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Autonomous agents that operate as components of dynamic spatial systems are becoming increasingly pop-
ular and mainstream. Applications can be found in consumer robotics, in road, rail, and air transportation,
manufacturing, and military operations. Unfortunately, the approaches to modeling and analyzing the be-
havior of dynamic spatial systems are just as diverse as these application domains. In this paper, we discuss
reasoning approaches for the medium-term control of autonomous agents in dynamic spatial systems, which
requires a sufficiently detailed description of the agent’s behavior and environment, but may still be con-
ducted in a qualitative manner. We survey logic-based qualitative and hybrid modeling and commonsense
reasoning approaches w.r.t. their features for describing and analyzing dynamic spatial systems in general,
and the actions of autonomous agents operating therein in particular. We introduce a conceptual reference
model, which summarizes the current understanding of the characteristics of dynamic spatial systems based
on a catalog of evaluation criteria derived from the model. We assess the modeling features provided by
logic-based qualitative commonsense and hybrid approaches for projection, planning, simulation, and veri-
fication of dynamic spatial systems. We provide a comparative summary of the modeling features, discuss
lessons learned, and introduce a research roadmap for integrating different approaches of dynamic spatial
system analysis to achieve coverage of all required features.
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1. INTRODUCTION

Dynamic systems are systems whose states change over time [Sandewall 1994]. Dy-
namic spatial systems are a subclass thereof that can be primarily described in terms
of the evolution of spatial states [Worboys 2001]. In such dynamic spatial systems,
physical entities (e. g., infrastructure that cannot actively influence its evolution) and
autonomous agents (e. g., autonomous vehicles that can actively change their behavior)
may be present and evolve according to their spatial states (e.g., traffic participants
change their positions according to their current velocity). Domains, which are con-
cerned with autonomous agents in dynamic spatial systems, are anchored in the broad
field of robotics and, for instance, include such diverse application areas as road and
rail traffic management (e. g., autonomous vehicles [Urmson et al. 2008], traffic cen-
ters [Mitsch et al. 2012], and train control [Platzer and Quesel 2009]), aeronautics
(e.g., aerial drones [Bachrach et al. 2009]), manufacturing (e. g., transportation robots
[Rosenthal et al. 2010; Mitsch et al. 2013]), medical equipment [Lee et al. 2012], and
consumer equipment robots (e. g., vacuum cleaning robots).

Whatever the concrete application domain at hand, autonomous agents would not
be particularly useful if they made blatantly incorrect control decisions, possibly even
endangering safety within a dynamic spatial system. In this paper we present a sur-
vey of modeling concepts in logic-based qualitative and hybrid reasoning about agent
behavior in a dynamic spatial system.

Article Focus. We detail the focus of this survey along the different control tasks of
autonomous agents. Autonomous agents are equipped with controllers to adjust their
own behavior w.r.t. that of other entities and agents in the system!. They have to
solve control tasks for different time horizons [Albus and Meystel 1996]. These con-
trol tasks—which, for instance, can be dealt with in a hierarchical control structure
[Russell and Norvig 2003]—range from

— long-term strategic decisions (e.g., navigation to arrive at a destination address,
typically in the magnitude of minutes to hours) over

— medium-term motion control (e. g., motion planning to turn at an intersection, typ-
ically in the magnitude of several seconds to minutes) to

— short-term computation of set-values for actuators (e. g., controllers to adjust accel-
eration and steering angle of a vehicle, in the magnitude of milliseconds to seconds).

In this article, we focus on the medium-term motion control tasks and their link to
computing short-term set values within a dynamic spatial system. We do not focus on
long-term strategic decisions here, since their effects are often too vague in a partially
observable environment to ensure safety under all conditions.

Design-time techniques that aim to increase or even guarantee safety comprise (i)
simulation of evolution in a dynamic spatial system and (ii) verification of the correct-
ness of an autonomous agent. At run-time, an autonomous agent typically uses tech-
niques to (iii) check consistency of sensed information to establish awareness about the
current situation, and (iv) project the behavior of other agents to plan its own steps.

These design-time and run-time techniques range from purely qualitative ap-
proaches (discrete control and evolution, e.g., [Bhatt 2012; Ragni and Wolfl 2006])
and hybrid approaches (typically discrete control and continuous evolution, e. g., [Alur
et al. 1995; Goebel et al. 2009; Henzinger 1996; Platzer 2010b]), to purely quantitative
approaches (continuous control and evolution).

1Relevant research influencing robotics can be found in various areas, such as control theory [Astrém
and Murray 2008], artificial intelligence (e.g., expert systems [James 1987], decision support systems
[Arnott and Pervan 2005]), and cognitive robotics [Shanahan 2000; Levesque and Lakemeyer 2008].
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Diversity of Qualitative and Hybrid Approaches. Autonomous agents in dynamic
spatial systems have already been investigated w.r.t. several different aspects and for
different goals. Historically, approaches were first concerned with providing static mod-
eling concepts (i. e., modeling state). This static focus distinguishes entities in dynamic
spatial systems as either being physical (e. g., a vehicle) or abstract (e. g., a spatial re-
gion), and describes their properties and relationships between entities. In such mod-
els, it is important to check consistency of multiple (partial) state descriptions, resolve
ambiguity, and compensate for incomplete information [Cohn and Renz 2008].

Later, the static viewpoint was extended with dynamic concepts for describing the
events that may occur and the actions that can be initiated by entities in a dynamic
spatial system. These dynamic concepts were combined with epistemic knowledge on
the influences between states, and the necessary and sufficient conditions of events
and actions that lead to evolution between states. The most interesting reasoning tech-
niques in such models are planning and projection (e. g., [Bhatt 2012; Ragni and Wolfl
2006]), simulation (e. g., [Apt and Brand 2005]), and verification (e. g., [Henzinger 1996;
Platzer 2010b]) of agent behavior.

Together, the static, dynamic, and epistemic views determine the situation aware-
ness [Endsley 2000] of an autonomous agent or, more generally, the shared situation
awareness [Stewart et al. 2008] of the entities in a dynamic spatial system. However,
as a consequence of this diversity of modeling and reasoning approaches, we face not
only different terminologies, but also a broad variety of modeling principles, notations,
and reasoning algorithms.

Contributions. This paper presents a survey of modeling concepts of existing logic-
based qualitative and hybrid reasoning approaches for autonomous agents in dynamic
spatial systems. It emphasizes comparability of approaches on the basis of a detailed
evaluation framework in order to facilitate a deeper understanding of commonalities
and differences between existing terminology, modeling concepts, notations, and rea-
soning algorithms, so that researchers and practitioners can select the right approach
for the right purpose at the right level of abstraction. With its focus on logic-based mod-
eling approaches for qualitative and hybrid reasoning in dynamic spatial systems, this
survey complements previous surveys on

— the family of (hybrid) process algebras (e.g., [Baeten 2005; Groote and Reniers
2001; Khadim 2008]),

— temporal (description) logics (e.g., [Artale and Franconi 2001; Emerson 1990;
Konur 2013; Lutz et al. 2008]),

— purely algebraic approaches in geographical information systems (e. g., [Worboys
2005],

— model checking and simulation of hybrid systems (e. g., [Alur 2011; Casagrande and
Piazza 2012; De Schutter et al. 2009]), and

— quantitative agent modeling (e.g., [Allan 2010; Heath et al. 2009; Nikolai and
Madey 2009; Serenko and Detlor 2003])

In summary, the main contributions of this article are (i) a conceptual reference
model for describing state and behavior of physical entities in dynamic spatial systems,
(i1) a catalog of evaluation criteria based on the conceptual reference model, and (iii)
an evaluation of logic-based modeling approaches for qualitative and hybrid reasoning
in dynamic spatial systems, including a comparative summary.

Article Structure. This article is structured as follows. Sect. 1 introduces a concep-
tual reference model for dynamic spatial systems. Appendix A lists a UML class di-
agram of the complete reference model, and Appendix B complements the reference
model with a summary of qualitative relation calculi and their features. Appendix C
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further illustrates the conceptual reference model as a modeling framework by means
of examples in road traffic control and autonomous robotics. Sect. 3 turns the concep-
tual reference model into an evaluation framework, which is the basis for a compar-
ative summary in Sect. 4. Appendix D provides a detailed survey of each approach,
including a syntax summary and modeling examples. Finally, Sect. 5 concludes the
article with a research roadmap for reasoning in dynamic spatial systems.

2. A CONCEPTUAL REFERENCE MODEL FOR DYNAMIC SPATIAL SYSTEMS

Diverse research communities contribute to logic in robotics: for example, artificial
intelligence, spatio-temporal reasoning, situation awareness, data fusion, geographic
information systems, simulation, and formal verification. Among other things, these
communities all deal in one form or the other with modeling of and reasoning about
the behavior of agents in dynamic spatial systems. In this section, we want to establish
a common understanding of the different terminologies and conventions used in these
communities by means of a conceptual reference model for dynamic spatial systems.
While some of the terms are generally agreed upon, less agreement has been estab-
lished for others. We therefore discuss the various viewpoints found in the literature,
which form the basis of our conceptual model. The benefits and use cases of such a
conceptual reference model include (i) identification of similar concepts, which are the
prerequisite for getting approaches to work with each other and for combining multiple
solutions, (ii) detection of concepts that are not yet present, which points to interest-
ing further research opportunities, and (iii) provision of a basic modeling framework
for dynamic spatial systems, which allows modeling independent of a particular ap-
proach.

The rationale behind the design of our reference model is to integrate concepts from
the aforementioned research communities and domains with concepts from existing
surveys on requirements (e.g., for modeling of and reasoning about dynamic spa-
tial systems [Bhatt 2009; 2010], qualitative spatial reasoning techniques [Cohn 1997;
Cohn and Hazarika 2001], and situation awareness [Baumgartner and Retschitzegger
2006]). The conceptual reference model enables us to explain the basic constituents
of a dynamic spatial system and their inter-dependencies in terms of a graphical rep-
resentation as a UML class diagram for easy accessibility, as well as in terms of a
glossary that comprises a textual definition for each concept introduced in the class
diagram. In the following paragraphs, we first introduce the major building blocks of
our conceptual reference model, before each of these building blocks is detailed with a
dedicated UML class diagram. Naturally, the conceptual reference model also serves
as a modeling framework?, which can be extended by means of sub-classing if further
concepts must be captured. At the same time, the conceptual reference model shall
serve as a basis for deriving evaluation criteria for our subsequent survey.

Overview. In the current literature, one can already find quite a large body of con-
cepts necessary to capture information about entities and the ways in which evolution
of these entities may occur. The conceptual reference model is designed in a modular
manner to address varying modeling needs in four packages (see Appendix A for a
single integrated model): The universe of discourse (cf. UniverseOfDiscourse) provides
a vocabulary to define the properties of physical entities of a world [Niles and Pease
2001], and to relate these physical entities to notions of time and space. The static view
(cf. StaticView) captures what is true at an instant of time or throughout an interval of
time, whereas the dynamic view (cf. DynamicView) describes what happened between
the true states, see also the SNAP/SPAN ontology [Grenon and Smith 2004]. Finally,

21t roughly builds on our previously introduced SAW task ontology [Baumgartner et al. 2010a].
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the epistemic view (cf. EpistemicView) captures what an agent knows or believes to
be true. Epistemic knowledge about state and evolution enables deductive reasoning
(planning, projection, and verification) and simulation [Bhatt 2009; 2010].

The partition of responsibilities that we follow is in line with classical results from
logic, yet specialized to the case of dynamic spatial systems here. The universe of dis-
course characterizes the entities, their properties, and their relations as they are rele-
vant for modeling a dynamic spatial system. The static view characterizes what can be
modeled and expressed to hold about the system, e.g., at a single state at one particular
moment in time (as in first-order logic [Fitting and Mendelsohn 1999]). The dynamic
view characterizes in what way the behavior of how states change over time can be ex-
pressed (see modal logics [Fitting and Mendelsohn 1999], temporal logics [Prior 1957;
Pnueli 1977], and dynamic logics [Pratt 1976]). And the epistemic view characterizes
what can be modeled about what agents know or do not know or believe or do not (as
in epistemic logics [Von Wright 1951; Hintikka 1962]).

In Sections 2.1 to 2.4 we discuss these packages in detail. We start each package
with definitions according to this article, before we discuss alternatives and different
terminology found in the literature that led to these definitions. The complete con-
ceptual reference model in a single integrated model can be found in Appendix A. To
illustrate the concepts in the reference model we will use a sample scenario from an
intuitively accessible domain, i.e., road traffic. This example is inspired by the Coop-
erative Intersection Collision Avoidance System (CICAS [Misener et al. 2010]) and
described in detail in Appendix C.1. We introduce an additional example from robotics
in Appendix C.2 to illustrate the applicability of the conceptual reference model to
different domains. In order to avoid collisions at intersections, CICAS informs a so-
called subject vehicle about possible hazards (e. g., risk of upcoming red light violation
or other vehicles approaching the intersection with high velocity). To this end, CICAS
exchanges information not only between an intersection and the approaching vehicles,
but also in-between vehicles.

2.1. Universe of Discourse

Definition 2.1 (Universe of Discourse). The universe of discourse (cf. Figure 1) com-
prises entities, which are either physical in nature or abstract. Physical entities can
have properties, which are either constant (non-changeable) or fluent (changeable).
Physical entities with exclusively constant properties are called constant entities. All
others are evolvable entities; some of them are agents with a free will. Abstract entities
structure the physical appearance according to some mental abstraction. We consider
especially two kinds of abstract entities: temporal entities, such as instants and inter-
vals, and spatial entities, such as points and regions.

We anchor our subsequent discussion about the static and dynamic nature of spatial
systems in this definition of a universe of discourse. The universe of discourse takes
a similar role as the domain of discourse in many-sorted first-order logic. Its concepts
are rooted in the qualitative theories for moving objects [Galton 1995; 2000], which are
one of the historically first research approaches to qualitatively describe dynamic spa-
tial systems. These qualitative theories for moving objects postulate the importance of
a formal definition of a theory of time, space, objects, and positions (which maps objects
into time and space) [Galton 2000] for representing behavior in dynamic spatial sys-
tems. We consider these four parts important for structuring the universe of discourse
of dynamic spatial systems. However, we define objects and positions, corresponding to
Niles and Pease [2001], in a broader sense of physical entities and properties, respec-
tively. This allows us to consider additional aspects of interest (e.g., compositions of
objects, such as traffic jams, or non-spatial properties, such as severity).
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Fig. 1: The universe of discourse package (UoD)

The theory of physical entities extends the theory of objects to comprise abstract
immaterial entities too, such as events and actions. This is especially important to
describe virtual composite entities (e. g., a traffic jam, as opposed to every single car in
the jam) and to let an agent reason about its own actions (e. g., is it safe to accelerate
near an accident). The theory of properties considers evolution beyond motion, which
allows us, for instance, to describe shape transformation [Davis 2001]. It maps physical
entities not only into the temporal and spatial domain, but also into various discrete
or dense, bounded or unbounded, as well as finite or infinite valued spaces. Each such
space describes a particular aspect of a physical entity, such as its shape or color.

In a dynamic spatial system, spatial and temporal continuity is assumed, which
means that evolution (e.g., in terms of motion) is modeled as a continuous function
of time [Delafontaine et al. 2011]. Yet, our model of a current state is a discrete ab-
straction built by sampling the properties of physical entities (e. g., measuring the real
position of a car) and by mapping them to abstract entities (e. g., a GPS point), possibly
with sensor noise.

The UniverseOfDiscourse package describes the necessary concepts for abstracting
from the observed world: it provides concepts for describing and extending the universe
of discourse with (i) a theory of time and (ii) space, (iii) a theory of physical entities
(i. e., objects), and (iv) a mapping of these entities into the theory of time and space in
terms of describing their properties. Note that the universe of discourse only defines a
vocabulary for describing state and dynamics. For example, statements about an agent
existing in point p at time instant ¢ are part of the static view described later.

A Model of Time and its Entities. In accordance with Galton [1995], a theory of time
comprises a notion of temporal entities (cf. TemporalEntity) in terms of time instants (cf.
Instant) and intervals (cf. Interval). These act as locations in the temporal dimension
to describe the time for which a state description holds and duration of events, ac-
tions and processes. A reasoning technique that abstracts time to instants is unable to
capture interleaving patterns when agents act concurrently in a dynamic spatial sys-
tem (e. g., our own vehicle waits at the intersection while another vehicle passes the
intersection—both extend over time intervals); one with only proper intervals cannot
capture instantaneous events precisely, which, for instance, gives rise to problems in
simulation and verification.

A Model of Space and its Entities. Similar to time, space comprises a notion of spa-
tial entities (cf. SpatialEntity), for instance points (cf. Point), lines, and two- or three-
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dimensional regions (cf. Region) such as polygons and polyhedra, which act as loca-
tions in the spatial domain for different kinds of observable entities. For expressive-
ness reasons, one would like to have as many different kinds of spatial entities as
possible. Reasoning complexity, however, typically increases with more complex spa-
tial representations. For example, formal verification of autonomous vehicles often ap-
proximates objects as points [Loos et al. 2011; Mitsch et al. 2012; Mitsch et al. 2013].
The assumption is, that if safety cannot be guaranteed with a simple representation,
then behavior of the more complex real system is even worse. Also note that additional
computation may be necessary to turn low-level measurements into complex spatial
entities. For example, laser scanners for measuring distance to obstacles in the en-
vironment often deliver sets of points; extracting shapes of different objects from a
set of points is a computationally intensive process that we may want to avoid in an
autonomous robot.

Physical Entities and their Properties. In accordance with Galton and Worboys
[2005], we distinguish between two types of physical entities [Niles and Pease 2001]
in a world (cf. PhysicalEntity): those entities that, once they exist, are constant and
never subject to evolution until they cease to exist (cf. ConstantEntity), and those that
are able to evolve during their lifetime (cf. EvolvableEntity). In principle, evolution may
concern any kind of fluent property (e. g., position, color, or age). But with our focus on
dynamic spatial systems, we restrict our discussion to spatial properties. Agents (cf.
Agent as a subclass of evolvable entities) evolve as a result of their free-will decision
making. If a technique is able to recognize other agents, it may become possible to
negotiate a joint behavior for achieving goals.

Constant as well as evolvable entities may be characterized by certain properties (cf.
Property, e. g., positions, lengths, or distances) [Kokar et al. 2009]. These properties
again can be discerned into constant or rigid [Beckert and Platzer 2006] properties (cf.
Constant, e. g., the position of the left-turn lane), whereas others can change and are
therefore called fluent [Reiter 20011, variable [Galton and Worboys 2005], or non-rigid
[Beckert and Platzer 2006] (cf. Fluent, e.g., the position of the subject vehicle). Con-
stant entities can have constant properties only (otherwise, they would not actually be
constant), whereas entities that can evolve may have properties of both kinds.

The fact that constant entities never change makes them candidates for design-time
optimization (e. g., encode their position on a map or other constant facts in the knowl-
edge base). The state of evolvable properties, however, must be sensed or communi-
cated dynamically.

Knowledge representation about physical entities can either emphasize their states
captured as a single sequential snapshot, which is the focus in the next section (static
view), or, instead, emphasize the evolution that occurs between these states over time,
which is the focus in Sect. 2.3 (dynamic view).

2.2, Static View

The static view captures what is true about physical entities at a time instant or
throughout a time interval. The static view, compared to first-order logic, captures
what is a state, what are the values of variables in a state, and what are the truth val-
ues of (interpreted) predicates. Such information is typically obtained through sensor
measurements (e. g., measured with external, on-board or wearable sensors or sensor
networks of an autonomous agent, e. g. [Kurschl et al. 2009]). We assemble Def. 2.2 and
Figure 2 from [Grenon and Smith 2004; Bhatt and Loke 2008; Bittner 2002; Worboys
and Hornsby 2004; Dylla and Bhatt 2008; Barwise and Perry 1983; Galton 1995] and
relate the concepts to others from the literature.
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Definition 2.2 (Static View). A constant property can have exactly one state, while
a fluent one may assume multiple states. Each state is associated with a temporal
entity that defines when it holds (e. g., valid during a particular interval, or at a par-
ticular instant). We distinguish between unary states that capture a value of a single
entity, and n-ary states that compare two or more entities. An important unary state
in a dynamic spatial system captures the position of a physical entity. A situation is an
event that is characterized by one or more states, often (but not necessarily) with an
emphasis on n-ary states. We emphasize n-ary states of temporal nature to compare
temporal entities (e.g., ¢« during i’) and of spatial nature to compare spatial entities
(e.g., r inside 7).
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Fig. 2: Unary and n-ary states describe situations in the static view

Property States. Constant properties of physical entities never change. Therefore,
constant properties have a single state (cf. State) only, which will be the same in all
subsequent snapshots of the system. During the life of evolvable entities, their fluents,
in contrast, may be subject to many changes while their constant properties stay un-
changed. When we retain all previous states in addition to the most recent one, we can
describe the history of an entity. This distinction between properties and their states
is in accordance with the influential SNAP/SPAN ontology [Grenon and Smith 2004]. It
allows us to discern entities and their life in terms of evolving states of properties.

State changes are in practice sampled at particular time instants regardless of the
continuous or discrete nature of a fluent. Between sampling points, the state of a fluent
is thus often considered to be stable w.r.t. a particular temporal entity (typically during
a particular temporal interval, cf. State valid w.r.t. TemporalEntity). For safety guaran-
tees, however, this simplification is at odds, because critical states could be missed by
an overly coarse sampling. Hybrid approaches, therefore, model time in a continuous
manner. We bridge qualitative and hybrid approaches as follows: in a hybrid approach,
we explicitly model sampling intervals to guarantee safety for all possible times while
the resulting constraints are still discrete for qualitative approaches.

States can be of either unary or n-ary nature [Bhatt and Loke 2008]. A unary state
(cf. UnaryState) specifies a single entity (e. g., the velocity of the subject vehicle), while
a n-ary state (cf. N-aryState) relates two or more entities to each other (e. g., the posi-
tion of a vehicle relative to a lane). States embed physical entities in the theories of
time and space, and thus correspond to the notion of a setting in the geospatial event
model of Worboys and Hornsby [2004]. Since evolution is prevalent in dynamic spatial
systems, unlike Worboys and Hornsby [2004], we neither consider purely spatial nor
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purely temporal settings, but in accordance with Bittner [2002] situate physical enti-
ties in combined spatio-temporal settings. This means, that every spatial state (i.e.,
position, cf. Position) of a physical entity is valid w.r.t. a particular temporal entity.

A specific configuration of one or more states of entities is called a situation (cf.
Situation [McCarthy and Hayes 1969], e. g., the situation in which a vehicle is left of
our own vehicle), which can be recursively modeled from entities and their properties.
Characterizing situations by states is necessary to model re-occurring states, with each
occurrence being a different situation, i. e., each situation is a unique node in the time
structure [Dylla and Bhatt 2008]. Situations can be used, for example, to

(1) summarize initial conditions and planning goals,

(2) characterize initial conditions and safety criteria for simulation and verification,

(3) communicate with human operators [Baumgartner et al. 2010a; Baumgartner
et al. 2014], and

(4) keep track of various observations and actions taken (e.g., the success rates of
different actions in similar situations) in order to subsequently generalize recorded
knowledge and support decision making.

For 1-3, suppressing explicit mentioning of situations may simplify statements [Mc-
Carthy and Hayes 1969] (e.g., start [suppressed: in a situation s] where a vehicle is
located on a left-turn lane). To record observations and actions taken in connection
with situations, it is necessary to mention situations explicitly [McCarthy and Hayes
1969] as entities that themselves can have properties with state (cf. Situation, which is
a subclass of Event and, thus, in turn of ConstantEntity).

Unary and n-ary States. Relations (i. e., n-ary states) are especially relevant in hu-
man cognition for the comprehension of situations [Barwise and Perry 1983], for ex-
ample describing the car on the left of the parking lot. Just like unary states, relations
may or may not change over time and thereby undergo different states. Both are repre-
sented in our conceptual model as state sub-classes. Properties with n-ary state char-
acterize entities from an extrinsic viewpoint and relate them to each other, whereas
properties with unary state characterize entities from an intrinsic viewpoint. In the
literature, one can observe two main research directions concerning the formal repre-
sentation of such relations: those, which emphasize relations from a static viewpoint
(e. g., calculi for mereotopology [Cohn et al. 1997] and orientation [Dylla and Wallgriin
2007a]), and those that emphasize the dynamic nature of a system already in the rela-
tions (e. g., relations between trajectories of moving objects [van de Weghe et al. 2005;
Delafontaine et al. 2011]).

Note that n-ary states serve yet another purpose: In accordance with Galton [1995],
a notion of spatial order must complement the spatial entities in a theory of space (cf.
association spatial order). Such a spatial order comprises topological (e.g., inside) as
well as positional relations [Bhatt 2010], such as distance, size, and orientation. Con-
crete spatial calculi can be fit into the model as sub-classes of n-ary state. Examples
for such calculi include the region connection calculus [Randell et al. 1992] (topological
comparison of extended regions), the 9-intersection calculus (topological comparison of
lines, regions and other compound objects) [Egenhofer 2009], the oriented point rela-
tions algebra [Moratz et al. 2005] (orientation comparison of oriented points), or the
cardinal directions calculus [Goyal and Egenhofer 2001] (orientation w.r.t. an external
reference suitable for regions). Appendix B lists relation calculi in more detail. The
choice of spatial entities from the universe of discourse directly influences the applica-
ble n-ary spatial states:
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— although points can neither be compared for size nor topologically except for equal-
ity, their distance and relative orientation can be compared in a fine-grained man-
ner.

— although orientation between lines and regions requires additional information
about which of the points in a region determines its orientation, their size and topo-
logical relations can be determined easily.

Usually, we thus approximate a complex physical entity with multiple spatial enti-
ties to model a current situation from complementing n-ary states. But this demands
that we consider additional epistemic knowledge to construct only consistent situation
models, as we will see in Sect. 2.4.

Analogous to spatial entities, a notion of temporal order must complement the tem-
poral entities in a theory of time to enable reasoning about temporal sequence and
duration (cf. association temporal order). Such a temporal order should comprise topo-
logical relations (e. g., during) as well as positional relations® (e.g., ten minutes ago)
[Bhatt 2010]. Topological relations are necessary to reason about concurrently occur-
ring phenomena, whereas positional relations enable reasoning about temporal dis-
tance and duration. Consider the topological and positional temporal relations in the
following example: a traffic jam will coincide (topological) with rush hour, if it does not
dissolve soon (positional). Such statements are similar in role to temporal logic [Prior
1957], for example linear temporal logic forms a total order on states (LTL [Pnueli
1977]) or computation tree logic forms a partial order of states, i. e., trees (CTL [Clarke
and Emerson 1981]).

Galton [1995] restricts his theory of temporal ordering to the topological successor
relationship (i.e., a time interval immediately or with some delay succeeds another
time interval). This enables basic statements about the temporal sequence of states,
but is insufficient to represent concurrently occurring phenomena, which are typical in
dynamic spatial systems (e. g., an accident that happens during a traffic jam) [Sande-
wall 1994]. The necessary topological relations to model concurrent phenomena can
be found, for instance, in the interval algebra of Allen [1983] or the temporal semi-
intervals of Freksa [1992]. The interval algebra provides a comprehensive set of 13
topological base relations (e. g., before, overlaps, during, after) between intervals. One
can compose base relations by disjunction to express uncertainty about a relation be-
tween temporal intervals in the interval algebra. Temporal semi-intervals are similar
in nature, but use base relations that express uncertainty (e.g., older, survives, pre-
cedes). One composes base relations by conjunction to compare two states unambigu-
ously in time. Without logical boolean connectives, a reasoning technique is unable to
capture uncertainty or non-determinism, and at the same time it is unable to specify
compound facts.

From a positional viewpoint, temporal distance and temporal duration relations are
especially relevant [Baumgartner et al. 2007], since they allow us to refine the topo-
logical relations between states, events and actions in terms of their distance and du-
ration. For example, a camera failure that began much sooner may still affect a ve-
hicle turning left; the camera failure lasts longer than it takes the vehicle to make a
left-turn. The conceptual reference model includes associations between temporal and
spatial entities to define their temporal and spatial ordering—denoted as recursive as-
sociations temporal order and spatial order in Figure 2, respectively. These associations
extend related to, which represents an n-ary state.

3Positional relation, in this case, does not refer to position in the spatial domain, but to the position on
a temporal scale.
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Now that we discussed how to model state, in the next section we focus on the dy-
namics of a dynamic spatial system.

2.3. Dynamic View

The dynamic view captures how state changes over time, i. e., how what was true is no
longer and how other states become true at a later point in time (see Figure 3). It is
similar in role to modal logic [Fitting and Mendelsohn 1999] and temporal logic [Prior
1957] for capturing abstract evolution over time, such as in linear temporal logic (LTL
[Pnueli 1977]) or computation tree logic (CTL [Clarke and Emerson 1981]), but also
includes notions of concrete evolution over time as in dynamic logic [Pratt 1976; Harel
1979].
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Fig. 3: Continuants, processes, and occurrents in the dynamic view

Definition 2.3 (Dynamic View). We distinguish between things that are (continu-
ants) and things that happen (occurrents, such as events and agent-initiated actions).
Continuants, which may or may not evolve, are physical entities. Occurrents are con-
stant entities; they happen at a particular instant or during a particular interval in
time, involve continuants and may be the result of a process. A process often comprises
several occurrents and typically, but not necessarily, results in the creation of new
continuants.

For this definition we consolidated different views of the dynamic nature of a dy-
namic spatial system from geographic information systems [Worboys and Hornsby
2004; Galton and Worboys 2005] and ontology engineering [Grenon and Smith 2004].
These communities are concerned with the relationship between multiple states to talk
about dynamic evolution in terms of events, actions, and processes.

Events, actions, and processes are often distinguished into those modeling contin-
uous gradual changes (e. g., continuous translational motion in both space and time),
and those modeling discontinuous ones (e.g., sudden appearance of objects) [Davis
2001; Bhatt 2009]. Continuous changes usually follow the laws of physics, while discon-
tinuous changes result in sudden jumps between states. Although continuous changes
can be approximated in purely qualitative models and discontinuous ones in purely
quantitative models, both together are considered only in Aybrid models. In the fol-
lowing paragraphs, we discuss the complementing views of different communities on
continuants, occurrents, processes, events and actions that led to our definition.
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Continuants, Occurrents, and Processes. Worboys [2005], as many other ontologists
(e.g., [Bittner et al. 2004; Gangemi et al. 2002; Smith and Grenon 2004; Sowa 2000])
not only distinguish between constant and evolvable entities as in Sect. 2.1; they also
distinguish between continuants (cf. Continuant) and occurrents (cf. Occurrent). Contin-
uants, which are sometimes also referred to as endurants [Bittner et al. 2004], repre-
sent those objects of a world that exist and endure over some interval of time (e.g.,
a left-turn lane, a car). Occurrents, sometimes called perdurants [Bittner et al. 2004],
occur in a world and “are then gone” [Worboys 2005] (e.g., motion or an overtaking
maneuver). From a practical viewpoint it is important to distinguish between contin-
uants and occurrents when we want to enable autonomous agents to recognize other
entities in different occurrences [Simons and Melia 2000]. For example, our own vehi-
cle may ask itself whether or not another vehicle is the same as encountered previously
in a similar critical situation. If so, our own vehicle may want to revise its own future
behavior towards more cautious choices in the presence of this particular other vehicle.

As a discriminating feature, according to Simons and Melia [2000], continuants al-
ways have non-zero duration and can be identified independently of time and space
(e.g., a car), whereas occurrents may either occur at a particular time instant or dur-
ing a non-empty time interval and can only be identified w.r.t. a spatio-temporal ref-
erence (e. g., yesterday’s accident on 1st Ave). Usually, as we will discuss for epistemic
knowledge, an occurrent causes other occurrents or results in an observable change of
state. It is generally agreed [Simons and Melia 2000; Bittner et al. 2004], that contin-
uants may undergo evolution throughout their existence; they are thus a subclass of
physical entities. For occurrents, less agreement is established; we discuss the various
viewpoints found in literature, which form the basis for our conceptual model.

According to Worboys [2005], occurrents are categorized into events (e. g., traffic cam-
era failure, sometimes denoted as exogenous actions that are not initiated by an agent
[Reiter 2001]), actions (e. g., turn left) being agent-initiated occurrents, and processes
being computational events. Although many other discussions use similar notation
about evolution and change, particularly the notion of processes is often seen differ-
ently, for instance, in terms of a container for events and actions (e. g., [Galton 2009]).

We follow the more common view of Galton and Worboys [2005] and Galton [2009]
and separate processes from occurrents. In their definition, processes are time-varying,
ongoing entities (e.g., traffic flow may become faster or slower, but still go on dur-
ing a certain time interval), whereas events and actions are completed episodes of
history (e.g., the start of a camera failure). Note that we can go back and forth be-
tween processes and other occurrents, if necessary. For example a camera failure may
have started at a particular point in time (the beginning of the failure is a completed
episode). The camera’s state is now faulty and a process of camera failure is going on.
In that process, additional events may arise: the camera might later be repaired and
the failure thus end at another point in time (the end is a completed episode too). Since
now the camera failure is gone, we may no longer care for the process and thus convert
it into an event that lasted for a particular temporal interval.

The distinction between occurrents and processes means, that processes can undergo
evolution so their states may evolve over time, whereas events and actions cannot?. In
this sense, we interpret events and actions in accordance with the stages of Bittner
et al. [2004], whereas processes resemble their perdurants.

4Note that this applies to the ideal correct event or action that actually happened in real-world. In an
information system, due to the correction of errors, a record that represents such an event or action can still
be altered [Galton and Worboys 2005].
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Events and Actions. As we have seen in the examples above, the boundary between
occurrents and processes leaves room for interpretation. Depending on the granular-
ity employed during modeling, one can view processes (cf. Process) as being made up
of numerous events (cf. Event) and actions (cf. Action); conversely, events and actions
can be the results of processes [Galton 2009]. For example, the process of traffic flow
comprises many position change events of the contributing vehicles, and each of these
position change events is the result of a motion process of a particular vehicle. This
view resembles that of a business process definition [Dumas et al. 2005], which is com-
posed of multiple activities, and each activity may in turn itself be detailed by yet
another business process definition.

We treat processes as evolvable entities, which enables us to model the history of
continuants and the progress of processes in a uniform, snapshot-oriented manner. The
states of a process proceed in time as a result of events and actions that initiate and
terminate these states. Evolution of a process, thus, is akin to evolution of continuants.
Occurrents [Reiter 2001] represent those entities of a world that happen and are then
gone. Such occurrents may either be instantaneous (i. e., last only for a time instant,
e.g., the start of a camera failure), or extended (i.e., last for a time interval, e. g., the
camera failure itself) [Grenon and Smith 2004], which is represented in the conceptual
reference model through an association to a temporal entity. Since we want to consider
virtual occurrents too (e. g., computational events), we do not link occurrents to spatial
entities, but use an occurrent’s property to do so when appropriate.

Events Occur, Actions are Initiated. In accordance with Bhatt and Loke [2008], we
further distinguish occurrents into events, which necessarily or randomly occur in the
environment whenever their preconditions are met (e.g., a vehicle collision, a traffic
camera failure), and actions that are executed by agents, and hence, their occurrence
is additionally dependent on the non-deterministic free will of an agent [Bhatt and
Loke 2008] (e.g., a vehicle may or may not turn left, even if it is possible in a cer-
tain situation). Note that this definition differs from the terminology of Worboys and
Hornsby [2004] and Mau et al. [2007], who define occurrents as real-world happen-
ings and events as representations thereof in a spatio-temporal model. Our distinction
between events and actions allows an agent to employ different strategies to avoid
adverse occurrents: in order to avoid events (e.g., a vehicle collision), an agent must
make careful decisions upfront to avoid the necessary and sufficient conditions of the
event to become true. Events that may occur randomly cannot be avoided at all; we
can only provide fallback mechanisms (e. g., fallback rules for an intersection in case
a traffic light fails, or methods to safely stop an autonomous car when all its sensors
fail at once). To avoid specific actions, an agent may have to convince other agents in a
negotiation not to carry out the action.

Next, we discuss the epistemic concepts (e. g., necessary and sufficient conditions)
that are required for consistent and expressive deductive and abductive reasoning
about state and evolution phenomena.

2.4. Epistemic View

The epistemic view captures neither what is true at an instant of time (static view) nor
what happened between the true states (dynamic view), but instead captures what an
agent knows or believes to be true, and what an agent knows that it does not know.
The epistemic view is similar in role to epistemic logic [Von Wright 1951; Hintikka
1962].

While the previous sections discussed concepts to describe observed information
about our world, epistemic knowledge (epistemology) is concerned with describing how
an agent can judge the observed information (e. g., find contradictions) and extend it
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when necessary. For example, having experienced or learned that parts in a container
must be smaller than their container explains, why a street cannot be part of the lanes
that it comprises. Another example is the frame problem [McCarthy and Hayes 1969;
Reiter 2001; Shanahan 1997b]: how can our autonomous car know that moving along
the road will only change its own position, and not, for example, cause a thunderstorm
or turn the left-turn lane into a traffic light. Epistemic knowledge, in summary, is es-
sential for automated reasoning tasks. Without epistemic knowledge, an agent may
follow erroneous information or come to inconsistent conclusions when projecting the
behavior of its environment and planning its own steps upon incomplete facts.

We assemble the following definition of epistemic concepts from artificial intelligence
[Bennett 2004; Davis 2001; Reiter 2001] and spatio-temporal reasoning [Bhatt 2009;
2010; Dylla and Bhatt 2008; Galton and Worboys 2005].

Definition 2.4 (Epistemic View). We categorize epistemic knowledge into qualifica-
tion constraints, frame constraints, and ramification constraints. Qualification con-
straints define how a state influences other states and how a state allows or prevents
occurrents from happening. Frame constraints define how an occurrent initiates and
terminates states and causes other occurrents to happen, and what it does neither
initiate nor terminate nor cause. Ramification constraints define how states and oc-
currents can be composed and what indirect effects follow from them.
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Fig. 4: Knowledge about necessary and sufficient conditions for states and occurrents

Bhatt [2009] summarizes the reasoning tasks that need to be supported for analyz-
ing dynamic spatial systems. These tasks are in accordance with our example and com-
prise deductive and abductive reasoning. Deductive reasoning includes (i) planning of
actions in order to reach a particular goal state in the dynamic spatial system, (ii) pro-
jection of possible future states to decide between action alternatives, and (iii) qual-
itative simulation of the behavior of a dynamic spatial system. Abductive reasoning
explains a current state with actions that may have led to this state. This enables an
agent to trace back current facts to outdated ones in the knowledge base and judge
whether or not real-world behavior fits to the internal models of an agent [Mitsch and
Platzer 2014].

Several problems known in the research area of artificial intelligence must be tack-
led for deductive and abductive reasoning. In particular, concepts are needed to cap-
ture (i) the necessary conditions of states, events and actions (termed qualification
problem [Reiter 2001]), (ii) the causes, direct effects and non-effects of events and
actions (termed frame problem [McCarthy and Hayes 1969; Reiter 2001; Shanahan
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1997b]), and (iii) the indirect effects of these events and actions (termed ramification
problem [Reiter 2001]).

Figure 4 models qualification and frame constraints as association classes, since
they may not only depend on the states and occurrents they connect, but may also
need to satisfy further safety constraints. For example, the state of our own vehicle
being located at the intersection allows a left turn action, but only if other vehicles
approaching the intersection yield to our car.

Qualification Constraints. Knowledge about qualification constraints for states and
occurrents complements the static and dynamic view. Various dependencies are pos-
sible between states (e. g., a state may enable, disable, or perpetuate the existence of
another state), which is especially relevant for reasoning about consistency of states
[Galton and Worboys 2005]. For example, our own vehicle may measure its position
with multiple sensors (e.g., GPS and wheel encoders), and those may report contra-
dictory measurements (e.g., GPS tells us that we are still far from the intersection,
while the wheel encoders report that we are already close). The subject vehicle has to
detect the inconsistent reports and choose a resolution strategy: it may decide in favor
of one of the measurements, retrieve more evidence, or switch into a failure mode to
safely stop. Without qualification constraints, an autonomous agent may be unable to
detect inconsistencies, or it may devise infeasible plans based on inconsistent states.

Common to both kinds of occurrents, events and actions, is that there are some
necessary conditions under which an occurrent may happen, i.e., qualification con-
straints [Galton and Worboys 2005]. Typically, the necessary conditions are certain
states, which allow or prevent occurrents. For example, the state of the camera being
functional allows the event of the camera to fail, or sufficient safety distance to other
vehicles allows our own vehicle to initiate a left turn action. Knowing qualification
constraints for occurrents allows us to design safe agents (e. g., with control algorithms
that actively avoid the qualification constraints of adverse events becoming true) and
create plans.

Both, state and occurrent qualification constraints, depend on unary (e.g., a rigid
entity cannot contain other entities) [Bhatt 2010] or n-ary states (e. g., relations being
joint exhaustive and partially disjoint, JEPD, meaning that between any two objects
exactly one relation must hold true). When we model the type of an entity as a property
of its class, we can even formulate qualification constraints w.r.t. the entities involved
(e. g., being a left-turn lane allows the state of a vehicle being located on that lane) as
proposed by Apt and Brand [2005].

Frame Constraints. For reasoning about evolution (e. g., situation projection as in
[Baumgartner et al. 2009; 2010b]) it is particularly important to know what remains
stable and what is caused to change as a result of occurrents [Bhatt 2010]. In artificial
intelligence, such knowledge on the direct effects and non-effects of actions and events
is known under the term frame problem [Reiter 2001; Shanahan 1997b]. Actions and
events result in perceivable state change in the environment [Dylla and Bhatt 2008]
(i. e., occurrents initiate or terminate states, e. g., the event of a camera failure termi-
nates the state of the camera being functional and initiates the state of the camera
being malfunctioning). We interpret occurrents as transitions between states in accor-
dance with Bennett [2004]. Without frame constraints, events and actions would have
undefined (i. e., arbitrary) effects, which makes reasoning impractical.

Another interesting distinction of occurrents can be made according to their nature
of continuity [Davis 2001]: continuous occurrents (e. g., motion) result in gradual state
changes, which are discretized with snapshots, whereas discontinuous ones (e. g., ap-
pearance or disappearance of objects, switching states of a traffic light) are already of
discrete nature in the real world. It is important to know the limitations of qualitative
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reasoning techniques that arise from their coarse approximations of continuous occur-
rents, in order to refine their results when computing actuator set values at run-time.

The effects of occurrents can be modeled from a static viewpoint or from a dynamic
viewpoint. From a static viewpoint, the effects of occurrents can be formulated either in
a unary manner to directly influence the unary properties of entities (e. g., a shrinking
event decreases the size of an entity), or in an n-ary manner on n-ary properties [Bhatt
and Loke 2008] (e. g., a shrinking event terminates the equal relationship and initiates
a smaller relationship). Both, unary and n-ary frame constraints, are subsumed as
state frame constraints in Figure 4. Mau et al. [2007] discuss the effects on properties
in more detail in the form of evolving impacts (sudden or gradual increase or decrease
of property values) and distinguish between delayed and immediate impacts. In hybrid
systems [Henzinger et al. 1997; Platzer 2010b], effects are modeled even more detailed
using differential equations. The more fine-grained we model the effects of occurrents,
the better predictions of future states can be made; often, however, at the expense
of computation time (e. g., enumerating paths in a rather small graph of neighboring
relations vs. solving a differential equation).

From a dynamic viewpoint, the effects of actions and events are captured in Fig-
ure 4 using occurrent frame constraints. Such occurrent frame constraints model a
cause, that means, a sufficient condition for a particular occurrent to happen. Typi-
cally, such a cause is another occurrent: for example, the event of a lightning causes
the event of camera failure; the event of distance between two cars becoming too small
demands a braking action of the follower car. From an implementation viewpoint,
these sufficient conditions of actions define the switching constraints of a controller.
This brings us directly to a discussion of the kind of control that we may want to im-
plement: “Time-triggered systems exhibit autonomous control and interact with the
environment according to an internal predefined schedule, whereas event-triggered
systems are under the control of the environment and must respond to stimuli as they
occur.” [Obermaisser 2005, p. 1]. If safety is key, event-triggered control is not a prac-
tical approach to implement: when we use sensors to detect events in dense-time sys-
tems, we would need to be able to sample infinitely often in order to react to an event
in a dependable manner. Thus, time-triggered control is prevalent in safety-critical
systems, while event-triggered control is popular for non-safety critical applications
[Obermaisser 2005]. This means, however, that for safety-critical systems we need to
transform the sufficient conditions into switching conditions that respect the delayed
sensing and actuation of time-triggered control.

Ramification Constraints. Certain indirect effects may also occur in addition to the
direct effects and non-effects of actions and events considered in frame constraints
[Bhatt 2010]. For example, consider a green traffic signal indicating right of way for
a particular street. By ramification, this green traffic signal indicates right of way for
the lanes being part of this street too. These indirect effects can be attributed to one of
the following causes (cf. also the sub-classes of ramification constraints in Figure 4):

(1) Intra-property dependencies—between states of a single property; for instance if a
vehicle is located on a left-turn lane, then the left-turn lane accommodates the vehi-
cle. From the viewpoint of n-ary states (i. e., relations), intra-property dependencies
define: (i) whether or not a relation is symmetric (e. g., equality = is symmetric); (i1)
what is the inverse of a relation (e. g., the inverse of < is >); (iii) what other relations
are subsumed by a relation (e.g., < subsumes <); (iv) what relations are disjoint
from a relation (e.g., if < is true, then > cannot be true). A reasoning technique
without intra-property dependencies must be fed with additional facts to compen-
sate for the lack of reasoning capabilities.
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(2) Intra-property composition of the values of the same property; for instance, if our
own vehicle is west of the intersection, and the intersection is west of another ve-
hicle, than we can say that our own vehicle must also be west of the other vehicle.
An important intra-property composition is transitivity of relations (e. g., equality is
transitive, whereas inequality is not). Without composition, a reasoning technique
is unable to combine multiple facts.

(3) Inter-property dependencies—between states of different properties; for instance, if
a vehicle has not yet entered an intersection, and from a distance viewpoint is far
away, then as an indirect effect of entering the intersection (which is, topologically
speaking, a single step), the distance between the vehicle and the intersection must
have been reduced as well. Such inter-property dependencies are necessary when-
ever: (i) we use logical connectives between two different kinds of relational opera-
tors; (ii) these relational operators map the same underlying space into two differ-
ent spaces; (iii) at least one of the mappings implicitly makes assumptions about
the other mapping. For example, let us consider two kinds of relational operators
on sets: size comparison (|s| v |s'|, with v € {<,=,>}) and topological comparison
in RCC (s v s’ with v € {DC, PO, PP, PPi, EQ}® and EQ = (s\s' = 0) A (s'\s = 0),
...). Without inter-property dependencies or evaluating the relations in the under-
lying space, a reasoning technique may, for instance, devise an impossible plan that
demands two objects to be topologically equal while one is smaller than the other
(Is| < |s'| A s EQ §).

(4) Inter-property composition of the values of different properties; for example, if our
own vehicle is far from an intersection, and another vehicle is stopped at the in-
tersection, then we can say that our own vehicle must also be far from the other
vehicle; if our own vehicle then moves towards the intersection, then the distance
between the vehicles must change as well.

Note that these indirect effects are typically entailed by the basic action theory [Re-
iter 2001], i. e., they will ultimately be modeled as qualification and frame constraints.
However, we want a clean separation, which may enable us to specify transforma-
tions that turn ramification constraints into corresponding qualification and frame
constraints systematically.

In summary, the previous sections introduced modeling concepts for representing
entities, their state, evolution between states, and epistemic knowledge to judge or
complement all of the aforementioned.

3. EVALUATION FRAMEWORK

In this section, we transform our conceptual reference model into a criteria catalog
in order to create a viable basis for comparing the modeling concepts of different ap-
proaches for reasoning in dynamic spatial systems. The corresponding criteria in the
catalog introduce measurable indicators of the concepts. We use the following schema
for defining our criteria:

(1) a name and abbreviation, which allow us to cross-reference a criterion throughout
the survey, and a reference to the source if a criterion has been adopted from others.

(2) adefinition specifying the criterion, together with a discussion of potential difficul-
ties in defining the criterion due to, for instance, conflicts with other definitions.

(3) an appropriate measure, such as a list of values or a particular scale, enabling us
to compare and rate different approaches with respect to each other.

5The operators of RCC [Randell et al. 1992] denote topological relationship between sets: disconnected
(DCQ), partly overlapping (PO), proper part (PP) and its inverse (P P1), and equality (EQ).
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Table I: Evaluation criteria for modeling concepts

Abbrv. Criterion Measure
Universe of Discourse
UD.T Temporal entities Instant and/or interval
UD.S Spatial entities Point, line, and/or region (polygon, polyhedron, ellipsoid, etc.)
UD.E Physical entities Formalized as first-class concept yes/no
UD.P Properties Fluent and/or constant
Static View
SV.ST State Unary and/or n-ary, time-dependent yes/no
SV.TO Temporal ordering Topological and/or positional
SV.SO Spatial ordering Topological and/or positional; intrinsic/extrinsic/deictic ref. frame
SV.S Situations Explicitly formalized or implicitly derived
Dynamic View
DV.TS Temporal structure Linear, branching, or cyclic time; discrete or dense set
DV.CO Continuous occurrents Unary/n-ary, fixed/extensible, informal description/formal def.
DV.DO Discontinuous occurrents  Appear, disappear, and/or others (listed in survey)
DVEX  Expressiveness Temporal and/or others (listed in survey)
Epistemic View
EV.QC  Qualification constraints Listing of necessary conditions
EVFC Frame constraints Listing of sufficient conditions and effects
EV.RC  Ramification constraints Listing of intra-/inter-property dependencies/composition

The criteria are categorized according to the packages of the conceptual reference
model, summarized in Table I, and defined in detail in Sections 3.1 to 3.4.

3.1. Universe of Discourse Criteria

This category contains criteria considering the modeling of real-world physical enti-
ties, together with their anchoring in time and space. We focus our discussion on the
concepts of instants and intervals (the two major representations in temporal space
[Galton 1995]), as well as shape, position, orientation, and size, which are the four
major spatial properties of physical entities [Egenhofer 2010].

Temporal Entities (UD.T). We distinguish between approaches that do not refer to a
particular kind of temporal entities (NA), those that use temporal instants (Instant)
[Galton 1995], those that use temporal intervals (Interval) [Galton 1995], and those
that combine both. Different interleaving patterns of concurrently acting agents can-
not be captured when time is abstracted solely to instants. In contrast, instantaneous
events cannot be precisely represented with only proper intervals (e.g., a ball that
bounces back at an instant of time when it hits the ground).

Spatial Entities (UD.S). The spatial entities criterion determines how an approach
abstracts from physical entities in terms of their manifestation in space [Galton 1995].
For example, a road can be described as a two-dimensional region by projection onto
a two-dimensional plane, which approximates the Earth’s surface in a restricted area.
Since a spatial calculus, such as RCC, is applicable for some spatial entities but not for
others, the actual choice of employed abstraction makes a big difference for reasoning
about state consistency and evolution. For example, points can neither be topologically
compared, except for equality, nor can they scale; but their distance can be determined
unambiguously. We evaluate whether and on which level of abstraction a modeling
approach includes spatial entities. According to the suggested upper merged ontology
(SUMO) [Niles and Pease 2001] objects can be represented in decreasing order of their
level of abstraction (i.e., in increasing order of expressiveness) as geometric figures
in the form of points, one-dimensional straight lines, two-dimensional planar regions
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(e. g., circles, polygons) or three-dimensional regions (e. g., spheres, ellipsoids, polyhe-
dra). We additionally list whether these regions are abstract topological regions or
can have concrete geometrical shape. On the one hand, we want to have many differ-
ent spatial entities for best expressiveness. On the other hand, reasoning complexity
typically increases with more complex spatial representations, and additional compu-
tation may be necessary to turn low-level measurements into complex spatial entities
at run-time.

Physical Entities (UD.E). This criterion evaluates whether or not an approach struc-
tures physical entities into (possibly complementing) sub-class hierarchies according to
their spatial properties and evolution capabilities, thus formalizing them as first-class
concepts. With respect to our reference model, these hierarchies distinguish at least
between those objects that are constant and those that may evolve. Thus, they refine
in essence the notion of the theory of objects of Galton [1995]. In the course of evaluat-
ing this criterion, the concrete classification will be listed to gain further insights. Note
that non-spatial characterizations (e. g., self-connected, transparent, and autonomous
entities distinguished in SUMO [Niles and Pease 2001]) will not be considered during
evaluation of this criterion, since they do not influence spatial evolution. If a technique
is able to distinguish between physical entities and agents, it may be used to negotiate
a joint behavior for achieving goals.

Properties (UD.P). This criterion evaluates the nature of properties used to describe
physical entities. We distinguish between constant and fluent properties. Only ap-
proaches with fluent properties are able to capture a history of states. States of fluent
properties must be sensed at run-time. In contrast, constant properties never change,
which makes them candidates for design-time optimization.

3.2. Static View Criteria

State (SV.ST). In order to represent the history of a physical entity, fluent properties
have to capture multiple states, which describe the property change over time [Grenon
and Smith 2004]. This criterion measures whether or not states are time-dependent
(i.e., anchored in time). A state of a property may either be unary (i.e., describe an
entity from an intrinsic viewpoint) or n-ary (i. e., in relationship to other entities). Since
n-ary states, as already mentioned, are particularly important for ordering temporal
and spatial entities, we introduce dedicated criteria below.

Temporal Ordering (SV.TO). The temporal ordering criterion [Galton 1995] mea-
sures the extent to which temporal entities can be compared. Temporal comparison
operators are necessary to represent temporal dependencies between states and oc-
currents (e. g., the primary other vehicle must pass the intersection, before the subject
vehicle may turn left). The criterion measures the expressiveness of temporal ordering
relations (in increasing expressiveness): (i) no ordering supported, (ii) definable (i.e.,
one may define relational operators), (iii) successor ordering supported, (iv) fully sup-
ported. We measure this criterion separately for topological and positional ordering. If
ordering is supported, we list the specific calculi that come with a reasoning technique
(e. g., interval algebra of Allen [1983]).

Spatial Ordering (SV.SO). The spatial ordering criterion measures how an approach
describes the states of spatial n-ary properties (e. g., an approach may use topological
and positional ordering). Since we are dealing with partial views on dynamic spatial
systems, we are primarily interested in qualitative theories of spatial ordering here
[Galton 2000]. Although approaches with only a single aspect of spatial ordering may
be easier to use and less computationally expensive, those approaches that use multi-
ple aspects of mixed topological and positional nature can capture possible evolution
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with less ambiguity, and are thus favored. In order to gain further insights into the po-
tentially achievable expressiveness, we list the specific relation calculi used for spatial
ordering. We further distinguish the reference frame [Carlson-Radvansky and Irwin
1993] assumed by these calculi, which anchors relations between physical entities in
an intrinsic (without external reference frame, e. g., “inside”), extrinsic (with univer-
sally applicable external reference frame, e.g., “west of”), or a deictic manner (with
external reference frame from the perspective of the viewer, e. g., “left of”). According
to Carlson-Radvansky and Irwin [1993], the reference frame used “is important be-
cause the axes of different reference frames are not always oriented in the same way”,
which can make reasoning over different reference frames difficult. For example, if we
know that accident « is east of intersection x, we still do not know whether it is safe to
turn left unless we learn that going left means turning west.

Situations (SV.S). The situations criterion distinguishes between approaches not
supporting the concept of situations, those describing them implicitly in terms of the
occurrents since some initial state, and those representing situations explicitly as iden-
tifiable entities. Only approaches that explicitly represent situations as identifiable
entities are able to capture further details about situations with dedicated properties
(e. g., duration or severity), and do not require potentially expensive computations to
derive situations from their implicit descriptions [Thielscher 2005].

3.3. Dynamic View Criteria

Temporal Structure (DV.TS). The temporal structure criterion measures how time is
modeled: linear (e. g., [Pnueli 1977]), branching (e. g., [Clarke and Emerson 1981]), or
cyclic structure, defined over either discrete or dense sets of temporal entities [Furia
et al. 2010]. Branching and cyclic [Hornsby et al. 1999] time structures can represent
different evolution variants and even cyclic phenomena (e.g., water tide). They are
more appropriate for planning, projection, and simulation than linear time structures,
which always result in a unique future. The same is true for reasoning about explana-
tions for an observed history of states up until a current state: since the same observed
sequence of states might be caused by different events and actions, we want to be able
to represent the past in a branching structure as well. This allows us to represent al-
ternative courses of occurrents in the same time structure. For example, past sensor
information may only fit the epistemic constraints and the current sensor information
of our own vehicle, if another vehicle took one of several possible actions at an interme-
diate state. Conclusions about these possible past actions may enable us to infer likely
predictions of future actions.

Continuous Occurrents (DV.CO). This criterion distinguishes between unary and n-
ary continuous occurrents. The former define effects for unary properties (e.g., as a
fixed set of topological occurrents [Egenhofer 2009]), whereas the latter rely solely
on a continuity structure of the employed spatial ordering. We additionally evaluate
whether or not the effects of continuous occurrents are defined formally with respect
to a quantitative reference frame. This gives interesting insights into the applicability
of reasoning techniques, since n-ary continuous occurrents will often be defined as
transitions in conceptual neighborhood graphs (CNG) [Freksa 1991]. A CNG defines
a continuity structure [Randell and Witkowski 2004] by imposing constraints on the
existence of direct transitions between relations (e. g., two disrelated entities first must
overlap, before one may become a part of the other one).

Although transitions in a CNG enable some partial consistency checking between
states even in the presence of evolution, they make it harder to plan, project, simulate,
or verify the behavior of a dynamic spatial system in detail. In case such a definition
w.r.t. a quantitative reference frame is missing, we list whether or not at least an in-
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formal discussion of detailed occurrents that go beyond transitions in a CNG is given.
Finally, we evaluate whether or not additional continuous occurrents besides motion
are definable, which makes it easier to create modeling primitives for domain-specific
concepts.

Discontinuous Occurrents (DV.DO). In order to handle sudden changes, such as sud-
denly appearing or disappearing entities, a modeling approach has to provide concepts
for discontinuous occurrents [Bhatt 2009; Davis 2001]. In case discontinuous occur-
rents are not supported, only entities that were already present in the initial state are
available for reasoning. Such an approach, for instance, cannot handle agents that en-
ter the system after it was started, or devise plans that involve creating new entities.
This criterion measures whether or not such discontinuous occurrents are supported,
and lists the kinds of supported occurrents.

Expressiveness of Occurrents (DV.EX). To select between alternative actions, com-
pare the likelihood of different possible evolution paths, or solve further similar dy-
namic reasoning tasks, we need to know properties of occurrents, such as their trajec-
tory, duration, probability of occurrence, or costs. Expressiveness of occurrents evalu-
ates whether or not occurrents can be annotated with temporal entities (enables rea-
soning about their duration) and other properties (e.g., probability, costs, or risk of
damage). Approaches without expressiveness information can only select between al-
ternative actions in a random manner and may, thus, devise sub-optimal plans, project
unlikely evolution, or simulate uninteresting cases.

3.4. Epistemic View Criteria

The criteria of this category evaluate the extent to which an approach integrates epis-
temic knowledge about state and evolution phenomena in a reusable manner—in par-
ticular qualification, frame and ramification constraints [Bhatt 2009; 2010].

Qualification Constraints (EV.QC). This criterion evaluates, which types of quali-
fication constraints—state qualification constraints and occurrent qualification con-
straints—are supported. For both, we list whether or not those necessary conditions
can be defined in terms of unary or n-ary states (cf. Figure 4 on page 14: states en-
able or disable other states, states allow or prevent occurrents). Approaches that only
support necessary conditions for n-ary states are unable to consider facts about single
entities when reasoning about evolutio