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"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing



This Talk

Ensure the safety of Autonomous Cyber-Physical Systems.

Best of both worlds: learning together with CPS safety

 Flexibility of learning

« Guarantees of CPS formal methods

Diametrically opposed: flexibility+adaptability versus predictability+simplicity

1. Cyber-Physical Systems with Differential Dynamic Logic
2. Sandboxed reinforcement learning is provably safe
3. Model-update learning addresses uncertainty with multiple models



Alrborne Collision Avoidance System ACAS X

Developed by FAA to replace current TCAS in aircraft

e Approximately optimizes MDP on a grid
e Advisory from lookup tables with 5D interpolation regions
|dentified safe region per advisory and proved in KeYmaera X
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Benefits:

e Strong safety guarantees
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Benefits:

e No need for complete model
e Optimal (effective) policies

Drawbacks:

e No strong safety guarantees
e Proofs are obtained and

checked by hand
e Formal proofs = decades-long

proof development
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Model-Based Verification Reinforcement Learning
= A
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e Goal: Provably correct reinforcement learning
| 1. Learn Safety

: 2. Learn a Safe Policy

3. Justify claims of safety

e Control policies are typically
non-deterministic; answers

“‘what is safe”, not “what is
useful”

e Assumes accurate model



Part |: Differential
Dynamic Logic

Trustworthy Proofs for Hybrid Systems
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Hybrid Programs

If P is true: no change

P

If P is false: terminate

aub

X'=f(X)
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Own Car Stopped Car

(—\ssuming we only accelerate when it’s safe to do so, is this property true?

{1

](pos <= stoppedCarPos)

accel|U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*
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if we also assume the system is safe initially:

safeDistance(pos,vel,stoppedCarPos,B) -

[
{ {accel U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)
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safeDistance(pos,vel,stoppedCarPos,B)

safeDistance(pos,vel,stoppdila

{ {accel U brake}; t:=0; al,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)



The Fundamental Question

Proofs give strong mathematical evidence of safety.

Why would our program not work if we have a proof?
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Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X

2. Was the model accurate enough? Safe RL
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Part II: Justified
Speculative Control

Safe reinforcement learning in partially
modeled environments

AAAI 2018
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Model-Based Verification

Accurate, analyzable models often exist!

{
ﬁ?safeAccel accel U brake U }5
{pos’ = vel, vel’ = accf\““--~§‘\»

1+ Contlnuous discrete, non-deterministic

motion control
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Accurate, analyzable models often exist!

init - [{
{ ?safeAccel;accel U brake U
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}*]pos < stopSign
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Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

{ ?safeAccel jE afeTurn; turn};

{pos’ = vel,

}*]pos < stopSign
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Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

e Computer-checked proofs
of safety specification

e Formal proofs mapping
model to runtime monitors
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Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

How to implement?

{ N

{ ?safeAccel;accel |U|brake |U

{dx’=w*y, dy’=-w*x, ...}
}*l Y )

Only accurate sometimes

s
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Safe RL Contribution

Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve nondeterminism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur
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Learning to Resolve Non-determinism
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Learning to Safely Reso\ve Non-determinism

Safety Monitor

Observe & compute
reward

Useful to stay safe during learning

Y
N—— A
(safe?)
Policy
N~

Crucial after deployment



Learning to Safely Resolve Non-determinism
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Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy




Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy via the model monitor.




What about the physical model?
AR

{pos’=vel,vel’=acc} #

Observe & compute
reward

brake
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compute
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compute
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Speculation is Justified
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Leveraging Verification Results to Learn Better

{brake, accel, turn}

Observe &
compute
reward

10

g | Use a real-valued

| version of the

. '/ /1] | model monitor as a
~7//)/]/) | reward signal



Safe RL: How?
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runtime.

[1 Convert monitors into
reward signals




Detecting unmocdeled State Space

The ModelPlex algorithm, implemented using
Bellerophon, generates verified runtime monitors.
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Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (3t. model after(t) == newPos):
# No model deviation.
else:
# Model deviation..?
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Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (QE(It. model after(t) == newPos)):
# No model deviation.
else:
# Model deviation..?



Safe RL: How?
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An Example
INit — [{
{?safeAccel;accel U brake U ?safeMaint; maintVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe
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An Example Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(Toost >= 0 A @post = ACC A Vpost = aCCel thost + VA Ppost = ACC tpost?/2 + V oot + P) V

(tpost >=0 A dpost = 0A Vpost = V /N Ppost = Vlpost + p) Vv Etc.



An Example Monitor }3

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(Toost >= 0 A @post = ACC A Vpost = aCCel thost + VA Ppost = ACC tpost?/2 + V oot + P) V

(tpost >=0A dpost = 0A Vpost =V /1 Ppost = thost + P) Vv Etc.

Quantitative monitor as reward signal
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Learning to Safely Resolve Non-determinism
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Le@mmg to Safely Handle Multiple Models
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Le@mmg to Safely Handle Multiple Models
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Learning to Safely Handle Multiple Models
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Learning to Safely Handle Multiple Models
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Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct?
2. Was the model accurate enough?
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Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
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Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X

2. Was the model accurate enough? Justified Speculation
3. With multiple possible models? p-learning

4. When off-model? Verification-preserving model update
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