Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification

Paolo Zuliani
André Platzer
Edmund M. Clarke

Computer Science Department Carnegie Mellon University

Problem

Verification of Stochastic Systems

- Uncertainties in the system environment, modeling a fault, stochastic processors, biological signaling pathways ...
 - Modeling uncertainty with a distribution → Stochastic systems
- Models:
 - for example, Discrete, Continuous Time Markov Chains
- Property specification:
 - "does the system fulfill a request within 1.2 ms with probability at least .99"?
- If Φ = "system fulfills request within 1.2 ms", decide between:

$$P_{\ge .99} (\Phi) \text{ or } P_{<.99} (\Phi)$$

Equivalently

- A biased coin (Bernoulli random variable):
 - Prob (Head) = p Prob (Tail) = 1-p
 - p is unknown
- Question: Is $p \ge \theta$? (for a fixed $0 < \theta < 1$)
- A solution: flip the coin a number of times, collect the outcomes, and use:
 - Statistical hypothesis testing: returns yes/no
 - Statistical estimation: returns "p in (a,b)" (and compare a with θ)

Motivation

- State Space Exploration infeasible for large systems
 - Symbolic MC with OBDDs scales to 10³⁰⁰ states
 - Scalability depends on the structure of the system
- Pros: Simulation is feasible for many more systems
 - Often easier to simulate a complex system than to build the transition relation for it
 - Easier to parallelize
- Cons: answers may be wrong
 - But error probability can be bounded

Towards verification

Key: define a probability measure on the set of traces (simulations) of M. The set of traces satisfying Φ is measurable.

Statistical Model Checking

Key idea

- Suppose system behavior w.r.t. a (fixed) property Φ can be modeled by a Bernoulli random variable of parameter p:
 - System satisfies Φ with (unknown) probability p
- Question: $P_{\geq \theta}(\Phi)$? (for a fixed $0 < \theta < 1$)
- Draw a sample of system simulations and use:
 - Statistical hypothesis testing: Null vs. Alternative hypothesis

$$H_0: \mathcal{M} \models P_{\geqslant \theta}(\phi) \qquad H_1: \mathcal{M} \models P_{<\theta}(\phi)$$

• Statistical estimation: returns "p in (a,b)" (and compare a with θ)

Bayesian Statistical Model Checking

MC chooses between two mutually exclusive hypotheses

Null Hypothesis
$$H_0: \mathcal{M} \models P_{\geqslant heta}(\phi)$$

VS

Alternate Hypothesis $H_1: \mathcal{M} \models P_{<\theta}(\phi)$

- We have developed a new statistical MC algorithm
 - Sequential sampling
 - Performs Composite Hypothesis Testing and Estimation
 - Based on Bayes Theorem and the Bayes Factor.

Bayesian Statistics

Three ingredients:

1. Prior probability

■ Models our initial (a priori) uncertainty/belief about parameters (what is $Prob(p \ge \theta)$?)

2. Likelihood function

 Describes the distribution of data (e.g., a sequence of heads/tails), given a specific parameter value

3. Bayes Theorem

 Revises uncertainty upon experimental data - compute Prob(p ≥ θ | data)

Sequential Bayesian Statistical MC - I

- Model Checking $H_0: \mathcal{M} \models P_{\geqslant \theta}(\phi)$ $H_1: \mathcal{M} \models P_{<\theta}(\phi)$
- Suppose \mathcal{M} satisfies ϕ with (unknown) probability p
 - p is given by a random variable (defined on [0,1]) with density g
 - ullet g represents the prior belief that ${\mathcal M}$ satisfies ϕ
- Generate independent and identically distributed (iid) sample traces.
- x_i : the i^{th} sample trace σ satisfies ϕ
 - x_i = 1 iff $\sigma_i \models \phi$
 - $x_i = 0$ iff $\sigma_i \not\models \phi$
- Then, x_i will be a Bernoulli trial with conditional density (likelihood function)

$$f(x_i|u) = u^{x_i}(1-u)^{1-x_i}$$

Sequential Bayesian Statistical MC - II

- $X = (x_1, \dots, x_n)$ a sample of Bernoulli random variables
- Prior probabilities $P(H_0)$, $P(H_1)$ strictly positive, sum to 1
- Posterior probability (Bayes Theorem [1763])

$$P(H_0|X) = \frac{P(X|H_0)P(H_0)}{P(X)}$$

for P(X) > 0

Ratio of Posterior Probabilities:

$$\left| \frac{P(H_0|X)}{P(H_1|X)} = \frac{P(X|H_0)}{P(X|H_1)} \cdot \frac{P(H_0)}{P(H_1)} \right|$$

Bayes Factor

Sequential Bayesian Statistical MC - III

- $\blacksquare \ \, \text{Recall the Bayes factor} \quad B = \frac{P(X|H_0)}{P(X|H_1)}$
- Jeffreys' [1960s] suggested the Bayes factor as a statistic:
 - For fixed sample sizes
 - For example, a Bayes factor greater than 100 "strongly supports" H₀
- We introduce a sequential version of Jeffrey's test
- Fix threshold T ≥ 1 and prior probability.
 Continue sampling until
 - Bayes Factor > T: Accept H₀
 - Bayes Factor < 1/T: Reject H₀

Sequential Bayesian Statistical MC - IV

```
Require: Property P_{\geq \theta}(\Phi), Threshold T \geq 1, Prior density g
n := 0
                 {number of traces drawn so far}
                 {number of traces satisfying Φ so far}
x := 0
repeat
       \sigma := draw a sample trace of the system (iid)
       n := n + 1
      if \sigma \models \Phi then
        x := x + 1
       endif
       \mathcal{B} := BayesFactor(n, x, \theta, g)
until (B > T \lor B < 1/T)
if (B > T) then
        return "H<sub>0</sub> accepted"
else
        return "Ho rejected"
endif
```

Correctness

<u>Theorem</u> (Error bounds). When the Bayesian algorithm – using threshold *T* – stops, the following holds:

Prob ("accept
$$H_0$$
" | H_1) $\leq 1/T$
Prob ("reject H_0 " | H_0) $\leq 1/T$

Note: bounds independent from the prior distribution.

Computing the Bayes Factor - I

<u>Definition</u>: Bayes Factor of sample X and hypotheses H_0 , H_1 is joint (conditional) density of independent samples

$$\frac{P(H_0|X)}{P(H_1|X)} \cdot \frac{P(H_1)}{P(H_0)} = \frac{\int_{\theta}^{1} f(x_1|u) \cdots f(x_n|u) \cdot g(u) \ du}{\int_{0}^{\theta} f(x_1|u) \cdots f(x_n|u) \cdot g(u) \ du} \cdot \frac{1 - \pi_0}{\pi_0}$$

• $\pi_0 = P(H_0) = \int_{\theta}^1 g(u) du$ prior g is Beta of parameters $\alpha > 0$, $\beta > 0$ $g(u) = \frac{1}{B(\alpha,\beta)} u^{\alpha-1} (1-u)^{\beta-1}$

$$B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$

Computing the Bayes Factor - II

Proposition

The Bayes factor of $H_0: \mathcal{M} \models P_{\geq \theta}(\Phi)$ vs $H_1: \mathcal{M} \models P_{<\theta}(\Phi)$ for n Bernoulli samples (with $x \leq n$ successes) and prior Beta (α, β)

$$B = \frac{1 - \pi_0}{\pi_0} \cdot \left(\frac{1}{F_{(x+\alpha, n-x+\beta)}(\theta)} - 1 \right)$$

where $F_{(\cdot,\cdot)}(\cdot)$ is the Beta distribution function.

$$F_{(x+\alpha,n-x+\beta)}(\theta) = \frac{1}{B(x+\alpha,n-x+\beta)} \int_0^\theta u^{x+\alpha-1} (1-u)^{n-x+\beta-1} du$$

No need of integration when computing the Bayes factor

Bayesian Interval Estimation - I

- Estimating the (unknown) probability p that "system $\models \Phi$ "
- Recall: system is modeled as a Bernoulli of parameter p
- <u>Bayes' Theorem</u> (for iid Bernoulli samples)

$$f(u \mid x_1, \dots, x_n) = \frac{f(x_1 \mid u) \cdots f(x_n \mid u)g(u)}{\int_0^1 f(x_1 \mid v) \cdots f(x_n \mid v)g(v) \, dv}$$

- We thus have the posterior distribution
- So we can use the mean of the posterior to estimate p
 - mean is a posterior Bayes estimator for p (it minimizes the integrated risk over the parameter space, under a quadratic loss)

Bayesian Interval Estimation - II

- By integrating the posterior we get Bayesian intervals for p
- Fix a coverage $\frac{1}{2} < c < 1$. Any interval (t_0, t_1) such that

$$\int_{t_0}^{t_1} f(u \mid x_1, \dots, x_n) \ du = c$$

is called a 100c percent Bayesian Interval Estimate of p

- An optimal interval minimizes t_1 t_0 : difficult in general
- Our approach:
 - fix a half-interval width δ
 - Continue sampling until the posterior probability of an interval of width 2δ containing the posterior mean exceeds coverage c

Bayesian Interval Estimation - III

- Computing the posterior probability of an interval is easy
- Suppose n Bernoulli samples (with x≤n successes) and prior Beta(α,β)

$$P(t_0
$$= F_{(x+\alpha, n-x+\beta)}(t_1) - F_{(x+\alpha, n-x+\beta)}(t_0)$$$$

No numerical integration

Bayesian Interval Estimation - IV

posterior density after 1000 samples and 900 "successes" is beta(α =904, β =105) posterior mean = 0.8959

Bayesian Interval Estimation - V

```
Require: BLTL property \Phi, interval-width \delta, coverage c,
prior beta parameters α,β
n := 0
                {number of traces drawn so far}
x := 0
                 {number of traces satisfying so far}
repeat
       \sigma := draw a sample trace of the system (iid)
       n := n + 1
      if \sigma \models \Phi then
        x := x + 1
       endif
       mean = (x+\alpha)/(n+\alpha+\beta)
       (t_0,t_1)= (mean-\delta, mean+\delta)
       I := Posterior Probability (t_0, t_1, n, x, \alpha, \beta)
until (I > c)
return (t_0, t_1), mean
```

Bayesian Interval Estimation - VI

- Recall the algorithm outputs the interval (t_0, t_1)
- Define the null hypothesis

$$H_0$$
: t_0

We can use the previous results for hypothesis testing

Theorem (Error bound). When the Bayesian estimation algorithm (using coverage $\frac{1}{2} < c < 1$) stops – we have

Prob ("accept
$$H_0$$
" | H_1) $\leq (1/c - 1)\pi_0/(1 - \pi_0)$

Prob ("reject
$$H_0$$
" | H_0) $\leq (1/c - 1)\pi_0/(1 - \pi_0)$

 π_0 is the prior probability of H_0

Bounded Linear Temporal Logic

Bounded Linear Temporal Logic (BLTL): Extension of LTL with time bounds on temporal operators.

- Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be an execution of the model
 - along states s_0 , s_1 , . . .
 - the system stays in state s_i for time t_i
 - divergence of time: $\Sigma_i t_i$ diverges (i.e., non-zeno)
- σ^i : Execution trace starting at state *i*.
- A model for simulation traces (e.g. Simulink)

Semantics of BLTL

The semantics of BLTL for a trace σ^k :

•
$$\sigma^k \models ap$$
 iff atomic proposition ap true in state s_k

•
$$\sigma^k \models \Phi_1 \vee \Phi_2$$
 iff $\sigma^k \models \Phi_1$ or $\sigma^k \models \Phi_2$

•
$$\sigma^k \models \neg \Phi$$
 iff $\sigma^k \models \Phi$ does not hold

•
$$\sigma^k \models \Phi_1 \ U^t \ \Phi_2$$
 iff there exists natural *i* such that

1)
$$\sigma^{k+i} \models \Phi_2$$

$$2) \quad \Sigma_{j < i} \ t_{k+j} \le t$$

3) for each
$$0 \le j < i$$
, $\sigma^{k+j} \models \Phi_1$

"within time t, Φ_2 will be true and Φ_1 will hold until then"

■ In particular, $F^t \Phi = true \ U^t \Phi$, $G^t \Phi = \neg F^t \neg \Phi$

Semantics of BLTL (cont'd)

- Simulation traces are finite: is $\sigma \models \Phi$ well defined?
- Definition: The time bound of Φ:
 - #(ap) = 0
 - $\blacksquare \quad \#(\neg \Phi) = \#(\Phi)$
 - $\#(\Phi_1 \vee \Phi_2) = \max(\#(\Phi_1), \#(\Phi_2))$
 - $\#(\Phi_1 \ \mathcal{U}^t \ \Phi_2) = t + \max(\#(\Phi_1), \#(\Phi_2))$
- Lemma: "Bounded simulations suffice"

Let Φ be a BLTL property, and $k \ge 0$. For any two infinite traces ρ , σ such that ρ^k and σ^k "equal up to time #(Φ)" we have

$$\rho^k \models \Phi$$
 iff $\sigma^k \models \Phi$

Fuel Control System - I

The Simulink model:

Fuel Control System - II

- Ratio between air mass flow rate and fuel mass flow rate
 - Stoichiometric ratio is 14.6
- Senses amount of oxygen in exhaust gas, pressure, engine speed and throttle to compute correct fuel rate.
 - Single sensor faults are compensated by switching to a higher oxygen content mixture
 - Multiple sensor faults force engine shutdown
- Probabilistic behavior because of random faults
 - In the EGO (oxygen), pressure and speed sensors
 - Faults modeled by three independent Poisson processes
 - We did not change the speed or throttle inputs

Fuel Control System - III

- We Model Check the formula (Null hypothesis) \mathcal{M} , FaultRate $\models P_{\geq \theta} (\neg \mathbf{F}^{100} \mathbf{G}^{1}(FuelFlowRate = 0))$ for $\theta = .5, .7, .8, .9, .99$
- "It is not the case that within 100 seconds, FuelFlowRate is zero for 1 second"
- We use various values of FaultRate for each of the three sensors in the model
- We choose Bayes threshold T = 1000, i.e., stop when probability of error is < .001
- Uniform, equally likely priors

Fuel Control System: Hypothesis testing

Recall the Null hypothesis:

$$\mathcal{M}$$
, FaultRate $\models P_{\geq \theta}(\neg F^{100} G^1(FuelFlowRate = 0))$

Priors: uniform, equally likely.

Number of samples and test decision:

red / blue number: reject / accept null hypothesis

		Probability threshold θ				
		.5	.7	.8	.9	.99
Fault rates	[3 7 8]	58	17	10	8	2
	[10 8 9]	32	95	394	710	8
	[20 10 20]	9	16	24	44	1,626
	[30 30 30]	9	16	24	44	239

Longest run: 1h 5' on a 2.4GHz Pentium 4 computer

Fuel Control System results: Interval estimation

- Bayesian estimation algorithm, uniform prior.
- Want to estimate the probability that \mathcal{M} , FaultRate $\models (\neg F^{100} G^1(FuelFlowRate = 0))$
- For half-width δ =.01 and several values of coverage c
- Posterior mean: add/subtract δ to get the Bayesian interval

		Interval coverage c				
		.9	.95	.99	.999	
Fault rates	[3 7 8]	.3603	.3559	.3558	.3563	
	[10 8 9]	.8534	.8518	.8528	.8534	
	[20 10 20]	.9764	.9784	.9840	.9779	
	[30 30 30]	.9913	.9933	.9956	.9971	

Fuel Control System results: Interval estimation

- Number of samples
- Comparison with Chernoff-Hoeffding bound (Bernoulli r.v.'s)

$$\Pr(|X - p| \ge \delta) \le exp(-2n\delta^2)$$

where
$$X = 1/n \Sigma_i X_i$$
, $E[X_i]=p$

		Interval coverage c				
		.9	.95	.99	.999	
Fault rates	[3 7 8]	6,234	8,802	15,205	24,830	
	[10 8 9]	3,381	4,844	8,331	13,569	
	[20 10 20]	592	786	1,121	2,583	
	[30 30 30]	113	148	227	341	
Chernoff bound		119,829	147,555	211,933	304,036	

Conclusions

- Use sequential sampling
- Bayesian Interval Estimation / Hypothesis Testing
- Statistical Model Checking is
 - Not the silver bullet
 - Another (useful) verification tool

The End

Thank you!

Bayes Estimators - I

• Quadratic loss function:

u (unknown) parameter, d(x) estimator for u

$$L(u, d(x)) = |u - d(x)|^2$$

Risk of estimator d: average loss over all possible data

$$R(u,d) = E_u[L(u,d)] = \int_X L(u,d(x))f(x|u) dx$$

Bayes Estimators - II

Integrated risk of estimator d with respect to prior g

$$r(g,d) = E[R(u,d)] = \int_{U} \int_{X} L(u,d(x))f(x|u)dx \ g(u) \ du$$

- U is the parameter space ([0,1] for us).
- Using the posterior mean as estimator minimizes r(g,d)

In our case the posterior mean is

$$(x+\alpha)/(n+\alpha+\beta)$$

where x≤n number of successes, α,β Beta prior parameters.

Fuel Control System: Hypothesis testing

Informative priors:

convex combinations of Betas

Example: for fault rates [10 8 9] we used 0.01 x beta(1,1) + 0.99 x beta(1000,172.6)

		Probability threshold $ heta$				
		.5	.7	.8	.9	.99
Fault rates	[3 7 8]	55 (3)	12 (5)	10	8	2
	[10 8 9]	28 (4)	64 (31)	347 (47)	255 (455)	8
	[20 10 20]	8 (1)	13 (3)	20 (4)	39 (5)	1,463 (163)
	[30 30 30]	7 (2)	13 (3)	18 (6)	33 (11)	201 (38)

Computing the Bayes Factor - I

The Bayes Factor uses posterior (and prior) probability

$$\frac{P(X|H_0)}{P(X|H_1)} = \frac{P(H_0|X)}{P(H_1|X)} \cdot \frac{P(H_1)}{P(H_0)}$$

Posterior density (Bayes Theorem) (iid Bernoulli samples)

$$f(u \mid x_1, \dots, x_n) = \frac{f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u)}{\int_0^1 f(x_1 \mid v) \cdots f(x_n \mid v) \cdot g(v) \, dv}$$

Likelihood function

Why Beta priors?

- Defined over [0,1]
- Beta distributions are conjugate to Binomial distributions:
 - If prior g is Beta and likelihood function is Binomial then posterior is Beta
- Suppose likelihood Binomial(n,x), prior Beta(α,β): posterior

$$f(u \mid x_1, ..., x_n) \approx f(x_1 \mid u) \cdot \cdot \cdot f(x_n \mid u) \cdot g(u)$$

$$= u^x (1 - u)^{n-x} \cdot u^{\alpha - 1} (1 - u)^{\beta - 1}$$

$$= u^{x+\alpha - 1} (1 - u)^{n-x+\beta - 1}$$

where $x = \sum_{i} x_{i}$

Posterior is Beta of parameters x+α and n-x+β

Beta Density Shapes

Performance of Bayesian Estimation

