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Problem

Verification of Stochastic Systems

Uncertainties in the system environment, modeling a fault,
stochastic processors, biological signaling pathways ...
» Modeling uncertainty with a distribution — Stochastic systems

Models:

= for example, Discrete, Continuous Time Markov Chains
Property specification:

= “does the system fulfill a request within 1.2 ms with probability at least
.997?

If @ = “system fulfills request within 1.2 ms”, decide between:

P g9 (@) oOr P g (P)



Equivalently

* A biased coin (Bernoulli random variable):
* Prob (Head) =p Prob (Tail) = 1-p

= pis unknown

= Question: Is p 2 8 ? (for a fixed 0<6<17)

= A solution: flip the coin a number of times, collect the
outcomes, and use:

» Statistical hypothesis testing: returns yes/no
» Statistical estimation: returns “p in (a,b)” (and compare a with 6)



Motivation

» State Space Exploration infeasible for large systems
= Symbolic MC with OBDDs scales to 103% states
» Scalability depends on the structure of the system

* Pros: Simulation is feasible for many more systems

= Often easier to simulate a complex system than to build the
transition relation for it

= Easier to parallelize
= Cons: answers may be wrong

= But error probability can be bounded



Towards verification
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Key: define a probability measure on the set of traces (simulations) of M.
The set of traces satisfying @ is measurable.




Statistical Model Checking

Key idea

= Suppose system behavior w.r.t. a (fixed) property @ can be
modeled by a Bernoulli random variable of parameter p:

» System satisfies ® with (unknown) probability p

= Question: P4 (®)? (for a fixed 0<6<7)
» Draw a sample of system simulations and use:
» Statistical hypothesis testing: Null vs. Alternative hypothesis

Hy: M =P>9(¢) Hy: M =P<0(¢)

= Statistical estimation: returns “p in (a,b)” (and compare a with 6)



Bayesian Statistical Model Checking

= MC chooses between two mutually exclusive hypotheses

Null Hypothesis Hy : M P>0(¢)

VS
Alternate Hypothesis Hi: M P<0(¢)

* We have developed a new statistical MC algorithm
— Sequential sampling
— Performs Composite Hypothesis Testing and Estimation
— Based on Bayes Theorem and the Bayes Factor.



Bayesian Statistics

Three ingredients:

1. Prior probability

= Models our initial (a priori) uncertainty/belief about
parameters (what is Prob(p = 6) ?)

2. Likelihood function

» Describes the distribution of data (e.g., a sequence of
heads/tails), given a specific parameter value

3. Bayes Theorem

» Revises uncertainty upon experimental data - compute
Prob(p = 6 | data)



Sequential Bayesian Statistical MC - |

Model Checking Hp : M |= P>o(¢) Hy : M = P.y(0)
Suppose M satisfies ¢ with (unknown) probability p

= pis given by a random variable (defined on [0,1]) with density g
= g represents the prior belief that M satisfies ¢

Generate independent and identically distributed (iid)
sample traces.

x;: the it sample trace O satisfies ¢
. x=1iff 03 = @
= x;=0iff 0; # qb
Then, x; will be a Bernoulli trial with conditional density
(likelihood function)
fixjlu) = (1 - u)'




Sequential Bayesian Statistical MC - Il

= X =(x1,...,T,) @ sample of Bernoulli random variables
= Prior probabilities P(H,), P(H,) strictly positive, sum to 1
= Posterior probability (Bayes Theorem [1763])

P(X|Hy)P(Hy)
PIX)

P(Hy|X) =

for P(X) > 0

Ratio of Posterior Probabilities:

P(Ho|X)  P(X|Hy) P(Ho)

P(H,|X)  P(X|H,) P(H)

Bayes Factor




Sequential Bayesian Statistical MC - Il

P(X|Hop)
P(X|Hy)

» Recall the Bayes factor B =

= Jeffreys’ [1960s] suggested the Bayes factor as a statistic:
» For fixed sample sizes
» For example, a Bayes factor greater than 100 “strongly supports” H,

= We introduce a sequential version of Jeffrey’s test

» Fix threshold T = 7 and prior probability.
Continue sampling until

» Bayes Factor > T: Accept H,
» Bayes Factor < 1/T: Reject H,



Sequential Bayesian Statistical MC - IV

Require: Property P.,(®), Threshold T = 1, Prior density g

n:=0 {number of traces drawn so far}
x:=0 {number of traces satisfying ® so far}
repeat

o .= draw a sample trace of the system (iid)

n:=n+1

if oF @ then

x:=x+1
endif

B := BayesFactor(n, x, 6, g)
until (B>T vB<1/T)
if (B> T)then
return “H, accepted”
else
return “H, rejected”
endif



Correctness

Theorem (Error bounds). When the Bayesian algorithm — using
threshold T — stops, the following holds:

Prob (“accept H," | H,) <1/T
Prob (“reject H,” | Hy) <1/T

Note: bounds independent from the prior distribution.



Computing the Bayes Factor - |

Definition: Bayes Factor of sample X and hypotheses H,, H, is
joint (conditional) density of
independent samples

P(Ho|X) P(Hy) _ [o f(@ilu)-f(znlu)g(u) du 1_xg
P(H1[X) P(Ho) — [7 f(z1|u)f(zn|u)-g(u) du 70

= 719 = P(Ho) = [, g(u)du prior g is Beta of parameters a>0, 8>0

g(u) = B(i,g)ua_l(l — )t

Bla,8) = [t (1 — )P~ dt



Computing the Bayes Factor - li

Proposition

The Bayes factor of HyM = Psy(®P) vs H M= P_,(P) for
n Bernoulli samples (with x<n successes) and prior Beta(a,f3)

1 — 0 ( 1 )
B = : — 1
7o Flotan—a+) (0)

where F. \(+) is the Beta distribution function.

0 sta— n—x+L—
F(a:—l—oz,n—zv—l—ﬁ) (0) — B(w_|_a711_g;_|_5) f() Ut 1<1 B ’U) I du

* No need of integration when computing the Bayes factor



Bayesian Interval Estimation - |

Estimating the (unknown) probability p that “system = @~

Recall: system is modeled as a Bernoulli of parameter p

Bayes’ Theorem (for iid Bernoulli samples)

flay | u)--- f(en | u)g(u)
Jo F(x1[v) - fan | v)g(v) du

flu|xy,...,2n) =

We thus have the posterior distribution

So we can use the mean of the posterior to estimate p

" mean is a posterior Bayes estimator for p (it minimizes the
integrated risk over the parameter space, under a quadratic loss)



Bayesian Interval Estimation - li

By integrating the posterior we get Bayesian intervals for p
Fix a coverage 72 < ¢ < 1. Any interval (t,, t,) such that
t1
flulzi,...,z,) du = c
to
is called a 100c percent Bayesian Interval Estimate of p
An optimal interval minimizes t,- t,: difficult in general

Our approach:
= fix a half-interval width o

= Continue sampling until the posterior probability of an interval of
width 20 containing the posterior mean exceeds coverage ¢



Bayesian Interval Estimation - il

= Computing the posterior probability of an interval is easy

= Suppose n Bernoulli samples (with x<n successes) and
prior Beta(a,f3)

t1
P(to <p < ti|z1,...,z,) :/ flulzy,... zn) du
to

— ‘F(ac—I—oz,n—x—l—ﬁ) (tl) o F@"‘O‘f“_w—'—ﬁ) (t()) ‘

* No numerical integration



Bayesian Interval Estimation - IV

width 20
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Bayesian Interval Estimation -V

Require: BLTL property @, interval-width 6, coverage c,
prior beta parameters q,f3

n:=0 {number of traces drawn so far}
x:=0 {number of traces satisfying so far}
repeat

o .= draw a sample trace of the system (iid)

n:=n+1

if oF @ then

x:=x+1
endif

mean = (x+a)/(n+a+B)

(tpt;) = (mean-d, mean+0)

I := PosteriorProbability (t,t,,n,x,a,p)
until (I > ¢)
return (f,,t,), mean



Bayesian Interval Estimation - VI

» Recall the algorithm outputs the interval ({,,t,)
= Define the null hypothesis
Hy ty<p <t

= We can use the previous results for hypothesis testing

Theorem (Error bound). When the Bayesian estimation
algorithm (using coverage 72< ¢ < 1) stops — we have

Prob (“accept H,” | H,) < (1/c -1)my/(1-11p)
Prob (“reject H,” | Hy) < (1/c -1)11/(1-113)

Ty is the prior probability of H,



Bounded Linear Temporal Logic

Bounded Linear Temporal Logic (BLTL): Extension of LTL
with time bounds on temporal operators.

Let 0 = (s, ty), (S4, t1), - . . be an execution of the model

= along states s, s4, . . .
» the system stays in state s, for time

= divergence of time: 2, t; diverges (i.e., non-zeno)

o'. Execution trace starting at state /.

A model for simulation traces (e.g. Simulink)



Semantics of BLTL

The semantics of BLTL for a trace o*:

oX = ap Iff atomic proposition ap true in state s,

O'k=¢1v¢2 iff Uk

o*FQ@ iff o*

= @, or o*

=(p2

— @ does not hold

o= @, Ut ®, iff there exists natural i such that

1) okE @,
2) Tt St

3) foreach0<j<i ok @,
“‘within time t, @, will be true and @, will hold until then”

In particular, F @ =true ‘Ut®, G' P =-F P



Semantics of BLTL (cont’d)

= Simulation traces are finite: is 0 = ® well defined?

= Definition: The time bound of @:
= #(@p) =0
" #(P) =#PD)
" #H( Py v Py) =max (#(Py), #(P)))
= #(P, U P,) =t+max (#(D,), #(P,))

» [ emma: “Bounded simulations suffice”

Let @ be a BLTL property, and k=0. For any two infinite traces p, o
such that p¥and o* “equal up to time #(®)” we have

ok =@ iff of =@




Fuel Control System - |

The Simulink model:
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Fuel Control System - li

= Ratio between air mass flow rate and fuel mass flow rate
= Stoichiometric ratio is 14.6

= Senses amount of oxygen in exhaust gas, pressure,
engine speed and throttle to compute correct fuel rate.

» Single sensor faults are compensated by switching to a higher
oxygen content mixture

= Multiple sensor faults force engine shutdown

* Probabilistic behavior because of random faults
* |n the EGO (oxygen), pressure and speed sensors
» Faults modeled by three independent Poisson processes
= We did not change the speed or throttle inputs



Fuel Control System - il

We Model Check the formula (Null hypothesis)
M, FaultRate = P-4, (7F'%° G'(FuelFlowRate = 0))
for6=.5,.7, .8, .9, .99

“It is not the case that within 100 seconds, FuelFlowRate
IS zero for 1 second”

We use various values of FaultRate for each of the three
sensors in the model

We choose Bayes threshold 7 =1000, i.e., stop when
probability of error is < .001

Uniform, equally likely priors



Fuel Control System:
Hypothesis testing

Recall the Null hypothesis:
M, FaultRate = P-4, (7F1%° G'(FuelFlowRate = 0))

Priors: uniform, equally likely.
Number of samples and test decision:
* red/ blue number: reject / accept null hypothesis

Probability threshold 6

D 4 .8 9 .99

[3 7 8] 58 17 10 8 2

Fault [10 8 9] 32 95 394 710 8
rates [20 10 20] 9 16 24 44 1,626
[30 30 30] 9 16 24 44 239

Longest run: 1h 5’ on a 2.4GHz Pentium 4 computer




Fuel Control System results:
Interval estimation

Bayesian estimation algorithm, uniform prior.

Want to estimate the probability that
M, FaultRate = (~F'99 G'(FuelFlowRate = 0))

For half-width 6=.01 and several values of coverage ¢

Posterior mean: add/subtract o to get the Bayesian interval

Interval coverage ¢

9 95 99 999

378  .3603 3559 3558 3563
Fault [10 8 9]  .8534 8518 8528 8534
rates [20 10 20] .9764 9784 9840 9779

[30 30 30] .9913 9933 9956 9971



Fuel Control System results:
Interval estimation

= Number of samples
= Comparison with Chernoff-Hoeffding bound (Bernoulli r.v.’s)
Pr(|X—p|20)<exp(-2nd?)
where X =1/n 2, X, , E[X]=p

Interval coverage ¢

9 95 99 999

3 7 8] 6,234 8,802 15,205 24,830

Fault [10 8 9] 3,381 4,844 8,331 13,569
rates [20 10 20] 592 786 1,121 2,583
[30 30 30] 113 148 227 341

Chernoff bound 119,829 147,555 211,933 304,036



Conclusions

= Use sequential sampling
= Bayesian Interval Estimation / Hypothesis Testing
= Statistical Model Checking is

= Not the silver bullet

= Another (useful) verification tool



Thank you!



Bayes Estimators - |

» Quadratic loss function:

u (unknown) parameter, d(x) estimator for u

L(u,d(x)) = |u - d(z)[

» Risk of estimator d: average loss over all possible data

R(u,d) = Ey[L(u,d)] = [ L(u, d(z)) f(z|u) dz



Bayes Estimators - |l

» |ntegrated risk of estimator d with respect to prior g
r(g,d) = E[R(u,d)] = [;; [ L(u,d(x)) f(z|u)dz g(u) du

= U is the parameter space ([0,1] for us).

» Using the posterior mean as estimator minimizes r(g,d)

* |In our case the posterior mean is
(x+a)/(n+a+()

where x<n number of successes, a,3 Beta prior parameters.



Informative priors:

Fuel Control System:
Hypothesis testing

convex combinations of Betas

Example: for fault rates [10 8 9] we used
0.01 x beta(1,1) + 0.99 x beta(1000,172.6)
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rates
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Probability threshold 6

99
2
8
1,463 (163)
201 (38)

1



Computing the Bayes Factor - |

* The Bayes Factor uses posterior (and prior) probability

P(X|Hy)
P(X|Hy)

P(Hp|X)

P(H)

P(H.|X)

P(Hy)

= Posterior density (Bayes Theorem) (iid Bernoulli samples)

flay | w)---

f(u ‘ 5617"'75871) — fOl f(xl ‘U)MU) -g(”U) dv

Likelihood function




Why Beta priors?

Defined over [0,1]
Beta distributions are conjugate to Binomial distributions:

= |f prior g is Beta and likelihood function is Binomial
then posterior is Beta

Suppose likelihood Binomial(n,x), prior Beta(a,3): posterior
fulxg,...xp) = HAXqu) - - fxplu) - g(u)

— ux(1 - u)n-x. ua—1(1 - U)B'1

= yxra-1(q = y)nx+B-t
where X =2, X

Posterior is Beta of parameters x+a and n-x+f3
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Number of Samples Needed

Performance of Bayesian Estimation
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