
Constructive Hybrid Games

Brandon Bohrer and André Platzer

Logical Systems Lab
Computer Science Department
Carnegie Mellon University

IJCAR’20

1 / 10

Safe Cyber-Physical Systems (CPS)

2 / 10

Hybrid Games Model CPS

2 / 10

Hybrid Games Model CPS

2 / 10

Hybrid Games Model CPS

2 / 10

Constructive Proofs for Synthesis (CdGL)

2 / 10

Game Syntax Example: Tailgating

actrl ≡ a := ∗; ?(−3 ≤ a ≤ 3)

dctrl ≡ {d := 1 ∪ d :=−1}d

phys ≡ {t := 0; {t ′ = 1, dist ′ = d − a& t ≤ 2}; ?(t ≥ 1)}d

game ≡ {actrl; dctrl; phys}∗ or {actrl; dctrl; phys}×

Pick speed Within limits Demon player

Physics Time constraint Lower bound

Angel or Demon Loop

3 / 10

Game Syntax Example: Tailgating

actrl ≡ a := ∗; ?(−3 ≤ a ≤ 3)

dctrl ≡ {d := 1 ∪ d :=−1}d

phys ≡ {t := 0; {t ′ = 1, dist ′ = d − a& t ≤ 2}; ?(t ≥ 1)}d

game ≡ {actrl; dctrl; phys}∗ or {actrl; dctrl; phys}×

Pick speed Within limits

Demon player

Physics Time constraint Lower bound

Angel or Demon Loop

3 / 10

Game Syntax Example: Tailgating

actrl ≡ a := ∗; ?(−3 ≤ a ≤ 3)

dctrl ≡ {d := 1 ∪ d :=−1}d

phys ≡ {t := 0; {t ′ = 1, dist ′ = d − a& t ≤ 2}; ?(t ≥ 1)}d

game ≡ {actrl; dctrl; phys}∗ or {actrl; dctrl; phys}×

Pick speed Within limits Demon player

Physics Time constraint Lower bound

Angel or Demon Loop

3 / 10

Game Syntax Example: Tailgating

actrl ≡ a := ∗; ?(−3 ≤ a ≤ 3)

dctrl ≡ {d := 1 ∪ d :=−1}d

phys ≡ {t := 0; {t ′ = 1, dist ′ = d − a& t ≤ 2}; ?(t ≥ 1)}d

game ≡ {actrl; dctrl; phys}∗ or {actrl; dctrl; phys}×

Pick speed Within limits Demon player

Physics Time constraint Lower bound

Angel or Demon Loop

3 / 10

Game Syntax Example: Tailgating

actrl ≡ a := ∗; ?(−3 ≤ a ≤ 3)

dctrl ≡ {d := 1 ∪ d :=−1}d

phys ≡ {t := 0; {t ′ = 1, dist ′ = d − a& t ≤ 2}; ?(t ≥ 1)}d

game ≡ {actrl; dctrl; phys}∗ or {actrl; dctrl; phys}×

Pick speed Within limits Demon player

Physics Time constraint Lower bound

Angel or Demon Loop

3 / 10

“Correct” Tailgating

• Formula P,Q ::= · · · | 〈α〉P | [α]P

• Angel or Demon achieves P after game α

safety ≡ dist > 0→ 〈game×〉 dist > 0

liveness ≡ dist > 0→ 〈game∗〉 dist ≤ ε
reachAvoid ≡ dist > 0→ 〈{game; ?dist > 0}∗〉dist ≤ ε

Don’t exceed goal

Reach goal

Reach safely

4 / 10

“Correct” Tailgating

• Formula P,Q ::= · · · | 〈α〉P | [α]P

• Angel or Demon achieves P after game α

safety ≡ dist > 0→ 〈game×〉 dist > 0

liveness ≡ dist > 0→ 〈game∗〉 dist ≤ ε
reachAvoid ≡ dist > 0→ 〈{game; ?dist > 0}∗〉dist ≤ ε

Don’t exceed goal

Reach goal

Reach safely

Figure: Animation of Safe Car

4 / 10

“Correct” Tailgating

• Formula P,Q ::= · · · | 〈α〉P | [α]P

• Angel or Demon achieves P after game α

safety ≡ dist > 0→ 〈game×〉 dist > 0

liveness ≡ dist > 0→ 〈game∗〉 dist ≤ ε

reachAvoid ≡ dist > 0→ 〈{game; ?dist > 0}∗〉dist ≤ ε

Don’t exceed goal

Reach goal

Reach safely

4 / 10

“Correct” Tailgating

• Formula P,Q ::= · · · | 〈α〉P | [α]P

• Angel or Demon achieves P after game α

safety ≡ dist > 0→ 〈game×〉 dist > 0

liveness ≡ dist > 0→ 〈game∗〉 dist ≤ ε
reachAvoid ≡ dist > 0→ 〈{game; ?dist > 0}∗〉dist ≤ ε

Don’t exceed goal

Reach goal

Reach safely

4 / 10

Constructive Foundations: What’s New?

• What do constructive modalities 〈α〉P and [α]P mean?

• Challenge: Strategies must be constructive Types

• Challenge: Games both stronger and weaker
(quantifier alternation, subnormal)

K [α](P → Q)→ ([α]P → [α]Q) vs. M
P ` Q

[α]P ` [α]Q

• How do other proof rules change? Most don’t!

• Real arithmetic Constructive real arithmetic

• Excluded middle Compare-with-epsilon

cmp ε > 0→ (f > g ∨ f < g + ε)

5 / 10

Constructive Foundations: What’s New?

• What do constructive modalities 〈α〉P and [α]P mean?

• Challenge: Strategies must be constructive Types

• Challenge: Games both stronger and weaker
(quantifier alternation, subnormal)

K [α](P → Q)→ ([α]P → [α]Q) vs. M
P ` Q

[α]P ` [α]Q

• How do other proof rules change? Most don’t!

• Real arithmetic Constructive real arithmetic

• Excluded middle Compare-with-epsilon

cmp ε > 0→ (f > g ∨ f < g + ε)

5 / 10

Constructive Foundations: What’s New?

• What do constructive modalities 〈α〉P and [α]P mean?

• Challenge: Strategies must be constructive Types

• Challenge: Games both stronger and weaker
(quantifier alternation, subnormal)

K [α](P → Q)→ ([α]P → [α]Q) vs. M
P ` Q

[α]P ` [α]Q

• How do other proof rules change? Most don’t!

• Real arithmetic Constructive real arithmetic

• Excluded middle Compare-with-epsilon

cmp ε > 0→ (f > g ∨ f < g + ε)

5 / 10

Angel and Demon are Dual (Examples)
pPq : (state⇒ type)

p〈?Q〉Pq s = pQq s * pPq s

p[?Q]Pq s = pQq s ⇒ pPq s

Prove test

Choose x

Choose branch

Switch

Assume test

Receive x
Can’t choose

Switch

6 / 10

Angel and Demon are Dual (Examples)
pPq : (state⇒ type)

p〈?Q〉Pq s = pQq s * pPq s
p〈x := ∗〉Pq s = Σv : R. pPq (set s x v)

p[?Q]Pq s = pQq s ⇒ pPq s
p[x := ∗]Pq s = Πv : R. pPq (set s x v)

Prove test

Choose x

Choose branch

Switch

Assume test

Receive x

Can’t choose
Switch

6 / 10

Angel and Demon are Dual (Examples)
pPq : (state⇒ type)

p〈?Q〉Pq s = pQq s * pPq s
p〈x := ∗〉Pq s = Σv : R. pPq (set s x v)
p〈α ∪ β〉Pq s = p〈α〉Pq s + p〈β〉Pq s

p[?Q]Pq s = pQq s ⇒ pPq s
p[x := ∗]Pq s = Πv : R. pPq (set s x v)
p[α ∪ β]Pq s = p[α]Pq s * p[β]Pq s

Prove test

Choose x

Choose branch

Switch

Assume test

Receive x

Can’t choose

Switch

6 / 10

Angel and Demon are Dual (Examples)
pPq : (state⇒ type)

p〈?Q〉Pq s = pQq s * pPq s
p〈x := ∗〉Pq s = Σv : R. pPq (set s x v)
p〈α ∪ β〉Pq s = p〈α〉Pq s + p〈β〉Pq s
p〈αd〉Pq s = p[α]P sq

p[?Q]Pq s = pQq s ⇒ pPq s
p[x := ∗]Pq s = Πv : R. pPq (set s x v)
p[α ∪ β]Pq s = p[α]Pq s * p[β]Pq s
p
[αd]P

q
s = p〈α〉Pq s

Prove test

Choose x

Choose branch

Switch

Assume test

Receive x

Can’t choose

Switch

6 / 10

Angel and Demon are Dual (Examples)
pPq : (state⇒ type)

p〈?Q〉Pq s = pQq s * pPq s
p〈x := ∗〉Pq s = Σv : R. pPq (set s x v)
p〈α ∪ β〉Pq s = p〈α〉Pq s + p〈β〉Pq s
p〈αd〉Pq s = p[α]P sq

p[?Q]Pq s = pQq s ⇒ pPq s
p[x := ∗]Pq s = Πv : R. pPq (set s x v)
p[α ∪ β]Pq s = p[α]Pq s * p[β]Pq s
p
[αd]P

q
s = p〈α〉Pq s

Lemma (Existential Property)
If (Γ ` ∃x p(x)) is valid, there exist term f such that (Γ ` p(f)) is valid.

Prove test

Choose x

Choose branch

Switch

Assume test

Receive x

Can’t choose

Switch

6 / 10

Natural Deduction Proofs (Selected)

• Want Curry-Howard Natural Deduction

• Implemented as Scala prototype

[;]I
Γ ` [α][β]P

Γ ` [α;β]P

[:=]I
Γ ` p(f)

Γ ` [x := f]p(x)

[∗]I
Γ ` J J ` [α]J J ` P

Γ ` [α∗]P

7 / 10

Differential Equation Proofs (Selected)

[′]
Γ ` ∀t :R≥0 ∀r : [0, t] q(sol(r))→ p(sol(t))

Γ ` [x ′=f & q(x)]p(x)

DI
Γ ` P Γ ` ∀x (Q → [x ′ := f](P)′)

Γ ` [x ′=f &Q]P

DC
Γ ` [x ′=f &Q]R Γ ` [x ′=f &Q ∧ R]P

Γ ` [x ′=f &Q]P

8 / 10

Differential Equation Proofs (Selected)

[′]
Γ ` ∀t :R≥0 ∀r : [0, t] q(sol(r))→ p(sol(t))

Γ ` [x ′=f & q(x)]p(x)

DI
Γ ` P Γ ` ∀x (Q → [x ′ := f](P)′)

Γ ` [x ′=f &Q]P

DC
Γ ` [x ′=f &Q]R Γ ` [x ′=f &Q ∧ R]P

Γ ` [x ′=f &Q]P

Theorem (Soundness)

If Γ ` P is provable, then sequent (Γ ` P) is valid.

8 / 10

Operational Semantics

• Ultimate Goal: Compile proofs to control + monitor

• First Step: Interpret Angel proof against Demon environment

playα : p〈α〉Pq s ⇒ p[α]Qq s ⇒ Σt : state.P t *Q t

play?R (A,B) (λp : (pRq s). C) s = (s, (B,CA
p))

playx:=∗ (f ,A) (λv : R. B) s = (set s x f , (A,Bfv))

playα∪β (` · A) (B,C) s = playα s A B

playα∪β (r · A) (B,C) s = playβ s A C

playαd A B s = playα s B A

Theorem (Consistency)

Formulas p〈α〉Pq s and p[α]¬Pq s are not both inhabited.

9 / 10

Conclusion

10 / 10

