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Assumptions and Requirements

Requirements
* Safety: At all times, the aircraft must be separated by
distance greater than p.
* Aircraft trajectories must always be flyable.

° An arbitrary number of aircraft may enter the maneuver
at any time.

Assumptions
* Ajrcraft maintain constant Velocity.
* Sensors are accurate and have no delay.

* Collision avoidance maneuvers are executed on the 2D plane.
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Hybrid Dynamics
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Big Disc Control

o

_eaves maneuverability to pilot discretion.
Requires large buffer disc.

disc before completing avoidance maneuver.

Requires aircraft to return to the center of the
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Big Disc Control

BigDisc = (Control UPlant)"
Control = k := *4; (CAUNotCA)
CA = 2ca(k) =1);, (Steer UExit)
NotCA = ?(ca(k) = 0); (Steer UFlip U Enter)
Steer = w(k) = *R; 2(—Qk) < w(k) < Qk))
Exit = 2(disc(k) = x(k)); ca(k) =0
Enter = w(k) := side(k) - Q(k); ca(k) =1
Flip = side(k) := —side(k)

Plant = Vi: A (x(i)’ =v(i) - d(i), d(i) = w(@)-d()",

disc(i)’ = (1 - ca(i)) - v(i) - d(i) & EvDom)
EvDom = Vj: A
(G # i A (ca(®) = 0V ca(j) = 0)) — Sep(, j)
A ||disc(i) — (x(i) + minr(i) - side(i) - d(i)")||
< minr(i))
K Sep(i, j) = ||disc(i) — disc(j)|| = 2minr(i) + 2minr(j) + p /
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Big Disc Control

Plant = Vi (x(i) =v(@) -d@i), d@i@) = (i) - d(i)
V4 Vevrﬁed in KeYmaeraD
EvDom = Vj:

((j # iA(ca(i) =0V ca(j) = 0)) — Sep(, j)
A ||disc(@) — (x(@) + minr(i) - side(i) - d(i)*)||
< minr(i))

\ Sep(i, j) = ||disc(i) — disc(j)|| = 2minr(i) + 2minr(j) + p /
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Small Discs Control

e Deterministic control makes it well suited for UAVS.

e Smaller discs allow aircraft to fly closer together.
 Aircraft may exit maneuver as soon as it is safe to

L do so. am
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Small Discs Control

SmallDiscs = (Control UPlant)*
Control = k :=*,; (CAUNotCA)
CA = ?(ca(k) =1); (Exit U Skip)

NotCA = ?(ca(k) = 0); (Steer UFlip UEnter) °

Skip = true
Steer = w(k) = *g; N(—Q(k) < wk) < Q(k))
Exit = cak) =0
Enter = (w(k) := side(k) - Q(k)); cak) =1
Flip= 2V¥j: A (j # k = FlipSep(j,k)));
side(k) := —side(k)
FlipSep(i, j) = ||(x(i) + minr(i) - side(i) - d(i)*)
— (x(j) — minr(j) - side(j) - d()V)||
> minr(i) + minr(j) + p
Plant = Vi: A (x(i)' =v(i) - d(i), d(i)’ = w()d(i)*
&VYj:A((j#iA(ca) =0V ca(j) =0))
— Sep(i, j)))
Sep(i, j) = ||(x(i) + minr(i) - side(i) - d(i)*)
— (x(j) + minr(j) - side(j) - d(j)")ll
> minr(i) + minr(j) + p

X

x().
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Small Discs Control

SmallDiscs = (Control U Plant)”
Control = k := *,; (CAU NotCA)
CA = ca(k) =1); (Exit U Skip)
NotCA = ?(ca(k) =0); (Steer U Flip U Enter) !
Skip = true
Steer = w(k) = *g; N(—Qk) < wk) < Q(k))
Exit = ca(k) =0
Enter = (w(k) = side(k) - (k)); ca(k) =1
Flip= 2Vj:A(j+# k — FlipSep(j,k)));
side(k) := —side(k)
FlipSep(, j) = |[(x(}) + minr(i) - side(i) - d(i)*)

v Verified'in KeYmaeraD

Plant = Vi: A (x(i)' = v(@) - d(i), d(i) = w(D)d(@)*
&Vj:A(j#iA(ca) =0V ca(j) =0))
— Sep(, j)))
Sep(i, j) = ||(x(i) + minr(i) - side(i) - d(i)™)
— (x(j) + minr(j) - side(j) - d())
> minr(i) + minr(j) + p /




Challenges

¢ Infinite, continuous, and

evolving state space, R
* Continuous dynamics
® Discrete control decisions
® Distributed dynamics

° Arbitrary number of

aircraft

® Emergent behaviors

/ ) N

Solutions

® Quantifiers for distributed
dynamics

* Compositionality — using small
problems to solve the big ones

* Hierarchical and modular proofs

® Non-linear ﬂight paths allow

flyable maneuvers

Qx(l)-




