# Formal Verification of Distributed Aircraft Controllers Sarah M. Loos, David Renshaw, and André Platzer Computer Science Department Carnegie Mellon University April 10, 2013 Sensor limits on aircraft are local. Sometimes a maneuver may look safe locally... Sensor limits on aircraft are local. Sometimes a maneuver may look safe locally... Sensor limits on aircraft are local. Sometimes a maneuver may look safe locally... Sensor limits on aircraft are local. Sometimes a maneuver may look safe locally... Sensor limits on aircraft are local. Sometimes a maneuver may look safe locally... Sensor limits on aircraft are local. Sometimes a maneuver may look safe locally... #### Assumptions and Requirements #### Requirements - **Safety**: At all times, the aircraft must be separated by distance greater than *p*. - Aircraft trajectories must always be flyable. - An **arbitrary number** of aircraft may enter the maneuver at any time. #### **Assumptions** - Aircraft maintain constant velocity. - Sensors are accurate and have no delay. - Collision avoidance maneuvers are executed on the 2D plane. # **Hybrid Dynamics** Aircraft are controlled by steering, through discrete changes in angular velocity $\omega$ . #### Big Disc Control - Leaves maneuverability to pilot discretion. - Requires large buffer disc. - Requires aircraft to return to the center of the disc before completing avoidance maneuver. ### Big Disc Control ``` BigDisc \equiv (Control \cup Plant)^* Control \equiv k := *_{\mathbb{A}}; (CA \cup NotCA) CA \equiv ?(ca(k) = 1); (Steer \cup Exit) NotCA \equiv ?(ca(k) = 0); (Steer \cup Flip \cup Enter) Steer \equiv \omega(k) := *_{\mathbb{R}}; ?(-\Omega(k) \le \omega(k) \le \Omega(k)) Exit \equiv ?(disc(k) = x(k)); ca(k) := 0 Enter \equiv \omega(k) := side(k) \cdot \Omega(k); ca(k) := 1 Flip \equiv side(k) := -side(k) Plant \equiv \forall i : \mathbb{A}\left(x(i)' = v(i) \cdot d(i), d(i)' = \omega(i) \cdot d(i)^{\perp},\right) disc(i)' = (1 - ca(i)) \cdot v(i) \cdot d(i) \& EvDom EvDom \equiv \forall j : A ((j \neq i \land (ca(i) = 0 \lor ca(j) = 0)) \rightarrow Sep(i, j) \wedge \|disc(i) - (x(i) + minr(i) \cdot side(i) \cdot d(i)^{\perp})\| \leq minr(i) Sep(i, j) \equiv ||disc(i) - disc(j)|| \ge 2minr(i) + 2minr(j) + p ``` ### Big Disc Control ``` BigDisc \equiv (Control \cup Plant)* Control \equiv k := *_{\mathbb{A}}; (CA \cup NotCA) CA \equiv ?(ca(k) = 1); (Steer \cup Exit) NotCA \equiv ?(ca(k) = 0); (Steer \cup Flip \cup Enter) Steer \equiv \omega(k) := *_{\mathbb{R}}; ?(-\Omega(k) \le \omega(k) \le \Omega(k)) Exit \equiv ?(disc(k) = x(k)); ca(k) := 0 Enter \equiv \omega(k) := side(k) \cdot \Omega(k); ca(k) := 1 Flip \equiv side(k) := -side(k) ``` # Plant $\equiv \forall i : \mathbb{A}\left(x(i)' = v(i) \cdot d(i), \ d(i)' = \omega(i) \cdot d(i)^{\perp}, \right)$ # Verified in KeYmaeraD $$\begin{split} \mathsf{EvDom} &\equiv \ \forall j : \mathbb{A} \\ & \big( (j \neq i \land (ca(i) = 0 \lor ca(j) = 0)) \to \mathsf{Sep}(i,j) \\ & \land || disc(i) - (x(i) + minr(i) \cdot side(i) \cdot d(i)^{\perp})|| \\ & \leq minr(i) \big) \end{split}$$ $$Sep(i, j) \equiv ||disc(i) - disc(j)|| \ge 2minr(i) + 2minr(j) + p$$ #### **Small Discs Control** - Deterministic control makes it well suited for UAVs. - Smaller discs allow aircraft to fly closer together. - Aircraft may exit maneuver as soon as it is safe to do so. #### Small Discs Control ``` SmallDiscs \equiv (Control \cup Plant)^* Control \equiv k := *_A; (CA \cup NotCA) CA \equiv ?(ca(k) = 1); (Exit \cup Skip) NotCA \equiv ?(ca(k) = 0); (Steer \cup Flip \cup Enter) Skip \equiv ?true Steer \equiv \omega(k) := *_{\mathbb{R}}; ?(-\Omega(k) \le \omega(k) \le \Omega(k)) Exit \equiv ca(k) := 0 Enter \equiv (\omega(k) := side(k) \cdot \Omega(k)); ca(k) := 1 Flip \equiv ?(\forall j : \mathbb{A} (j \neq k \rightarrow FlipSep(j, k))); side(k) := -side(k) \mathsf{FlipSep}(i,j) \equiv \|(x(i) + minr(i) \cdot side(i) \cdot d(i)^{\perp})\| -(x(j) - minr(j) \cdot side(j) \cdot d(j)^{\perp})|| \geq minr(i) + minr(j) + p Plant \equiv \forall i : \mathbb{A} \left( x(i)' = v(i) \cdot d(i), \ d(i)' = \omega(i)d(i)^{\perp} \right) & \forall j: A ((j \neq i \land (ca(i) = 0 \lor ca(j) = 0)) \rightarrow \text{Sep}(i, j) Sep(i, j) \equiv ||(x(i) + minr(i) \cdot side(i) \cdot d(i)^{\perp})|| -(x(j) + minr(j) \cdot side(j) \cdot d(j)^{\perp}) ``` $\geq minr(i) + minr(j) + p$ #### Small Discs Control ``` \begin{aligned} & \text{SmallDiscs} \equiv \left( \text{Control} \cup \text{Plant} \right)^* \\ & \text{Control} \equiv k \coloneqq *_{\mathbb{A}}; \ (\text{CA} \cup \text{NotCA}) \\ & \text{CA} \equiv ?(ca(k) = 1); \ (\text{Exit} \cup \text{Skip}) \end{aligned} & \text{NotCA} \equiv ?(ca(k) = 0); \ (\text{Steer} \cup \text{Flip} \cup \text{Enter}) \\ & \text{Skip} \equiv ?true \\ & \text{Steer} \equiv \omega(k) \coloneqq *_{\mathbb{R}}; \ ?(-\Omega(k) \le \omega(k) \le \Omega(k)) \\ & \text{Exit} \equiv ca(k) \coloneqq 0 \\ & \text{Enter} \equiv \left( \omega(k) \coloneqq side(k) \cdot \Omega(k) \right); \ ca(k) \coloneqq 1 \\ & \text{Flip} \equiv ?(\forall j : \mathbb{A} \ (j \ne k \to \text{FlipSep}(j, k))); \\ & side(k) \coloneqq -side(k) \end{aligned} ``` $\mathsf{FlipSep}(i,j) \equiv \|(x(i) + minr(i) \cdot side(i) \cdot d(i)^{\perp})\|$ # Weithir ed in KeymaeraD Plant $$\equiv \forall i : \mathbb{A} \left( x(i)' = v(i) \cdot d(i), \ d(i)' = \omega(i)d(i)^{\perp} \right)$$ & $\forall j : \mathbb{A} \left( (j \neq i \land (ca(i) = 0 \lor ca(j) = 0)) \right)$ $\rightarrow \text{Sep}(i, j)$ Sep $(i, j) \equiv \| (x(i) + minr(i) \cdot side(i) \cdot d(i)^{\perp}) - (x(j) + minr(j) \cdot side(j) \cdot d(j)^{\perp}) \|$ $\geq minr(i) + minr(j) + p$ # Conclusions #### Challenges - Infinite, continuous, and evolving state space, $\mathbb{R}^{\infty}$ - Continuous dynamics - Discrete control decisions - Distributed dynamics - Arbitrary number of aircraft - Emergent behaviors #### **Solutions** - Quantifiers for distributed dynamics - Compositionality using small problems to solve the big ones - Hierarchical and modular proofs - Non-linear flight paths allow flyable maneuvers