparisons of the Mizar and Isar proof
languages [67] focus on a technical perspective and user experience.

Of complementary interest is the comparison of performance and number of
problems solved in theorem prover competitions [4, 65] and hybrid systems tool
competitions [17]. While those are valuable from a utilitarian perspective, we
argue that bigger insights are to be had from looking inside the box to understand
the technical consequences of prover design decisions and, more importantly, how
one best enables prover performance while preventing to accidentally “solve” a
problem incorrectly due to a soundness mistake in the implementation. Arguably

58 Stefan Mitsch and André Platzer

the biggest level of soundness assurance can be had from formal verification of the
prover, which is possible [11] thanks to the simplicity of the uniform substitution
calculus of dL. While solving all soundness challenges in principle, this does not
yet lead to a high-performance prover kernel implementation in practice.

9 Takeaway Messages

Advantages of KeYmaera 3 implementation approach: very easy to get started
with minimal effort (in large part due to the KeY prover basis) and without
much thought about what goes where, taclets minimize the need to separate a
rule from strategic advice on how to apply it. A gigantic advantage, although
specific to the particular KeY basis, is that prover development gets proof visu-
alization and interaction features from day one, which is an immensely helpful
debugging aid for rule implementations, proof automation, and the conduct of
case studies. The ability to interrupt proof automation and roll it back partially
before interacting and handing off to automation again also leads to fairly pow-
erful proof capabilities for experts at the expense of a loss in robustness and
traceability compared to the modular tactical proofs of KeYmaera X. Advanced
proof strategies or proof scripts, however, also become prohibitively complicated.

Advantages of KeYmaeraD implementation approach: extremely transparent
with all details in one place about what happens. A downside is that there
is virtually no isolation of soundness-critical core versus the rest of the prover.
Adding automation or writing proofs requires detailed knowledge of the internal
prover implementation details. KeYmaeraD was successful in terms of its parallel
distributed proof search. The reason why the curse of concurrency was signif-
icantly less of an issue for KeYmaeraD than KeYmaera X is that KeYmaeraD
does not optimize what reasoning to use for which formula, but only ever has one
reasoning style for every connective. This hints at a tradeoff that parallel proofs
become pleasant only when the individual subproofs become suboptimal and
when sufficient computing resources for a simultaneous exploration of all options
are available. This comparison is not exhaustive, however, because KeYmaeraD
does not provide complex tactics such as differential equation solving [50], dif-
ferential invariant axiomatization [59], or proof-based invariant generation [54].

Advantages of KeYmaera X implementation approach: the simplicity of LCF-
style prover µkernels makes it obvious to see what soundness depends on and
what the overall correctness argument is. The resulting prover architecture is
modular, thereby separating responsibilities such as the uniform substitution
mechanism, axiom indices, unification algorithm, tactics, UI rendering. It is eas-
ier to get modularity just right in KeYmaera X. While we believe this to be a
general phenomenon in µkernel provers, this success story is slightly modulated
by the fact that the third prover design was informed by the prior successes
and complications of KeYmaera 3 and KeYmaeraD. The KeYmaera X approach
also makes it easier to advance automatic proof principles by adding tactics,

The KeYmaera Family: A Tale of Three Provers 59

which are, by design, noncritical and open to experimentation and incremental
development. Examples of such tactics implemented in KeYmaera X and ex-
tended incrementally include ModelPlex [37], component-based verification [40],
an axiomatic differential equation solver [50], and ODE automation [59,66].

Advice for future provers: With the benefit of hindsight, we provide a list of
the most impactful decisions and words of advice for future prover designs that
can be summarized as justifying that simplicity always wins in the end. The
soundness and simplicity of uniform substitution provers cause significant bene-
fits throughout the prover. Immediately invest in common infrastructure such as
unification algorithms to simplify tactical implementations down to the essen-
tials and make them robust to change. Invest in proof tree visualization early,
because that is an essential debugging aid during development. The time spent to
develop simple initial proof visualizations is significantly less than the time that
their presence saves during prover development. The comparison of KeYmaeraD
versus KeYmaera X is an instance of the bon mot that premature optimization is
the root of all evil, although, admittedly, KeYmaera X still has not achieved any-
where near the distributed proving performance of KeYmaeraD (on the limited
continuous dynamics that KeYmaeraD supports). The comparison of all provers
clearly indicates that the downstream effects of favoring speed over soundness
are self-defeating in the long run. There is a never-ending tension between the
desire to build provers in theoretically well-designed elegant programming lan-
guages compared to mainstream programming languages. Implementing provers
in the former gives more elegant and robust provers, but the frequent lack of
libraries requires tedious manual programming effort for data storage, web com-
munication, parsing, IDE integration etc., that are peripheral to core proving.

The most fundamental difference between the three provers comes down to
the explicit embrace (KeYmaera 3) or implicit inclusion (KeYmaeraD) of proof
rule schemata with side conditions versus the strict adherence to nonschematic
axioms or rules without side conditions thanks to uniform substitution (KeY-
maera X). Working with schemata makes it easy to add a new reasoning prin-
ciple but also easy to cause soundness mistakes because a proof rule schema
always applies except for an explicit list of exception conditions. This automatic
generalization is most easily observed in KeYmaera 3 taclets but also holds for
KeYmaeraD’s native code implementations of proof rule schemata. Working with
nonschematic axioms is better at avoiding soundness glitches by making both
syntactic dependencies and generalizations explicit and easier to implement. But
working with nonschematic axioms still makes it easy to cause completeness mis-
takes. Subtle occurrence patterns can make tactics fail to prove provable formu-
las. Since complicated interaction patterns then manifest as completeness bugs
instead of as soundness bugs, they cause less harm and are more easily identified
with a failing proof than with a successful proof of an untrue formula.

Acknowledgements. The authors thank Brandon Bohrer and the chapter review-
ers for helpful feedback on this article.

60 Stefan Mitsch and André Platzer

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and
System Modeling 4(1), 32–54 (2005). doi: 10.1007/s10270-004-0058-x

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification – The KeY Book, LNCS, vol. 10001. Springer
(2016). doi: 10.1007/978-3-319-49812-6

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995). doi: 10.1016/0304-3975(94)00202-T

4. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sut-
cliffe, G., Weber, T., Yamada, A.: Toolympics 2019: An overview of competitions
in formal methods. In: Tools and Algorithms for the Construction and Analysis
of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III. pp. 3–24 (2019).
doi: 10.1007/978-3-030-17502-3 1, https://doi.org/10.1007/978-3-030-17502-3 1

5. Beckert, B., Giese, M., Habermalz, E., Hähnle, R., Roth, A., Rümmer, P., Schlager,
S.: Taclets: A new paradigm for constructing interactive theorem provers. Re-
vista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales, Serie A:
Matemáticas (RACSAM) 98(1) (2004)

6. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach, LNCS, vol. 4334. Springer (2007)

7. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-
oriented program verification. In: Furbach, U., Shankar, N. (eds.) IJCAR. LNCS,
vol. 4130, pp. 266–280. Springer (2006). doi: 10.1007/11814771 23

8. ter Beek, M., McIver, A., Oliviera, J.N. (eds.): FM 2019: Formal Methods – The
Next 30 Years, LNCS, vol. 11800. Springer (2019). doi: 10.1007/978-3-030-30942-8

9. Belta, C., Ivancic, F. (eds.): Hybrid Systems: Computation and Control (part of
CPS Week 2013), HSCC’13, Philadelphia, PA, USA, April 8-13, 2013. ACM, New
York (2013)

10. Bohrer, B., Fernandez, M., Platzer, A.: dLι: Definite descriptions in differential
dynamic logic. In: Fontaine [16], pp. 94–110. doi: 10.1007/978-3-030-29436-6 6

11. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and
Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris, France, January 16-17,
2017. pp. 208–221. ACM, New York (2017). doi: 10.1145/3018610.3018616

12. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: Verified
controller executables from verified cyber-physical system models. In: Grossman,
D. (ed.) Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018. pp. 617–630. ACM (2018). doi:
10.1145/3192366.3192406

13. Bohrer, B., Tan, Y.K., Mitsch, S., Sogokon, A., Platzer, A.: A formal safety net
for waypoint following in ground robots. IEEE Robotics and Automation Letters
4(3), 2910–2917 (2019). doi: 10.1109/LRA.2019.2923099

14. Church, A.: Introduction to Mathematical Logic. Princeton University Press,
Princeton (1956)

15. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems.
In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 1047–1110. Springer (2018). doi: 10.1007/978-3-319-10575-8 30

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/11814771_23
https://doi.org/10.1007/978-3-030-30942-8
https://doi.org/10.1007/978-3-030-29436-6_6
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1109/LRA.2019.2923099
https://doi.org/10.1007/978-3-319-10575-8_30

The KeYmaera Family: A Tale of Three Provers 61

16. Fontaine, P. (ed.): International Conference on Automated Deduction, CADE’19,
Natal, Brazil, Proceedings, LNCS, vol. 11716. Springer (2019)

17. Frehse, G., Althoff, M. (eds.): ARCH19. 6th International Workshop on Applied
Verification of Continuous and Hybrid Systemsi, part of CPS-IoT Week 2019, Mon-
treal, QC, Canada, April 15, 2019, EPiC Series in Computing, vol. 61. EasyChair
(2019)

18. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 379–395.
Springer, Berlin (2011). doi: 10.1007/978-3-642-22110-1 30

19. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: Tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS, vol.
10499, pp. 207–224. Springer (2017). doi: 10.1007/978-3-319-66107-0 14

20. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-
iomatic tactical theorem prover for hybrid systems. In: Felty, A., Middeldorp,
A. (eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer, Berlin (2015). doi:
10.1007/978-3-319-21401-6 36

21. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar,
T., Zhang, L. (eds.) TACAS, Part I. LNCS, vol. 11427, pp. 413–430. Springer
(2019). doi: 10.1007/978-3-030-17462-0 28

22. Grebing, S.: User Interaction in Deductive Interactive Program Verification. Ph.D.
thesis, Karlsruhe Institute of Technology, Germany (2019), https://nbn-resolving.
org/urn:nbn:de:101:1-2019103003584227760922

23. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki, E.,
Platzer, A.: A formally verified hybrid system for the next-generation airborne col-
lision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS. LNCS, vol. 9035,
pp. 21–36. Springer (2015). doi: 10.1007/978-3-662-46681-0 2

24. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Schmidt, A., Gardner, R., Mitsch, S.,
Platzer, A.: A formally verified hybrid system for safe advisories in the next-
generation airborne collision avoidance system. STTT 19(6), 717–741 (2017). doi:
10.1007/s10009-016-0434-1

25. Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying the safe
design of a virtual fixture control algorithm for a surgical robot. In: Belta and
Ivancic [9], pp. 263–272. doi: 10.1145/2461328.2461369

26. Lange, C., Caminati, M.B., Kerber, M., Mossakowski, T., Rowat, C., Wenzel,
M., Windsteiger, W.: A qualitative comparison of the suitability of four the-
orem provers for basic auction theory. In: Intelligent Computer Mathematics
- MKM, Calculemus, DML, and Systems and Projects 2013, Held as Part of
CICM 2013, Bath, UK, July 8-12, 2013. Proceedings. pp. 200–215 (2013). doi:
10.1007/978-3-642-39320-4 13, https://doi.org/10.1007/978-3-642-39320-4 13

27. Logic in Computer Science (LICS), 2012 27th Annual IEEE Symposium on. IEEE,
Los Alamitos (2012)

28. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed,
and now formally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664,
pp. 42–56. Springer, Berlin (2011). doi: 10.1007/978-3-642-21437-0 6

29. Loos, S.M., Renshaw, D.W., Platzer, A.: Formal verification of distributed aircraft
controllers. In: Belta and Ivancic [9], pp. 125–130. doi: 10.1145/2461328.2461350

30. Milner, R.: Logic for computable functions: description of a machine implementa-
tion. Tech. rep., Stanford University, Stanford, CA, USA (1972)

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-030-17462-0_28
https://nbn-resolving.org/urn:nbn:de:101:1-2019103003584227760922
https://nbn-resolving.org/urn:nbn:de:101:1-2019103003584227760922
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1145/2461328.2461369
https://doi.org/10.1007/978-3-642-39320-4_13
https://doi.org/10.1007/978-3-642-39320-4_13
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1145/2461328.2461350

62 Stefan Mitsch and André Platzer

31. Mitsch, S., Gario, M., Budnik, C.J., Golm, M., Platzer, A.: Formal verification of
train control with air pressure brakes. In: Fantechi, A., Lecomte, T., Romanovsky,
A. (eds.) RSSRail. LNCS, vol. 10598, pp. 173–191. Springer (2017). doi: 10.1007/
978-3-319-68499-4 12

32. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for
autonomous robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.)
Robotics: Science and Systems (2013)

33. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obsta-
cle avoidance and navigation of ground robots. I. J. Robotics Res. 36(12), 1312–
1340 (2017). doi: 10.1177/0278364917733549

34. Mitsch, S., Passmore, G.O., Platzer, A.: Collaborative verification-driven engi-
neering of hybrid systems. Math. Comput. Sci. 8(1), 71–97 (2014). doi: 10.1007/
s11786-014-0176-y

35. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-
physical system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV. LNCS,
vol. 8734, pp. 199–214. Springer (2014). doi: 10.1007/978-3-319-11164-3 17

36. Mitsch, S., Platzer, A.: The KeYmaera X proof IDE: Concepts on usability in
hybrid systems theorem proving. In: Dubois, C., Masci, P., Méry, D. (eds.) 3rd
Workshop on Formal Integrated Development Environment. EPTCS, vol. 240, pp.
67–81 (2016). doi: 10.4204/EPTCS.240.5

37. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-
physical system models. Form. Methods Syst. Des. 49(1-2), 33–74 (2016). doi:
10.1007/s10703-016-0241-z, special issue of selected papers from RV’14

38. Mitsch, S., Sogokon, A., Tan, Y.K., Jin, X., Zhan, B., Wang, S., Zhan, N.: ARCH-
COMP19 category report: Hybrid systems theorem proving. In: Frehse and Althoff
[17], pp. 141–161

39. Mitsch, S., Sogokon, A., Tan, Y.K., Platzer, A., Zhao, H., Jin, X., Wang, S.,
Zhan, N.: ARCH-COMP18 category report: Hybrid systems theorem proving. In:
ARCH18. 5th International Workshop on Applied Verification of Continuous and
Hybrid Systems, ARCH@ADHS 2018, Oxford, UK, July 13, 2018. pp. 110–127
(2018), http://www.easychair.org/publications/paper/tNN2

40. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Tactical
contract composition for hybrid system component verification. STTT 20(6), 615–
643 (2018). doi: 10.1007/s10009-018-0502-9, special issue for selected papers from
FASE’17

41. Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to isabelle/hol. Formal Asp.
Comput. 31(6), 675–698 (2019). doi: 10.1007/s00165-019-00492-1, https://doi.org/
10.1007/s00165-019-00492-1

42. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In:
Olivetti, N. (ed.) TABLEAUX. LNCS, vol. 4548, pp. 216–232. Springer, Berlin
(2007). doi: 10.1007/978-3-540-73099-6 17

43. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008). doi: 10.1007/s10817-008-9103-8

44. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010). doi: 10.1093/logcom/exn070

45. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14509-4, http://
www.springer.com/978-3-642-14508-7

46. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for
distributed hybrid systems. Log. Meth. Comput. Sci. 8(4:17), 1–44 (2012). doi:
10.2168/LMCS-8(4:17)2012, special issue for selected papers from CSL’10

https://doi.org/10.1007/978-3-319-68499-4_12
https://doi.org/10.1007/978-3-319-68499-4_12
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1007/s11786-014-0176-y
https://doi.org/10.1007/s11786-014-0176-y
https://doi.org/10.1007/978-3-319-11164-3_17
https://doi.org/10.4204/EPTCS.240.5
https://doi.org/10.1007/s10703-016-0241-z
http://www.easychair.org/publications/paper/tNN2
https://doi.org/10.1007/s10009-018-0502-9
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/978-3-540-73099-6_17
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/978-3-642-14509-4
http://www.springer.com/978-3-642-14508-7
http://www.springer.com/978-3-642-14508-7
https://doi.org/10.2168/LMCS-8(4:17)2012

The KeYmaera Family: A Tale of Three Provers 63

47. Platzer, A.: The complete proof theory of hybrid systems. In: LICS [27], pp. 541–
550. doi: 10.1109/LICS.2012.64

48. Platzer, A.: Logics of dynamical systems. In: LICS [27], pp. 13–24. doi: 10.1109/
LICS.2012.13

49. Platzer, A.: Differential game logic. ACM Trans. Comput. Log. 17(1), 1:1–1:51
(2015). doi: 10.1145/2817824

50. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas. 59(2), 219–265 (2017). doi: 10.1007/s10817-016-9385-1

51. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer,
Cham (2018). doi: 10.1007/978-3-319-63588-0, http://www.springer.com/
978-3-319-63587-3

52. Platzer, A.: Uniform substitution for differential game logic. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR. LNCS, vol. 10900, pp. 211–227. Springer
(2018). doi: 10.1007/978-3-319-94205-6 15

53. Platzer, A.: Uniform substitution at one fell swoop. In: Fontaine [16], pp. 425–441.
doi: 10.1007/978-3-030-29436-6 25

54. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems
as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009). doi: 10.1007/
s10703-009-0079-8, special issue for selected papers from CAV’08

55. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance
maneuvers: A case study. In: Cavalcanti, A., Dams, D. (eds.) FM. LNCS, vol. 5850,
pp. 547–562. Springer, Berlin (2009). doi: 10.1007/978-3-642-05089-3 35

56. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems.
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp.
171–178. Springer, Berlin (2008). doi: 10.1007/978-3-540-71070-7 15

57. Platzer, A., Quesel, J.D.: European Train Control System: A case study in formal
verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol. 5885, pp.
246–265. Springer, Berlin (2009). doi: 10.1007/978-3-642-10373-5 13

58. Platzer, A., Quesel, J.D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE. LNCS, vol. 5663, pp. 485–501. Springer, Berlin (2009). doi: 10.1007/
978-3-642-02959-2 35

59. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1), 6:1–6:66 (2020). doi: 10.1145/3380825

60. Quesel, J.D.: Similarity, Logic, and Games - Bridging Modeling Layers of Hybrid
Systems. Ph.D. thesis, Department of Computing Science, University of Oldenburg
(2013)

61. Quesel, J.D., Platzer, A.: Playing hybrid games with KeYmaera. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 439–453. Springer,
Berlin (2012). doi: 10.1007/978-3-642-31365-3 34

62. Renshaw, D.W., Loos, S.M., Platzer, A.: Distributed theorem proving for dis-
tributed hybrid systems. In: Qin, S., Qiu, Z. (eds.) ICFEM. LNCS, vol. 6991, pp.
356–371. Springer (2011). doi: 10.1007/978-3-642-24559-6 25

63. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus
for java dynamic logic. In: Gurevich, Y., Meyer, B. (eds.) Tests and Proofs,
First International Conference, TAP 2007, Zurich, Switzerland, February 12-
13, 2007. Revised Papers. LNCS, vol. 4454, pp. 41–60. Springer (2007). doi:
10.1007/978-3-540-73770-4 3, https://doi.org/10.1007/978-3-540-73770-4 3

64. Sogokon, A., Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: A frame-
work for sound continuous invariant generation. In: ter Beek et al. [8], pp. 138–157.
doi: 10.1007/978-3-030-30942-8 10

https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1145/2817824
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
http://www.springer.com/978-3-319-63587-3
http://www.springer.com/978-3-319-63587-3
https://doi.org/10.1007/978-3-319-94205-6_15
https://doi.org/10.1007/978-3-030-29436-6_25
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/978-3-642-05089-3_35
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1145/3380825
https://doi.org/10.1007/978-3-642-31365-3_34
https://doi.org/10.1007/978-3-642-24559-6_25
https://doi.org/10.1007/978-3-540-73770-4_3
https://doi.org/10.1007/978-3-540-73770-4_3
https://doi.org/10.1007/978-3-030-30942-8_10

64 Stefan Mitsch and André Platzer

65. Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the devel-
opment of automated theorem proving for higher-order logic. In: Automated
Deduction - CADE-22, 22nd International Conference on Automated Deduc-
tion, Montreal, Canada, August 2-7, 2009. Proceedings. pp. 116–130 (2009). doi:
10.1007/978-3-642-02959-2 8, https://doi.org/10.1007/978-3-642-02959-2 8

66. Tan, Y.K., Platzer, A.: An axiomatic approach to liveness for differential equations.
In: ter Beek et al. [8], pp. 371–388. doi: 10.1007/978-3-030-30942-8 23

67. Wenzel, M., Wiedijk, F.: A comparison of mizar and isar. J. Autom. Reasoning
29(3-4), 389–411 (2002). doi: 10.1023/A:1021935419355, https://doi.org/10.1023/
A:1021935419355

68. Wiedijk, F.: Comparing mathematical provers. In: Mathematical Knowledge Man-
agement, Second International Conference, MKM 2003, Bertinoro, Italy, Febru-
ary 16-18, 2003, Proceedings. pp. 188–202 (2003). doi: 10.1007/3-540-36469-2 15,
https://doi.org/10.1007/3-540-36469-2 15

69. Wiedijk, F. (ed.): The Seventeen Provers of the World, Foreword by Dana S. Scott,
LNCS, vol. 3600. Springer (2006). doi: 10.1007/11542384, https://doi.org/10.1007/
11542384

https://doi.org/10.1007/978-3-642-02959-2_8
https://doi.org/10.1007/978-3-642-02959-2_8
https://doi.org/10.1007/978-3-030-30942-8_23
https://doi.org/10.1023/A:1021935419355
https://doi.org/10.1023/A:1021935419355
https://doi.org/10.1023/A:1021935419355
https://doi.org/10.1007/3-540-36469-2_15
https://doi.org/10.1007/3-540-36469-2_15
https://doi.org/10.1007/11542384
https://doi.org/10.1007/11542384
https://doi.org/10.1007/11542384

	A Retrospective on Developing Hybrid System Provers in the KeYmaera Family

