Safe Al for (PS

André Platzer
Carnegie Mellon University
Joint work with Nathan Fulton

Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

Safety-Critical Systems

Software Size (million Lines of Code)

Modern High-end Car

Facebook

Windows Vista

Large Hadron Collider
Boeing 787

Android

Google Chrome
Linux Kernel 2.6.0
Mars Curiosity Rover
Hubble Space Telescope
F-22 Raptor

Space Shuttle

0 10 20 30 40 50 60 70 80 90 100

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

This Talk

Ensure the safety of Autonomous Cyber-Physical Systems.

Best of both worlds: learning together with CPS safety

 Flexibility of learning

« Guarantees of CPS formal methods

Diametrically opposed: flexibility+adaptability versus predictability+simplicity

1. Cyber-Physical Systems with Differential Dynamic Logic
2. Sandboxed reinforcement learning is provably safe
3. Model-update learning addresses uncertainty with multiple models

Alrborne Collision Avoidance System ACAS X

Developed by FAA to replace current TCAS in aircraft

e Approximately optimizes MDP on a grid
e Advisory from lookup tables with 5D interpolation regions
|dentified safe region per advisory and proved in KeYmaera X

0 2000 4000 6000 8000 r(t)

STTT17

Companson ACAS X issues DNC

No change
trajectory

ownship
path

~_Wwitheut DNCFntruder path

ownship

; , path

20 15 10 5 0 5 10 15 20
time to crossing (s)

But CL1500 or no change

would not lead to a collision

Reinforcement Learning

Model-Based Verification ~ Reinforcement Learning

pos < stopSign

Model-Based Verification ~ Reinforcement Learning

pos < stopSign a

Model-Based Verification ~ Reinforcement Learning

pos < stopSign c

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification ~ Reinforcement Learning

eia

pos < stopSign

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification ~ Reinforcement Learning
I
¢

Benefits:

e Strong safety guarantees
e Automated analysis

Model-Based Verification
I
¢

Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

Reinforcement Learning

Model-Based Verification
I
¢

Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic; answers

“what is safe”, not “what is
useful”

e Assumes accurate model

Reinforcement Learning

Reinforcement Learning
E y Act
- :

——l

o
Benefits: ()—G0)

® Observe

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.

7
¢
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.

Reinforcement Learning

2 Act

—_—
H—
©—©

Observe

®©

Benefits:

e No need for complete model
e Optimal (effective) policies

I
()

Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.

Reinforcement Learning

Q Act

—
—
© ©

Observe
Benefits:

e No need for complete model
e Optimal (effective) policies

Drawbacks:

e No strong safety guarantees
e Proofs are obtained and

checked by hand
e Formal proofs = decades-long

proof development

Model-Based Verification Reinforcement Learning
= A

a__J

e Control policies are typically
non-deterministic; answers

“‘what is safe”, not “what is
useful”

e Assumes accurate model

Model-Based Verification Reinforcement Learning
= A

a__J

e Goal: Provably correct reinforcement learning
| 1. Learn Safety

: 2. Learn a Safe Policy

3. Justify claims of safety

e Control policies are typically
non-deterministic; answers

“‘what is safe”, not “what is
useful”

e Assumes accurate model

Part |: Differential
Dynamic Logic

Trustworthy Proofs for Hybrid Systems

Hybrid Programs

BB

Hybrid Programs
X =1 ._,. a‘b ﬁ .’ bh

Hybrid Programs _
Sl 3 R ——

If P is true: no change

P

If P is false: terminate

Hybrid Programs

If P is true: no change

P

If P is false: terminate

Hybrid Programs

If P is true: no change

P

If P is false: terminate

Hybrid Programs

If P is true: no change

P

If P is false: terminate

aub

X'=f(X)

Approaching a Stopped (ar

N »
—© O—0©
Own Car Stopped Car

Is this property true?

[
{ {accel U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)

Approaching a Stopped (ar

N »
—© O—0©
Own Car Stopped Car

(—\ssuming we only accelerate when it’s safe to do so, is this property true?

{1

](pos <= stoppedCarPos)

accel|U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

Approaching a Stopped (ar

n Car t r
Own Ca safeDistance(pos,vel,stoppedCarPos,B) Stopped Ca

if we also assume the system is safe initially:

safeDistance(pos,vel,stoppedCarPos,B) -

[
{ {accel U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)

Approaching a Stopped (ar

N D
—© O—©
Own Car Stopped Car

safeDistance(pos,vel,stoppedCarPos,B)

safeDistance(pos,vel,stoppdila

{ {accel U brake}; t:=0; al,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)

The Fundamental Question

Proofs give strong mathematical evidence of safety.

Why would our program not work if we have a proof?

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct?

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct?
2. Was the model accurate enough?

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough?

000000

75000

OOOOO

00000

Soundness-Critical LOCs

dl Tactic: DI Axiom:
[({x'=f&Q}|P—~([?Q]P«—(Q—[{x'=f&Q}]P"))

Example:
[v'=r,v?-g,t’'=1]v 2 v, - gt

Side derivation: -
[v/:=r,v2-g] [t':=1]v’' 2 -g*t' o

(v 2 vy - 2ig >

gty " o r,vi-g 2 -g o
HﬁrpZO

P

[ODE & Controls Tooling]

¥
Clever Bellerophon
Programs

\

: |
(-)
‘ Axfioms\ulm»

N\ J

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X

2. Was the model accurate enough? Safe RL

000000

75000

OOOOO

00000

Soundness-Critical LOCs

dl Tactic: DI Axiom:
[({x'=f&Q}|P—~([?Q]P«—(Q—[{x'=f&Q}]P"))

Example:
[v'=r,v?-g,t’'=1]v 2 v, - gt

Side derivation: -
[v/:=r,v2-g] [t':=1]v’' 2 -g*t' o

(v 2 vy - 2ig >

gty " o r,vi-g 2 -g o
HﬁrpZO

P

[ODE & Controls Tooling]

¥
Clever Bellerophon
Programs

\

: |
(-)
‘ Ax?ms\ulm»

N\ J

Part II: Justified
Speculative Control

Safe reinforcement learning in partially
modeled environments

AAAI 2018

Model-Based Verification

Accurate, analyzable models often exist!

{?safeAccel;accel U brake U

{pos’ = vel, vel’ = acc}

}*

s

Model-Based Verification

Accurate, analyzable models often exist!

{7safeAcce1 accel U brake U

{pos = vel, vel’ = accf‘\“‘--~\§‘»

discrete control

}* Conhnuous
motion

Model-Based Verification

Accurate, analyzable models often exist!

{
ﬁ?safeAccel accel U brake U }5
{pos’ = vel, vel’ = accf\““--~§‘\»

1+ Contlnuous discrete, non-deterministic

motion control

Model-Based Verification

Accurate, analyzable models often exist!

init - [{
{ ?safeAccel;accel U brake U
{pos’ = vel, vel’ = acc}

}*]pos < stopSign

s

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

{ ?safeAccel jE afeTurn; turn};

{pos’ = vel,

}*]pos < stopSign

Model-Based Verification

Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

e Computer-checked proofs
— of safety specification.

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

e Computer-checked proofs
of safety specification

e Formal proofs mapping
model to runtime monitors

Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

How to implement?

{ N

{ ?safeAccel;accel |U|brake |U

{pos’ = vel, vel’ = acc}

} '

Only accurate sometimes

s

Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

How to implement?

{ N

{ ?safeAccel;accel |U|brake |U

{dx’=w*y, dy’=-w*x, ...}
}*l Y)

Only accurate sometimes

s

Safe RL Contribution

Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve nondeterminism without
sacrificing formal safety results

Safe RL Contribution

Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve nondeterminism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur

Learning to Resolve Non-determinism

Act

@.Jj}
© L/

Observe &
compute
reward

Learning to Resolve Non-determinism

accel U brakel:Jturn

%))

O}
O‘ L/

Observe &
compute
reward

Learning to Resolve Non-determinism

{accel,brake,turn}

%)

O}
O‘ L/

Observe &
compute
reward

Learning to Resolve Non-determinism

)

O}
O" L/

{accel,brake,turn}

\

Observe &
compute
reward

(o [

\

olicy

Learning to Resolve Non-determinism

~ N
3 {accel,brake,turn} (_)
n = (safe?)
@ Policy
©0—@© - —
Observe &
compute

reward

Learning to Safely Reso\ve Non-determinism

Safety Monitor

Observe & compute
reward

Useful to stay safe during learning

Y
N—— A
(safe?)
Policy
N~

Crucial after deployment

Learning to Safely Resolve Non-determinism

fT//*/

Safety Monltor

AN
N——_ 7

(safe?)

\ Policy
!o N— S

Observe & compute
reward

D,}}

Learning to Safely Resolve Non-determinism

rr//~/

~ TN
Q N——_ __
~
a (safe?)
“Illii’ Policy
) 0 N— ~

Observe & compute
reward

Use a theorem prover to extract:

(init->[{{accelUbrake};0ODEs}*](safe)) P

Learning to Safely Resolve Non-determinism

rr//~/

~ TN
3 S
= \
Policy
!0 @ N— -
Observe & compute
reward
Use a theorem prover to extract:
(init-[{{accelubrake};0ODEs}*](safe)) P

Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy

Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy via the model monitor.

What about the physical model?
AR

{pos’=vel,vel’=acc} #

Observe & compute
reward

brake

What About the Physical Model?

brak |, turn
S {brake, acce u:} |

a

Observe & 7|
compute
reward i

What About the Physical Model?

brake, , turn
s {brake, acce u:} |

a

Observe & 7|
compute
reward i

What About the Physical Model?

»
»

{brake, accel, turn}

Observe &
compute

reward

What About the Physical Model?

10

brak l, t
$ {brake, acce ur:n}

Observe &
compute
reward

Model is
inaccurate

What About the Physical Model?

10

brake, accel, turn Wi e NN
\
a

Model is
inaccurate

Observe &
compute N\
reward ol

Obstacle!

What About the Physical Model?

10

{brake, accel, turn}

Observe &
compute
reward

i i

.) - . W N \

/ Expected

| _~ Reality

Speculation is Justified

10

{brake, accel, turn}

Observe &
compute

— N - Y

T T
N N ~ .
v a “u,
v - _ . 4
- - Y Y
. © - w N 4
-] i
- - - . SR N
" - O NN]
’ - - Lo -
Y A e - N Y AR |
A A A Ay A n \ N -
[A B A ""' P . A, L
A s YRR]
4 e \
(t 14 4i4070 A .
[| [B L)
4 = \ 7 L]
! Ll 7k
| 1 t QAR IN t] o ea I y
bl IR i/ f [g
LT v b ot oL L B R
IR \ e, v A .
N/ /], cras
. A Y | a n
he ol PR
P A 4
L N .~ - XL
- - ») / 4
» - - -~ » e,
- b L - - - - ¥ -
- > # ®
A *, 3 - E - /) -
-)
= p 2
-
- - - - A

reward NN,

Expected

Leveraging Verification Results to Learn Better

{brake, accel, turn}

Observe &
compute
reward

10

g | Use a real-valued

| version of the

. '/ /1] | model monitor as a
~7//)/]/) | reward signal

Safe RL: How?

T
. i P . . - 4
. Ay A _— — < NN
. - ~ e T —— T,
VARV A s S T
P N \

1 Detect VS
unmodeled state
space correctly at
runtime.

[1 Convert monitors into
reward signals

Detecting unmocdeled State Space

The ModelPlex algorithm, implemented using
Bellerophon, generates verified runtime monitors.

e SRl

AXIOM BAS
‘I KeYmaera X Core

o

~
J

Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (3t. model after(t) == newPos):
No model deviation.
else:
Model deviation..?

Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (3t. model_after(t) == newPos):
No model deviation.
else:
Model deviation..?

Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (QE(It. model after(t) == newPos)):
No model deviation.
else:
Model deviation..?

Safe RL: How?

. | .) = . -
N S e — - NN
a I [] - rd _A-".' -l T - ."\ ",
y r . »_,--"' - . e ‘ W, % -
P A - o —) N
d s - — — i S SN o
;g L A — - " \ %

Runtime monitoring
separates
from unmodeled state

space.
[1 Convert monitors into

reward signals

Safe RL: How?

D eta i | S . p __ e - - P — . S) “u
° - P P e O e - T . " S
oA A —_ e\ .
P . - 5
AJ‘ ad - < ' w - % 5

Runtime monitoring
separates
from unmodeled state
space.

[1 Convert monitors into

reward signals:
(R"—B) — (R"—R)!?

An Example
INit — [{
{?safeAccel;accel U brake U ?safeMaint; maintVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

An Example Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(Toost >= 0 A @post = ACC A Vpost = ACC thost + VA Ppost = aCC tpost?/2 + V tpost + P) V

(tpost >=0 A dpost = OA Vpost = V A Ppost = Vipost + p) Vv Etc.

An Example Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(Toost >= 0 A @post = aCCel A Vpost = @CC tpost + V A Ppost = ACC thost?/2 + V Lpost + P) V

(toost >= 0 A @post = 0 A Vpost =V A Ppost = Vipost +) V ELC.

An Example Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(Toost >= 0 A @post = ACC A Vpost = aCCel thost + VA Ppost = ACC tpost?/2 + V oot + P) V

(tpost >=0 A dpost = 0A Vpost = V /N Ppost = Vlpost + p) Vv Etc.

An Example Monitor }3

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(Toost >= 0 A @post = ACC A Vpost = aCCel thost + VA Ppost = ACC tpost?/2 + V oot + P) V

(tpost >=0A dpost = 0A Vpost =V /1 Ppost = thost + P) Vv Etc.

Quantitative monitor as reward signal

Safe RL: How?

. B # - - =~ h 1
D I | . - — T B W
/ ” P — \ -
L] v -~ P e e .- “u “
/ r o T - . e T W, % b
d p - = — .v \
o p - - . 5 \
/ & P - _ py -~ .
A P — - - \ L

Runtime monitoring

separates
from unmodeled state

space.
Convert monitors into

gradients:

(R"—B) — (R"—R)

Safe RL: How?

. L ; . . " . 4
y ” - - _ -~ -
D I | : P - r". - e - R b
. ’ y r - — i ——— . . “u, N .
. . S Ty SN
Ay A - - —_— NN
i s e
: 'l ~ -~ - e .
A A A — w X \

Runtime monitoring
separates

from unmodeled state
space.

Convert models into
gradients: Model|Plex
(R"—B) — (R"—R)

Learning to Safely Resolve Non-determinism

rr//~/

~ TN
3 S
= \
Policy
!0 @ N— -
Observe & compute
reward
Use a theorem prover to extract:
(init-[{{accelubrake};0ODEs}*](safe)) P

Le@mmg to Safely Handle Multiple Models

@‘n
©0—0©)

AN

~ N~
“iiii~ Policy

5 QY — ~

Observe & compute
reward

l)}}

(0
©0—@

(init->[{ctrli;0DE1}*](safe)) Pi

Legrning to Safely Handle Multiple Models
i " % S
O ~ o) \ /
=
Policy

N

@»
| LY
© o)
Observe & compute
reward —~—
\ YCTT/F]
/{ ik

O (inito[{ctrli;0DEi}*](safe)) oi

l)}}

Le@mmg to Safely Handle Multiple Models

YCRIF Monitor Conjunction
W\ (p1 of all plausible models
A (/

| /oy \
N A

YCTIE]

S P2
‘llII'i;l ” ﬂﬁmﬁ?
“iii,~ Policy
b o ~

l)}}

Observe & compute
reward —~—
VCIIF
A
|
© ©

(init->[{ctrli;0DE1}*](safe)) Pi

Le@mmg to Safely Handle Multiple Models

YCRIF Differentiating
\ (p1 Experiment
\) /

W7y \
N A

- P2
‘llII'i;m ED IEEE?
“iii,~ Policy
©—0@ - —

l)}}

Observe & compute
reward —~—
vCTTIF]
A
|
© ©

(init->[{ctrli;0DE1}*](safe)) Pi

Learning to Safely Handle Multiple Models

Differentiating

Experiment
~ TN
3 02 N A
AN =
“iii'~ Policy
O—0© - —

3 Observe & compute
a reward —~—
)
A
|
© ©

(init->[{ctrli;0DE1}*](safe)) Pi

Learning to Safely Handle Multiple Models

Differentiating
Experiment

N
~

Policy
N— __~

-
@«

Observe & compute
reward —~——
VCIIF
A

O (inito[{ctrli;0DEi}*](safe)) oi

l)}}

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct?
2. Was the model accurate enough?

N .

s
Co* o0

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough?

Soundness- Critical LOCs dl Tactic: DI Axiom: _
[{x'=f&Q}P—([?QIP—(Q—[{x'=f&Q}]P")) [ODE & Controls Tooling]
Example: v
[v'=rpvi-g,t’=1]v 2 vo - gt Clever Bellerophon
L Programs

100000

75000

Side derivation:

oy ot

gt)’ «

50000
v >v [v/ i=r,v?-g] [t/ :=1]v’ > -g*t’ ; /
R rpvi-g 2 -g
25000 P (\
Horp20
... . ed
S N S S NS SRS Axioms q
2 £ Q> <) S \9‘7’ & Ny
& & ©) L © &£ N)
& R \\12\) \?\0
& & . J

H=r,20 & r,20
&g>0&...

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation

=== 7 . from here
{1 (e “u(Ny

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X

2. Was the model accurate enough? Justified Speculation
3. With multiple possible models? p-learning

4. When off-model? Verification-preserving model update

Acknowledgments

Students and postdocs of the Logical Systems Lab at Carnegie Mellon
Brandon Bohrer, Nathan Fulton, Sarah Loos, Joao Martins, Yong Kiam Tan
Khalil Ghorbal, Jean-Baptiste Jeannin, Stefan Mitsch

A. Platzer. Logical Foundations of Cyber-Physical Systems. Springer 2018]

| Part: Elementary Cyber-Physical Systems

Differential Equations & Domains s,é* e
Choice & Control \;TCT (/fl/ =

Safety & Contracts A VI | ¥ '
Dynamical Systems & Dynamic Axioms André PIatzér @3 i\:

Truth & Proof
Control Loops & Invariants
Events & Responses

©® NOoO O~ wbhH

Reactions & Delays

Part: Differential Equations Analysis Foundation.s Of
Differential Equations & Differential Invariants Cyber_PhyS|ca|

Differential Equations & Proofs
. Ghosts & Differential Ghosts
Differential Invariants & Proof Theory

e
O O =

Systems

-_—
=M

Part: Adversarial Cyber-Physical Systems
13-16. Hybrid Systems & Hybrid Games
IV Part: Comprehensive CPS Correctness) Springer

