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Abstract. Refactoring of code is a common device in software engineer-
ing. As cyber-physical systems (CPS) become ever more complex, sim-
ilar engineering practices become more common in CPS development.
Proper safe developments of CPS designs are accompanied by a proof of
correctness. Since the inherent complexities of CPS practically mandate
iterative development, frequent changes of models are standard practice,
but require reverification of the resulting models after every change.
To overcome this issue, we develop proof-aware refactorings for CPS.
That is, we study model transformations on CPS and show how they
correspond to relations on correctness proofs. As the main technical de-
vice, we show how the impact of model transformations on correctness
can be characterized by different notions of refinement in differential dy-
namic logic. Furthermore, we demonstrate the application of refinements
on a series of safety-preserving and liveness-preserving refactorings. For
some of these we can give strong results by proving on a meta-level that
they are correct. Where this is impossible, we construct proof obligations
for showing that the refactoring respects the refinement relation.

1 Introduction

Cyber-physical systems combine discrete computational processes with contin-
uous physical processes (e. g., an adaptive cruise control system controlling the
velocity of a car). They become increasingly embedded into our everyday lives
while at the same time they become ever more complex. Since many CPS oper-
ate in safety-critical environments and their malfunctioning could entail severe
consequences, proper designs are accompanied by a proof of correctness [2]. The
inherent complexity of CPS practically mandate iterative development with fre-
quent changes of CPS models. With current formal verification methods, how-
ever, these practices require reverification of the resulting models after every
change.

To overcome this issue, we develop proof-aware refactorings for CPS. Refac-
torings are systematic changes applied to a program or model, and a common
method in classical software engineering. In the classical sense [17], refactorings
transform the structure of a program or model without changing its observable
behavior. Regression testing is a common mechanism used to establish some
confidence in the correctness of a classical refactoring [8]. In the presence of
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correctness proofs, however, we can analyze refactoring operations w.r.t. refine-
ment of models and their effect on the proven correctness properties. This gives
unquestionable, and thus significantly stronger, evidence than regression test-
ing and allows us, moreover, to actually change the observable behavior (e. g.,
improve energy-efficiency of a controller) while preserving correctness properties.

As the main technical device, we show how the impact of model transforma-
tions on correctness can be characterized in differential dynamic logic (dL) [18,20].
We present different notions of refinement and prove that they can be logi-
cally characterized in dL. There are many different ways to refine models (e. g.,
trace refinement [9], abstraction refinement [6]); we focus on refinement w.r.t.
the reachable states, which allows us to transfer correctness properties but still
leaves sufficient flexibility to modify the behavior of a CPS. Furthermore, we
demonstrate the application of refinements to define a series of safety-preserving
and liveness-preserving refactorings. For some refactorings we give strong results
by proving on a meta-level that they are correct unconditionally. For those refac-
torings where correctness cannot be shown on a meta-level, we construct proof
obligations based on the logical characterization of our refinement notion in dL,
which imply that the refactoring respects the refinement relation. Hence these
can be conveniently discharged using our existing theorem prover KeYmaera [22].

2 Related Work

Counterexample guided abstraction refinement (CEGAR [6]) uses abstraction
to keep the state space in model checking small, and refines the state space
abstraction when spurious counterexamples are found. Similar approaches have
been suggested for reachability analysis of hybrid systems (e. g., [5,7]).

The Rodin tool [1] enables users to perform refactorings on Event-B [1] mod-
els and generates proof obligations where necessary in order to establish re-
finement between the models. Although originally defined without a concrete
semantics in mind these proof obligations have recently been given a solid se-
mantics [25] in terms of CSP [9]. The formal refinement notion used in their ap-
proach is based on trace inclusion [9]. The notion of trace refinement is also used
to enable compositional modeling of hierarchical hybrid systems in CHARON
[3]. Similarly, Tabuada [26] studies refinements based on behaviors of systems
that are characterized by their traces. In [4] refinements in the setting of abstract
state machines are considered. However, their definition of refinement is a form
of simulation relation, which is even stronger than trace inclusion. In contrast,
we study notions of refinement based on reachable states. Thus, we are more
flexible in terms of which systems we consider to be refinements of each other.

In software development, extensive catalogs of refactoring operations were
proposed (e. g., [8,17]). These refactorings, however, target solely the structure
of a program to make it easier to understand and maintain, and do not use
formal verification to show the correctness of refactoring.

In formal verification of robotic systems [11,12,15] refactoring is used in-
tuitionally to introduce more realistic assumptions into a model that was ini-
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tially simplified for correctness verification. For example, in [12] an initial event-
triggered model is transformed into a time-triggered model; in [11] duplicated
program fragments are removed; in [13] sensor uncertainty is added. After the
refactoring, all correctness properties were reverified on the refactored model.

3 Refinement, Refactoring and Proof Obligations

3.1 Preliminaries: Differential Dynamic Logic

Syntax and informal semantics. For specifying and verifying correctness state-
ments about hybrid systems, we use differential dynamic logic (dL) [18,20], which
supports hybrid programs as a program notation for hybrid systems. The syntax
of hybrid programs is generated by the following EBNF grammar:

α ::= α;β | α ∪ β | α∗ | x := θ | x := ∗ | x′1 = θ1, . . . , x
′
n = θn & H | ?φ .

The sequential composition α;β expresses that β starts after α finishes. The non-
deterministic choice α∪β follows either α or β. The non-deterministic repetition
operator α∗ repeats α zero or more times. Discrete assignment x := θ instanta-
neously assigns the value of the term θ to the variable x, while x := ∗ assigns an
arbitrary value to x. x′ = θ & H describes a continuous evolution of x within the
evolution domain H. The test ?φ checks that a particular condition expressed
by φ holds, and aborts if it does not. A typical pattern x := ∗; ?a ≤ x ≤ b,
which involves assignment and tests, is to limit the assignment of arbitrary val-
ues to known bounds. Note that control flow statements like if and while can
be expressed with these primitives [18].

To specify correctness properties about hybrid programs, dL provides modal
operators [α] and 〈α〉. When φ is a dL formula describing a state and α is a
hybrid program, then the dL formula [α]φ expresses that all states reachable by
α satisfy φ. Dually, dL formula 〈α〉φ expresses that there is a state reachable by
the hybrid program α that satisfies φ. The set of dL formulas is generated by the
following EBNF grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic
expressions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ .

Formal semantics. The semantics of dL is a Kripke semantics in which states
of the Kripke model are states of the hybrid system. Let R denote the set of
real numbers. A state is a map ν : Σ → R; the set of all states is denoted by
Sta(Σ). We write ν |= φ if formula φ is true at state ν (Def. 2). Likewise, [[θ]]ν
denotes the real value of term θ at state ν. The semantics of HP α is captured by
the state transitions that are possible by running α. For continuous evolutions,
the transition relation holds for pairs of states that can be interconnected by a
continuous flow respecting the differential equation and invariant region. That
is, there is a continuous transition along x′ = θ&H from state ν to state ω, if
there is a solution of the differential equation x′ = θ that starts in state ν and
ends in ω and that always remains within the region H during its evolution.
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Definition 1 (Transition semantics of hybrid programs). The transi-
tion relation ρ specifies which state ω is reachable from a state ν by operations
of α. It is defined as follows.

1. (ν, ω) ∈ ρ(x := θ) iff [[z]]ν = [[z]]ω f.a. z 6= x and [[x]]ω = [[θ]]ν .
2. (ν, ω) ∈ ρ(x := ∗) iff [[z]]ν = [[z]]ω f.a. z 6= x.
3. (ν, ω) ∈ ρ(?φ) iff ν = ω and ν |= φ.
4. (ν, ω) ∈ ρ(x′1 = θ1, . . . , x

′
n = θn &H) iff for some r ≥ 0, there is a ( flow)

function ϕ:[0, r]→ Sta(V ) with ϕ(0) = ν, ϕ(r) = ω, such that for each time

ζ ∈ [0, r]: (i) The differential equation holds, i.e.,
d [[xi]]ϕ(t)

dt (ζ) = [[θi]]ϕ(ζ) for

each xi. (ii) For other variables y 6∈ {x1, . . . , xn} the value remains constant,
i.e., [[y]]ϕ(ζ) = [[y]]ϕ(0). (iii) The invariant is always respected, i.e., ϕ(ζ) |= H.

5. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
6. ρ(α;β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for a state z}
7. ρ(α∗) =

⋃
n∈N ρ(αn) where αi+1 =̂ (α;αi) and α0 =̂ ?true.

Definition 2 (Interpretation of dL formulas). The interpretation |= of a
dL formula with respect to state ν is defined as follows.

1. ν |= θ1 ∼ θ2 iff [[θ1]]ν ∼ [[θ2]]ν for ∼ ∈ {=,≤, <,≥, >}
2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔
3. ν |= ∀xφ iff ω |= φ for all ω that agree with ν except for the value of x
4. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value of x
5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α)
6. ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α)

We write |= φ to denote that φ is valid, i. e., that ν |= φ for all ν.

3.2 Refinement Relations

In order to justify our refactorings we introduce two refinement notions based
on reachable states of hybrid programs.

Definition 3 (Projective Relational Refinement). Let V ⊆ Σ be a set of
variables. Let |V denote the projection of relations or states to the variables in
V . We say that hybrid program α refines hybrid program γ w.r.t. the variables
in V (written as α vV γ) iff ρ(α)|V ⊆ ρ(γ)|V . If α vV γ and γ vV α then we
speak of an observability equivalence α ≡V γ w.r.t. V between the systems.

This notion of refinement guarantees that safety properties referring only to
variables in V can be transferred from γ to α and liveness properties referring
to V can be transferred conversely from α to γ. Projective relational refinement
is monotonic w.r.t. hybrid program composition: if a hybrid program α refines
a hybrid program β, i. e., α vV β, then also α∗ vV β∗, (α ∪ γ) vV (β ∪ γ),
(α; γ) vV (β; γ), and (γ;α) vV (γ;β) hold (cf. [16, App. A]).

If we want to exploit knowledge about the system parameters and reachable
states when performing refinements we use a weaker notion of partial refinement.
This allows us to show correctness of refactorings w.r.t. the assumptions and
states that actually matter for a concrete original model (e. g., we may only care
about those states that satisfy an invariant property of the original model).
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Definition 4 (Partial Projective Relational Refinement). We say that
hybrid program α partially refines hybrid program γ w.r.t. the variables in V and
formula F (written as α vVF γ) iff (?F ;α) vV (?F ; γ). If α vVF γ and γ vVF α
we speak of a partial observability equivalence α ≡VF γ w.r.t. V and F .

Partial refinement still exhibits nice properties. Let FV(φ) denote the set of free
variables of formula φ.

Lemma 1. Let α and γ be two hybrid programs s.t. α vVF γ. Let |= G → F .
Assume |= G→ [γ]ψ for some formula ψ with FV(ψ) ⊆ V , then |= G→ [α]ψ.

Proof. Assume α vVF γ, |= G → F , |= G → [γ]ψ and 6|= G → [α]ψ for some
formula ψ with FV(ψ) ⊆ V . The semantics of the latter is that there is a state
ν with ν |= G such that there is (ν, ω) ∈ ρ(α) with ω 6|= ψ. Since we know that
G→ F is valid we also have that ν |= F . Therefore, if (ν, ω) ∈ ρ(α) it also holds
that (ν, ω) ∈ ρ(?F ;α). However, since α vVF γ and thus (?F ;α) vV (?F ; γ) we
have that there is some ω′ with (ν, ω′) ∈ ρ(?F ; γ) s.t. ω|V = ω′|V . Furthermore,
we have that (ν, ω′) ∈ ρ(γ). From |= G → [γ]ψ we can conclude that for all
(ν, ω′) we have that ω′ |= ψ. Since ω|V = ω′|V and FV(ψ) ⊆ V we have ω |= ψ
by coincidence lemma [18, Lemma 2.6]. Thus, we conclude |= G→ [α]ψ. ut

Lemma 2. Let α and γ be two hybrid programs s.t. α vVF γ. Let |= G → F .
Assume |= G→ 〈α〉ψ for some formula ψ with FV(ψ) ⊆ V , then |= G→ 〈γ〉ψ.

Proof. The proof is analog to that of Lemma 1 (cf. [16, App. A]). ut

We can derive two corollaries from these lemmas that cover the stronger prop-
erties of the total refinement relation (with α vV γ iff α vVtrue γ).

Corollary 1. Let α and γ be two hybrid programs s.t. α vV γ. If |= φ → [γ]ψ
for some formulas φ and ψ with FV(ψ) ⊆ V , then |= φ→ [α]ψ.

Corollary 2. Let α and γ be two hybrid programs s.t. α vV γ. If |= φ→ 〈α〉ψ
for some formulas φ and ψ with FV(ψ) ⊆ V , then |= φ→ 〈γ〉ψ.

Relational refinement w.r.t. V can be logically characterized within dL. Sub-
sequently, we use ΥV ≡

∧
v∈V v = ṽ to express a characterization of the V values

in a state, where we always assume the variables ṽ to occur solely in ΥV and
nowhere else in any formula. Hence the formula 〈α〉ΥV identifies the states reach-
able by hybrid program α w.r.t. the variables in V . The variables in ṽ can then
be used to recall this state; see [19] for details. In the following we use this notion
to compare states reachable by one program with those reachable by another.

Theorem 1. Let α and γ be hybrid programs. We have that α vV γ iff

|=
(
〈α〉ΥV

)
→ 〈γ〉ΥV (1)

Remark 1. Since the variables ṽ neither appear in α nor in γ we have that if
(ν, ω) ∈ (ρ(α) ∪ ρ(γ)) then [[ṽ]]ν = [[ṽ]]ω for all ṽ (cf. [18, Lemma 2.6]).
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Proof. Let ν be arbitrary.

⇒ Assume that α vV γ. Assume that ν |= 〈α〉ΥV since otherwise there is
nothing to show. This means that there is some state ω with (ν, ω) ∈ ρ(α)
s.t. ω |= ΥV . We fix any such ω arbitrarily. From α vV γ we know ρ(α)|V ⊆
ρ(γ)|V . Using this and (ν, ω) ∈ ρ(α) there is ω′ with (ν, ω′) ∈ ρ(γ) s.t. [[v]]ω =
[[v]]ω′ for all v ∈ V . Furthermore, [[ṽ]]ω = [[ṽ]]ω′ for all v ∈ V (Remark 1).
Thus we conclude ν |= 〈γ〉ΥV by coincidence lemma [18, Lemma 2.6] since
FV (〈γ〉ΥV ) ⊆ V ∪ {ṽ | v ∈ V }. Since ν was arbitrary we get (1) by the
semantics of →.

⇐ Assume (1). If ρ(α) = ∅ then the proposition follows trivially. Otherwise
consider any (ν, ω) ∈ ρ(α). Since no ṽ occurs in α, this implies (ν′, ω′) ∈ ρ(α)
for ν′|V = ν|V , ω′|V = ω|V and [[ṽ]]ν′ = [[ṽ]]ω′ = [[v]]ω′ . Thus, ω′ |= ΥV , so
ν′ |= 〈α〉ΥV . Therefore, (1) implies that there is ω′γ with (ν′, ω′γ) ∈ ρ(γ) s.t.

ω′γ |= ΥV . Hence [[v]]ω′
γ

= [[ṽ]]ω′
γ

Rem. 1
= [[ṽ]]ν′

Rem. 1
= [[ṽ]]ω′ = [[v]]ω′ f.a. v ∈ V

because ω′ |= ΥV . Thus ω′|V = ω′γ |V and since, further, (ν′, ω′γ) ∈ ρ(γ),
ν|V = ν′|V and ω|V = ω′|V it follows that (ν|V , ω|V ) ∈ ρ(γ)|V . Since both ν
and ω were arbitrary we get ρ(α)|V ⊆ ρ(γ)|V and conclude α vV γ. ut

In order to simplify refinement proofs we exploit prior knowledge about sys-
tem trajectories. Suppose we want to establish refinement between two programs
with loops, i. e., we want to show that α∗ vVF γ∗; further assume that we have
|= F → [γ∗]F . We can use this knowledge to simplify a refinement proof.

Lemma 3. For some set of variables V , let F be some formula with FV(F ) ⊆ V .
Under the assumption that |= F → [γ∗]F (in particular, F is an inductive
invariant of γ∗) the following two statements are equivalent:

α∗ vVF γ∗ (2) |=
(
〈?F ;α〉ΥV

)
→ 〈?F ; γ∗〉ΥV (3)

Observe that unlike in (1) we only need to argue about states reachable by
exactly one execution of α in order to make a statement about α∗.

Proof. (2)⇒ (3) If α∗ vVF γ∗ then we know from Theorem 1 that (1) holds.
Since ρ(α) ⊆ ρ(α∗) we can conclude that (3) holds.

(3)⇒ (2) Assume |= F → [γ∗]F . Consider any (ν, ω) ∈ ρ(?F ;α∗). To prove (2)
we need to show that there is some (νγ , ωγ) ∈ ρ(?F ; γ∗) with νγ |V = ν|V and
ωγ |V = ω|V . If ν = ω we are done, as ρ(?F ; γ∗) is reflexive from states where
F holds by repeating 0 times. Otherwise, ?F ;α∗ repeated at least once to
get from ν to ω. Let µ s.t. (ν, µ) ∈ ρ(?F ;α), (µ, ω) ∈ ρ(α∗). Let ν̃, µ̃ s.t.
ν̃|V = ν|V , µ̃|V = µ|V and [[ṽ]]ν̃ = [[ṽ]]µ̃ = [[v]]µ̃ f.a. v ∈ V , so µ̃ |= ΥV . The
variables ṽ do not appear in (?F ;α), so (ν̃, µ̃) ∈ ρ(?F ;α) still holds; thus,
ν̃ |= 〈?F ;α〉ΥV . Therefore, by (3) we have that ν̃ |= 〈?F ; γ∗〉ΥV . This means
there is (ν̃, µ̃γ) ∈ ρ(?F ; γ∗) with µ̃γ |= ΥV . Observe that [[ṽ]]µ̃γ = [[ṽ]]µ̃ since
neither α nor γ change ṽ for any v ∈ V . There are only runs of this program
if ν̃ |= F . Thus we conclude µ̃γ |= F from |= F → [γ∗]F . Furthermore, by
µ̃γ |= ΥV and µ̃ |= ΥV we get [[v]]µ̃γ = [[ṽ]]µ̃γ = [[ṽ]]µ̃ = [[v]]µ̃ f.a. v ∈ V .

Thus, µ̃ |= F by coincidence lemma [18, Lemma 2.6]. As µ̃|V = µ|V and
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FV (F ) ⊆ V we get µ |= F by coincidence lemma. As (ν, µ) was arbitrary
this gives |= F → [α]F and by soundness of induction |= F → [α∗]F . Hence
{ω | ν |= F and (ν, ω) ∈ ρ(α)} = {ω | ν |= F and (ν, ω) ∈ ρ(α) ◦ ρ(α∗)} .
However, this means by considering all (ν, µ) ∈ ρ(?F ;α) we have constructed
an argument for all elements of ρ(?F ;α∗). Hence we get α∗ vVF γ∗. ut

3.3 Refactorings and Proof Obligations

We distinguish between structural and behavioral refactorings. Structural refac-
torings change the structure of a hybrid program without changing its reachable
states. Structural refactorings ensure (partial) observability equivalence α ≡VF γ,
which means that both safety and liveness properties can be transferred. Be-
havioral refactorings change a hybrid program in a way that also changes its
behavior, i. e., the program reaches partly different states after the refactoring
than before. Thus, behavioral refactorings need auxiliary gluing proofs (but not
full reverification) to establish refinement relationships and transfer correctness
properties from the original system γ to the refactored system α.

For transferring correctness properties we define the following proof obliga-
tions. Some of these obligations can be shown on a meta-level for all refactored
α corresponding to γ; where this is impossible, the proofs have to be done for a
particular refactoring instance γ  α.

Observability equivalence proof. Observability equivalence (α ≡V γ) is necessary
to transfer safety and liveness properties referring to V at the same time. It
can be characterized in dL by |=

(
〈α〉ΥV

)
↔
(
〈γ〉ΥV

)
. In addition we can use

Lemma 3 in order to simplify reasoning for loops.

Safety relational refinement. Prove that all reachable states from the refactored
model α are already reachable in the original model γ, i. e., for safety relational
refinement use Theorem 1 to prove α vV γ. In addition Lemma 3 simplifies loops.

Auxiliary safety proof. Prove that a refactored model α satisfies some safety
properties under the assumption of an existing proof about the original model
γ. The auxiliary safety proof patches this proof w.r.t. the changes made by
the refactoring. Thus it is especially useful if neither observability equivalence
nor relational refinement can be shown. Let ∀γ quantify universally over all
variables that are changed in γ. The intuition is that, assuming |= ∀γ(φ→ [γ]φ)
(i. e., φ is an inductive invariant of γ), we can close the identical parts in the
proof from the assumption by axiom and only need to show correctness for
the remaining, new parts of the refactored model. For auxiliary safety use an
invariant of I(φ) ≡

(
φ ∧ ∀γ(φ→ [γ]φ)

)
for the refactored program α to prove(

F ∧ I(φ)
)
→ [α∗]ψ . (4)

Liveness relational refinement. To transfer liveness properties we have to prove
the converse of the safety-preserving relational refinement proof, i. e., prove that
all reachable states from the original model γ are also reachable in the refactored
model α (use Theorem 1 to prove that γ vV α).
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Safety and liveness compliance/equivalence proof. Prove that a refactored model
α satisfies the same property as its original model γ, i. e., for safety compli-
ance prove (φ→ [γ]ψ)→ (φ→ [α]ψ), for safety equivalence prove (φ→ [γ]ψ)↔
(φ→ [α]ψ). Liveness compliance/equivalence is analog to safety compliance/e-
quivalence with 〈γ〉 in place of [γ] and 〈α〉 in place of [α]. These are the generic
fallback proof strategies that are always possible.

4 Structural Refactorings

Structural refactorings are observability-equivalent refactorings: they change the
structure of a hybrid program without changing its reachable states. Structural
refactorings are akin to the refactorings known from software engineering [8].
Here we discuss refactorings that arise specifically in hybrid system models;
correctness proves can be found in [16, App. B].

We present refactorings as rewrite rules of the form F
γ α , meaning that pro-

gram γ can be refactored into program α if preconditions F and the side condi-
tions stated in footnotes are satisfied. We omit F and write γ  α if γ can be
refactored into α unconditionally. We use i ∈ I to denote the elements of some
finite index set I when enumerating hybrid programs.

4.1 Extract Common Program

α

β

γ

γ

extract (R1)

inline (R2)

α

β

γ
Duplicated (control) code is
hard to maintain, because changes
have to be made consistently
at several places [8]. The Ex-
tract Common Program refac-
toring moves duplicated program fragments to a common path in the model.
It can be used if the duplicated program parts are the last statements on a path.

Mechanics. Move the duplicated statements after the merging point of the paths.
(R1)

⋃
i∈I(αi; γ)  

(⋃
i∈I αi

)
; γ (R2)

(⋃
i∈I αi

)
; γ  

⋃
i∈I(αi; γ)

Proof Obligations. None, because the original program and the refactored pro-
gram are observability equivalent. Since set union distributes over relation com-
position, it is evident that ρ

(⋃
i∈I(αi; γ)

)
|V = ρ

((⋃
i∈I αi

)
; γ
)
|V . Thus, we can

conclude that
⋃
i∈I(αi; γ) ≡V

(⋃
i∈I αi

)
; γ.

Variation: Inline Program. Duplicate γ into each branch.

4.2 Extract Continuous Dynamics

Scattered continuous dynamics on multiple paths in a hybrid program make it
hard to introduce explicit computation delay into models of CPS [11], because
those would need to be duplicated in any of the respective paths as well. The
Extract Continuous Dynamics refactoring collects the continuous dynamics from
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multiple paths and introduces a unified differential equation after the merge
point of those paths. The continuous dynamics of those paths have to be the
final statements on their respective path. If the original paths encode deviating
control actions, new variables are introduced to maintain different control actions
on different paths.

Mechanics. Move the continuous dynamics after the merging point of the paths;
capture path differences in new variables and set their values accordingly.

α v′ = θ, w′ = ϑ1

β v′ = θ, w′ = ϑ2

extract (R3)

inline (R4)

α x := ϑ1

β x := ϑ2

v′ = θ,
w′ = x

(R3)
∀v ∈ V (θ) ∪

⋃
i∈I V (ϑi). v 6∈ BV (D(θ)) ∪

⋃
i∈I BV (D(ϑi))⋃

i∈I
(
αi; (v′ = θ, w′ = ϑi)

)
 

(⋃
i∈I(αi;x := ϑi)

)
; (v′ = θ, w′ = x)

) 1

(R4)
(⋃

i∈I(αi;x := ϑi)
)
; (v′ = θ, w′ = x)

)
 

⋃
i∈I
(
αi; (v′ = θ, w′ = ϑi)

)
1 with fresh variable x 6∈ V ; we denote by D(θ) a differential equation system con-
taining the term θ; we refer to the variables in θ, by V (θ); let BV (D(·)) denote the
variables changed by the ODE D(·).
Proof Obligations. None, because the original program and the refactored pro-
gram are observability equivalent, i. e.,(⋃

i∈I
(αi;x := ϑi)

)
; (v′ = θ, w′ = x)

)
≡V

⋃
i∈I

(
αi; (v′ = θ, w′ = ϑi)

)
.

Let D(θ) be a differential equation system (with or without evolution domain
constraint) containing the term θ. For some fresh variable x 6∈ V we have that
ρ(D(θ))|V = ρ(x := θ;D(x))|V under the condition that no variable that occurs
in θ has a derivative in D(θ). If we perform this operation on all branches,
we can use distributivity of sequential composition over choice (i. e., the Extract
Common Program refactoring) to move the common part into a single statement.

Variation: Inline Continuous Dynamics. Duplicate the continuous dynamics into
each path and push the path variable assignments into the continuous dynamics.

4.3 Drop Implied Evolution Domain Constraint

The Drop Implied Evolution Domain Constraint refactoring removes those con-
straints from the evolution domain that are already guaranteed by the discrete
controller. It reduces constraint duplication and is also useful as an intermediate
step in composite refactorings (see Section 6.2 for an example). The refactoring
can be used when the context specifies constraints that are at least as strong
as the evolution domain constraints (e. g., in the inductive invariant or in a test
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prior to the continuous dynamics), and both discrete control and continuous dy-
namics only change the relevant fragment of the context in a way that preserves
the evolution domain constraints.

Mechanics. Drop the implied constraints from the evolution domain.

?F
x′ = θ

& G ∧H

|= F → H θ preserves H

drop (R5)/(R7)

introduce (R6)/(R8) ?F
x′ = θ

& G

(R5)
F → H F → [x′ = θ&G]H

?F ;x′ = θ&G ∧H  ?F ;x′ = θ&G
(R6)

?F ;x′ = θ&G
 ?F ;x′ = θ&G ∧H

(R7)
?F ;x′ = θ&G ∧H

 ?F ;x′ = θ&G
(R8)

F → H F → [x′ = θ&G]H

?F ;x′ = θ&G  ?F ;x′ = θ&G ∧H

Liveness Proof Obligations (R7). None, because projective partial refinement,
i. e.,

(
?F ;x′ = θ&G ∧H

)
vVF

(
?F ;x′ = θ&G

)
holds.

Safety Proof Obligations (R5). We have to show that H is a differential invariant
[21] (which, with |= F → H, implies H can be dropped).

Variation: Introduce Evolution Domain Constraint. Safety properties transfer
directly (R6), because the refactored program is a partial refinement of the orig-
inal program, i. e.,

(
?F ;x′ = θ&G∧H

)
vVF

(
?F ;x′ = θ&G

)
holds. For liveness

(R8), prove that H is a differential invariant (which, with |= F → H, implies H
can be introduced).

5 Behavioral Refactorings

Behavioral refactorings change the states reachable by a hybrid system. This
means that the proofs for the original model and those for a refactored model
need auxiliary gluing proofs to transfer correctness properties. In most cases,
these auxiliary proofs can reuse significant parts of the original proof. Correctness
proofs that derive proof obligations can be found in [16, App. C].

5.1 Introduce Control Path

The initial models of a system are often simplified in order to reduce time-to-
market or manage verification complexity. These initial models are later refined
with more sophisticated control options (e. g., have multiple braking variants)
once the initial model is provably safe. The Introduce Control Path refactoring
introduces a new control path and adds it as a non-deterministic choice to the
existing paths. The new control path must preserve the original invariant.

Mechanics. Introduce a new path via nondeterministic choice to existing paths.
(R9) α;β  (α ∪ γ);β (R10) (α ∪ γ);β  α;β
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α β
introduce (R9)

remove (R10)

α

γ

β

Liveness Proof Obligations. None, because we get (α;β) vV
(
(α ∪ γ);β

)
from

the definition of the refinement relation.

Safety Proof Obligations. Use an auxiliary safety proof (4). An example of such
a proof is given in Section 6.1.

Variation: Remove Control Path. Again, we get (α;β) vV
(
(α ∪ γ);β

)
from the

definition of our refinement relation. Thus, safety properties can be transferred
from the original model (α ∪ γ);β to the refactored model α;β unconditionally.

5.2 Introduce Complementary Continuous Dynamics

Non-exhaustive evolution domain constraints are used to restrict differential
equations to realistic regions (e. g., model braking as negative acceleration inside
the region of positive velocities). But if misused, reasonable real-world behavior is
sometimes excluded from a model. Such a model can be proven correct, but only
because the evolution domain constraints limit unsafe behavior to stay within
the safe states. Introduce Complementary Continuous Dynamics introduces a
copy of the original differential equations with weak negation (i. e., negation re-
taining boundaries, denoted by ∼F ) of the original evolution domain constraints.
This way, an event is still reliably detected while the refactoring ensures that no
behavior is excluded from the model. It is then the responsibility of the discrete
controller to keep the system inside the safe region. The refactoring ensures that
instantaneous reactions in the event detection part of the evolution domain does
not clip reasonable behavior just for the sake of detecting an event.

Mechanics. Introduce a nondeterministic choice to a copy of the continuous
dynamics, which uses the weak negation of the event detection evolution domain
constraints of the original model. Merge after the continuous dynamics.

α x′ = θ & F complement (R11) α x′ = θ & F

x′ = θ & ∼F

(R11) α;x′ = θ&F  α; (x′ = θ&F ∪ x′ = θ&∼F )

Liveness Proof Obligations. None, because from the transition semantics of dL we
get ρ

(
α; (x′ = θ&F∪x′ = θ&∼F )

)
|V = ρ

(
(α;x′ = θ&F )∪(α;x′ = θ&∼F )

)
|V

since set union distributes over relation composition. With ρ(α;x′ = θ&F )|V ⊆
ρ
(
(α;x′ = θ&F ) ∪ (α;x′ = θ&∼F )

)
|V we conclude that

(
α;x′ = θ&F

)
vV(

α; (x′ = θ&F ∪ x′ = θ&∼F )
)

holds, i. e., the refactored model is a liveness
relational refinement of the original model.

Safety Proof Obligations. For safety, show that the controller with subsequent
complementary dynamics only reaches states that are already reachable with the
original dynamics, i. e., show

(
〈α;x′ = θ&∼F 〉ΥV

)
→
(
〈α;x′ = θ&F 〉ΥV

)
.
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5.3 Event- to Time-Triggered Architecture

Event-triggered architecture [10] is often easier to verify than time-triggered ar-
chitecture, because the burden of detecting critical events is not on the controller
but encoded as evolution domain constraint in the continuous dynamics. Hence,
reactions are assumed to work instantaneous, which, however, makes event-
triggered architecture hard if not impossible to implement. In a time-triggered
architecture, in contrast, the controller samples the environment at regular time
intervals. This introduces additional delay in event detection, which must be
accounted for in the safety constraints of the controller. The Event- to Time-
Triggered Architecture refactoring (suggested in [12]) turns a hybrid program
with event-triggered architecture into one using time-triggered architecture.

Mechanics. Introduce a clock variable (e. g., c) with constant slope and an upper
bound for the clock (e. g., ε) as evolution domain constraint. Reset the clock
to 0 before the continuous dynamics are executed. Move the original evolution
domain constraint as a test before the continuous dynamics. Strengthen the test
such that it can keep the system safe under the current control decision.

α γ ≡ (x′1 = θ1, . . . , x
′
n = θn & F ∧ ψ)

β
∗

event- to time-triggered (R12)

?
(
[α; c := 0; η]ψ

)
α

?
(
[β; c := 0; η]ψ

)
β

c := 0

η ≡ (x′1 = θ1, . . . , x
′
n = θn,

c′ = 1 & F ∧ c ≤ ε)

∗

(R12)
(⋃

i∈I αi
)

; (x′ = θ&F ∧ ψ) 
(⋃

i∈I(?[αi; c := 0; η]ψ;αi)
)

; c := 0; η 1

1 η ≡ x′1 = θ1, . . . , x
′
n = θn, c

′ = 1 &F ∧ c ≤ ε and fresh variables c, ε 6∈ V with ε > 0

Safety Proof Obligations. Show an auxiliary safety proof (4). Note, that in the
original model the evolution domain constraint ψ holds throughout γ. In the
refactored model, the tests ?

(
[α; c := 0; η]ψ

)
and ?

(
[β; c := 0; η]ψ

)
check that ψ

will hold for up to duration ε before α respectively β are executed. Therefore, ψ
holds throughout η, because η contains the evolution domain constraint c ≤ ε.

Observe that the test introduced in this refactoring uses a modality in order to
exactly characterize the states for which the specific control action ensures safety
during the next control cycle. This corresponds to model-predictive control [20].
Further refactorings can be used to replace this test by either an equivalent first-
order formula (usually for some cases even true) or if impossible (or impractical)
a stronger first-order formula. See for example [23] how to discover such formulas.

6 Safe Refactoring Examples with Refinement Reasoning

In this section we exemplify how to satisfy the proof obligations set forth by our
refactorings. We use a simple hybrid model of a car inspired by [14]. The car has
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ctrl

?Safe a :=Amax

?v = 0 a := 0

a :=−Bmax

t := 0

x′ = v, v′ = a, t′ = 1
& v ≥ 0 ∧ t ≤ ε

∗

introduce control path

ctrl

?x+ v2

Bmax
≤ S a :=−Bmax

2

t := 0

x′ = v, v′ = a, t′ = 1
& v ≥ 0 ∧ t ≤ ε∗

Fig. 7: Example of the effect of the Introduce Control Path refactoring.

three control choices: (i) it can accelerate with maximum acceleration a :=Amax

if it is safe to do so (indicated by safety property Safe), (ii) it can remain stopped
by a := 0 if it is already stopped (?v = 0), and (iii) it can unconditionally brake
with maximum braking force a := −Bmax. Its driving dynamics are modeled
using the ideal-world differential equation system x′ = v, v′ = a & v ≥ 0.

6.1 Introduce Control Path

Let us assume we proved φ → [car∗]ψ for some φ, ψ and we want the same
safety guarantees about a refactored model c̃ar with an additional control path
for moderate braking, i. e., we want to show that φ→ [c̃ar

∗
]ψ. Fig. 7 depicts the

original model and the refactored model as state transition systems.
To reduce the proof effort for the refactored model we exploit the systematic

way in which the Introduce Control Path refactoring changes the original model
to produce the refactored model: the refactoring introduces a new branch without
touching the remainder of the model. We can do an auxiliary safety proof that
leverages the fact that we have a safety proof about the original model in those
branches that are still present in the refactored model. As an inductive invariant
for c̃ar, we use I(φ) ≡ φ ∧ ∀x∀v (φ→ [car]φ), which is the original invariant
φ strengthened with the assumption that we have a proof about the original
model. We thus prove formula (4), i. e., I(φ)→ [c̃ar

∗
]ψ, see Sequent Proof 1.

6.2 Event- to Time-Triggered Architecture

The event- to time-triggered architecture refactoring is a composite refactoring
that radically shifts the control paradigm between the original and the refactored
model. Still, if some branches of the original model are retained in the refactored
model we can reduce the overall verification effort with an auxiliary safety proof.
Fig. 8 illustrates the refactoring operations.

First, inline program and drop implied evolution domain constraint transform
the original model into an intermediate form with branches for braking and re-
maining stopped being symbolically equivalent to those in the original model.
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Proof 1 Proof sketch of an auxiliary safety proof for Introduce Control Path. We
use the abbreviations A ≡?Safe; a :=Amax, C ≡?v = 0; a := 0, B ≡ a :=−Bmax,

Br ≡?x+ v2

Bmax
≤ S; a :=−Bmax

2 , and P ≡ x′ = v, v′ = a & v ≥ 0.

(∧r)
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆ (∧l)
Γ, φ, ψ ` ∆
Γ, φ ∧ ψ ` ∆ (∀l)

Γ, φ(θ) ` ∆
Γ,∀xφ(x) ` ∆

([] gen)
Γ ` [α]φ,∆ φ ` ψ

Γ ` [α]ψ,∆
(ax)

Γ, φ ` φ,∆ (Wl)
Γ ` ∆
Γ, φ ` ∆

([;])
[α][β]φ

[α;β]φ
([∪])

[α]φ ∧ [β]φ

[α ∪ β]φ
([∗])

Γ ` ψ,∆ ψ ` [α]ψ ψ ` φ
Γ ` [α∗]φ,∆

∗
axφ, [A ∪ C ∪ B][P ]φ ` [A ∪ C ∪ B][P ]φ

prove new branch
φ ` [Br][P ]φ

Wlφ, [A ∪ C ∪ B][P ]φ ` [Br][P ]φ
∧r φ, [A ∪ C ∪ B][P ]φ ` [A ∪ C ∪ B][P ]φ ∧ [Br][P ]φ
[;] φ, [(A ∪ C ∪ B); P ]φ ` [A ∪ C ∪ B][P ]φ ∧ [Br][P ]φ
∀l,∀l φ,∀x∀v (φ→ [(A ∪ C ∪ B); P ]φ) ` [A ∪ C ∪ B][P ]φ ∧ [Br][P ]φ
[;],[∪] φ,∀x∀v (φ→ [(A ∪ C ∪ B); P ]φ) ` [(A ∪ C ∪ B ∪ Br); P ]φ
expand φ, ∀x∀v (φ→ [car]φ) ` [c̃ar]φ

. . .
∗

axφ, ∀x∀v(φ→ [car]φ) ` φ ∧ ∀x∀v(φ→ [car]φ)
[] gen φ, ∀x∀v(φ→ [car]φ) ` [c̃ar](φ ∧ ∀x∀v(φ→ [car]φ))
∧l φ ∧ ∀x∀v(φ→ [car]φ) ` [c̃ar](φ ∧ ∀x∀v(φ→ [car]φ))

expand I(φ) ` [c̃ar]I(φ)

∗
axI(φ) ` I(φ) . . .

∗
φ ` ψ

∧l,Wl φ ∧ ∀x∀v (φ→ [car]φ) ` ψ
expand I(φ) ` ψ

[∗] I(φ) ` [c̃ar∗]ψ

Then, we introduce the time-triggered acceleration decision and use an auxiliary
safety proof to show that the changed acceleration branch ensures the inductive
invariant (the mechanics of this proof are similar to those in Sequent Proof 1).
Finally, differential auxiliary [21] introduces t with initial value t := 0 and dif-
ferential equation t′ = 1 into the braking and remaining stopped branches, and
extract common program transforms into the final refactored form.

7 Conclusion

We introduced proof-aware refactoring operations for hybrid systems. The no-
tion of projective relational refinement allows us to make strong correctness
statements about some refactorings on a meta-level for all hybrid programs.
Where this is impossible, our refactoring operations construct proof obligations
for showing that the resulting refactored model is a correct refinement of the
particular original model instance.
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?x+ v2

2Bmax
< S a :=Amax

?v = 0 a := 0

a :=−Bmax

x′ = v, v′ = a

& v ≥ 0 ∧ x+ v2

2Bmax
≤ S inline

A

C

B

Po

Po

Po

drop implied evolution domain constraint

A

C

B

Po

x′ = v, v′ = a & v ≥ 0

x′ = v, v′ = a & v ≥ 0

auxiliary
safety proof

?Safe a :=Amax t := 0
Pr ≡

(
x′ = v, v′ = a, t′ = 1

& v ≥ 0 ∧ t ≤ ε
)

C x′ = v, v′ = a & v ≥ 0

B x′ = v, v′ = a & v ≥ 0

differential auxiliary

?Safe a :=Amax t := 0 Pr

C t := 0 Pr

B t := 0 Pr

extract

?Safe a :=Amax

?v = 0 a := 0

a :=−Bmax

t := 0

x′ = v, v′ = a, t′ = 1
& v ≥ 0 ∧ t ≤ ε

Fig. 8: Intermediate steps in event- to time-triggered architecture refactoring.

We are in the process of implementing the refactoring operations in our
verification-driven engineering tool Sphinx [15]. Future work includes building
a catalog of structural and behavioral refactorings and the evaluation of its
refactoring operations with case studies in hybrid system verification. We plan
to further extend the constructed proof obligations, for example with auxiliary
liveness proofs to patch existing liveness proofs when liveness relational refine-
ment cannot be shown. Another interesting direction for research is to develop
additional refinement notions based on hybrid games [24] for transferring liveness
properties about models with sensor uncertainty and actuator disturbance.
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