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Abstract. This paper presents an approach for deductive liveness ver-
ification for ordinary differential equations (ODEs) with differential dy-
namic logic. Numerous subtleties complicate the generalization of well-
known discrete liveness verification techniques, such as loop variants, to
the continuous setting. For example, ODE solutions may blow up in fi-
nite time or their progress towards the goal may converge to zero. Our
approach handles these subtleties by successively refining ODE liveness
properties using ODE invariance properties which have a well-understood
deductive proof theory. This approach is widely applicable: we survey
several liveness arguments in the literature and derive them all as special
instances of our axiomatic refinement approach. We also correct several
soundness errors in the surveyed arguments, which further highlights the
subtlety of ODE liveness reasoning and the utility of our deductive ap-
proach. The library of common refinement steps identified through our
approach enables both the sound development and justification of new
ODE liveness proof rules from our axioms.

Keywords: differential equations, liveness, differential dynamic logic

1 Introduction

Hybrid systems are mathematical models describing discrete and continuous dy-
namics, and interactions thereof [6]. This flexibility makes them natural models
of cyber-physical systems (CPSs) which feature interactions between discrete
computational control and continuous real world physics [2,19]. Formal verifica-
tion of hybrid systems is of significant practical interest because the CPSs they
model frequently operate in safety-critical settings. Verifying properties of the
continuous dynamics is a key aspect of any such endeavor.

This paper focuses on deductive liveness verification for continuous dynamics
described by ordinary differential equations (ODEs). We work with differential
dynamic logic (dL) [16,17,19], a logic for deductive verification of hybrid systems,
which compositionally lifts our results to the hybrid systems setting. Methods
for proving liveness in the discrete setting are well-known: loop variants show
that discrete loops eventually reach a desired goal, while temporal logic is used to
specify and study liveness properties in concurrent and infinitary settings [12,13].
In the continuous setting, liveness for an ODE means that its solutions even-
tually enter a desired goal region in finite time without leaving the domain of
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Table 1. Surveyed ODE liveness arguments with our corrections highlighted in blue.
The referenced corollaries are our corresponding (corrected) derived proof rules.

Source Without Domain Constraints With Domain Constraints

[15] OK (Cor. 5) if open/closed, initially false (Cor. 13)

[22,23] [23, Remark 3.6] is incorrect if conditions checked globally (Cor. 19)

[24] if compact (Cor. 12) if compact (Cor. 15)

[25] OK (Cor. 9) OK (Cor. 16)
[27] if globally Lipschitz (Cor. 7) if globally Lipschitz (Cor. 14)

allowed (or safe) states.1 Deduction of such ODE liveness properties is hampered
by several difficulties: i) solutions of ODEs may converge towards a goal with-
out ever reaching it, ii) solutions of (non-linear) ODEs may blow up in finite
time leaving insufficient time for the desired goal to be reached, and iii) the goal
may be reachable but only by leaving the domain constraint. In contrast, in-
variance properties for ODEs are better understood [9,11] and have a complete
dL axiomatization [20]. Motivated by the aforementioned difficulties, we present
dL axioms enabling step-by-step refinement of ODE liveness properties with a
sequence of ODE invariance properties. This brings the full deductive power of
dL’s ODE invariance proof rules to bear on liveness proofs. Our approach is a
general framework for understanding ODE liveness arguments. We use it to sur-
vey several arguments from the literature and derive them all as (corrected) dL
proof rules, see Table 1. This logical presentation has two key benefits:

– The proof rules are derived from sound axioms of dL, guaranteeing their
correctness. Many of the surveyed arguments contain subtle soundness er-
rors, see Table 1. These errors do not diminish the surveyed work. Rather,
they emphasize the need for an axiomatic, uniform way of presenting and
analyzing ODE liveness arguments rather than ad hoc approaches.

– The approach identifies common refinement steps that form a basis for the
surveyed liveness arguments. This library of building blocks enables sound
development and justification of new ODE liveness proof rules, e.g., by gen-
eralizing individual refinement steps or by exploring different combinations
of those steps. Corollaries 8, 10, and 18 are examples of new ODE liveness
proof rules that can be derived and justified using our uniform approach.

All proofs are in the companion report [28], together with counterexamples
for the soundness errors listed in Table 1.

2 Background

This section reviews the syntax and semantics of dL, focusing on its continuous
fragment which has a complete axiomatization for ODE invariants [20]. Full pre-
sentations of dL, including its discrete fragment, are available elsewhere [17,19].

1 This property has also been called, e.g., eventuality [23,25] and reachability [27].
To minimize ambiguity, this paper refers to the property as liveness, with a pre-
cise formal definition in Section 2. Other advanced notions of liveness for ODEs are
discussed in Section 6, although their formal deduction is left for future work.
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2.1 Syntax
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Fig. 1. Visualization of αl

(above) and αn (below). So-
lutions of αl globally spiral
towards the origin. In con-
trast, solutions of αn spiral
inwards within the inner red
disk (dashed boundary), but
spiral outwards otherwise. For
both ODEs, solutions start-
ing on the black unit circle
eventually enter their respec-
tive shaded green goal regions.

The grammar of dL terms is as follows, where
v ∈ V is a variable and c ∈ Q is a rational con-
stant. These terms are polynomials over the set of
variables V:

p, q ::= v | c | p+ q | p · q

The grammar of dL formulas is as follows,
where ∼ ∈ {=, 6=,≥, >,≤, <} is a comparison op-
erator and α is a hybrid program:

φ, ψ ::=

First-order formulas of real arithmetic P,Q︷ ︸︸ ︷
p ∼ q | φ ∧ ψ | φ ∨ ψ | ¬φ | ∀v φ | ∃v φ
| [α]φ | 〈α〉φ

The notation p < q (resp. 4) is used when
the comparison operator can be either ≥ or >
(resp. ≤ or <). Other standard logical connec-
tives, e.g.,→,↔, are definable as in classical logic.
Formulas not containing the modalities [·], 〈·〉 are
formulas of first-order real arithmetic and are
written as P,Q. The box ([α]φ) and diamond
(〈α〉φ) modality formulas express dynamic prop-
erties of the hybrid program α. We focus on con-
tinuous programs, where α is given by a sys-
tem of ODEs x′ = f(x) &Q. Here, x′ = f(x)
is an n-dimensional system of differential equa-
tions, x′1 = f1(x), . . . , x′n = fn(x), over variables
x = (x1, . . . , xn), where the LHS x′i is the time
derivative of xi and the RHS fi(x) is a polyno-
mial over variables x. The domain constraint Q
specifies the set of states in which the ODE is al-
lowed to evolve continuously. When there is no
domain constraint, i.e., Q is the formula true, the ODE is written as x′ = f(x).

Two running example ODEs are visualized in Fig. 1 with directional arrows
corresponding to their RHS evaluated at points on the plane. The first ODE,
αl ≡ u′ = −v− u, v′ = u− v, is linear because its RHS depends linearly on u, v.
The second ODE, αn ≡ u′ = −v−u( 1

4 −u
2−v2), v′ = u−v( 1

4 −u
2−v2), is non-

linear. The non-linearity of αn results in more complex behavior for its solutions,
e.g., the difference in spiraling behavior shown in Fig. 1. In fact, solutions of αn
blow up in finite time iff they start outside the disk characterized by u2+v2 ≤ 1

4 .
Finite time blow up is impossible for linear ODEs like αl [5,29].

When terms (or formulas) appear in contexts involving ODEs x′ = f(x), it
is sometimes necessary to restrict the set of free variables they are allowed to
mention. These restrictions are always stated explicitly and are also indicated as
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arguments2 to terms (or formulas), e.g., p() means the term p does not mention
any of x1, . . . , xn free, while P (x) means the formula P may mention all of them.

2.2 Semantics

States ω : V→ R assign real values to each variable in V; the set of all states is
written S. The semantics of polynomial term p in state ω ∈ S is the real value
ω[[p]] of the corresponding polynomial function evaluated at ω. The semantics of
formula φ is the set of states [[φ]] ⊆ S in which that formula is true. The semantics
of first-order logical connectives are defined as usual, e.g., [[φ ∧ ψ]] = [[φ]] ∩ [[ψ]].

For ODEs, the semantics of the modal operators is defined directly as fol-
lows.3 Let ω ∈ S and ϕ : [0, T ) → S (for some 0 < T ≤ ∞), be the unique,
right-maximal solution [5,29] to the ODE x′ = f(x) with initial value ϕ(0) = ω:

ω ∈ [[[x′ = f(x) &Q]φ]] iff for all 0 ≤ τ < T where ϕ(ζ)∈ [[Q]] for all 0 ≤ ζ ≤ τ :

ϕ(τ) ∈ [[φ]]

ω ∈ [[〈x′ = f(x) &Q〉φ]] iff there exists 0 ≤ τ < T such that:

ϕ(τ) ∈ [[φ]] and ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ τ

Informally, [x′ = f(x) &Q]φ is true in initial state ω if all states reached by
following the ODE from ω while remaining in the domain constraint Q satisfy
postcondition φ. Dually, the liveness property 〈x′ = f(x) &Q〉φ is true in initial
state ω if some state which satisfies the postcondition φ is eventually reached in
finite time by following the ODE from ω while staying in domain constraint Q.
For the running example, Fig. 1 suggests that formulas4 〈αl〉

(
1
4 ≤ ‖(u, v)‖∞ ≤

1
2

)
and 〈αn〉u2 +v2 ≥ 2 are true for initial states ω on the unit circle. These liveness
properties are rigorously proved in Examples 6 and 11 respectively.

Variables y ∈ V \ {x} not occurring on the LHS of ODE x′ = f(x) remain
constant along solutions ϕ : [0, T )→ S of the ODE, with ϕ(τ)(y) = ϕ(0)(y) for
all τ ∈ [0, T ). Since only the values of x = (x1, . . . , xn) change along the solution
ϕ it may also be viewed geometrically as a trajectory in Rn, dependent on the
initial values of the constant parameters y. Similarly, the value of terms and
formulas depends only on the values of their free variables [17]. Thus, terms (or
formulas) whose free variables are all parameters for x′ = f(x) also have constant
(truth) values along solutions of the ODE. For formulas φ that only mention
free variables x, [[φ]] can also be viewed geometrically as a subset of Rn. Such
a formula is said to characterize a (topologically) open (resp. closed, bounded,
compact) set with respect to variables x iff the set [[φ]] ⊆ Rn is topologically
open (resp. closed, bounded, compact) with respect to the Euclidean topology.
These topological conditions are used as side conditions for some of the axioms

2 This understanding of variable dependencies is made precise using function and
predicate symbols in dL’s uniform substitution calculus [17].

3 The semantics of dL formulas is defined compositionally elsewhere [17,19].
4 Here, ‖(u, v)‖∞ denotes the L∞ norm. The inequality ‖(u, v)‖∞ ≤

1
2

is expressible
in first-order real arithmetic as u2 ≤ 1

4
∧ v2 ≤ 1

4
(similarly for 1

4
≤ ‖(u, v)‖∞).
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and proof rules in this paper. In the report [28], a more general definition of
these side conditions is given for formulas φ that mention parameters y. These
side conditions are decidable [3] when φ is a formula of first-order real arithmetic
and there are simple syntactic criteria for checking if they hold [28].

Formula φ is valid iff [[φ]] = S, i.e., φ is true in all states. In particular, if the
formula I → [x′ = f(x) &Q]I is valid, the formula I is an invariant of the ODE
x′ = f(x) &Q. Unfolding the semantics, this means that from any initial state
ω satisfying I, all states reached by the solution of the ODE x′ = f(x) from ω
while staying in the domain constraint Q satisfy I.

2.3 Proof Calculus

All derivations are presented in a classical sequent calculus with usual rules for
manipulating logical connectives and sequents. The semantics of sequent Γ ` φ
is equivalent to the formula (

∧
ψ∈Γ ψ) → φ and a sequent is valid iff its corre-

sponding formula is valid. Completed branches in a sequent proof are marked
with ∗. First-order real arithmetic is decidable [3] so we assume such a decision
procedure and label proof steps with R when they follow from real arithmetic.
An axiom (schema) is sound iff all instances of the axiom are valid. Proof rules
are sound iff validity of all premises (above the rule bar) entails validity of the
conclusion (below the rule bar). Axioms and proof rules are derivable if they
can be deduced from sound dL axioms and proof rules. Soundness of the base dL
axiomatization ensures that derived axioms and proof rules are sound [17,19,20].

The dL proof calculus (briefly recalled below) is complete for ODE invari-
ants [20], i.e., any true ODE invariant expressible in first-order real arithmetic
can be proved in the calculus. The proof rule dI< (below) uses the Lie deriva-
tive of polynomial p with respect to the ODE x′ = f(x), which is defined as

Lf(x)(p)
def
=
∑
xi∈x

∂p
∂xi

fi(x). Higher Lie derivatives
.
p
(i)

are defined inductively:
.
p
(0) def

= p,
.
p
(i+1) def

= Lf(x)(
.
p
(i)

),
.
p

def
=

.
p
(1)

. Syntactically, Lie derivatives
.
p
(i)

are
polynomials in the term language. They are provably definable in dL using dif-
ferentials [17]. Semantically, the value of Lie derivative

.
p is equal to the time

derivative of the value of p along solution ϕ of the ODE x′ = f(x).

Lemma 1 (Axioms and proof rules of dL [17,19,20]). The following are
sound axioms and proof rules of dL.
〈·〉 〈α〉P ↔ ¬[α]¬P K [α](R→ P )→ ([α]R→ [α]P )

dI<
Q ` .

p ≥ .
q

Γ, p < q ` [x′ = f(x) &Q]p < q
(where < is either ≥ or >)

dC
Γ ` [x′ = f(x) &Q]C Γ ` [x′ = f(x) &Q ∧ C]P

Γ ` [x′ = f(x) &Q]P

dW
Q ` P

Γ ` [x′ = f(x) &Q]P

M[′]
Q,R ` P Γ ` [x′ = f(x) &Q]R

Γ ` [x′ = f(x) &Q]P

dGt
Γ, t = 0 ` 〈x′ = f(x), t′ = 1 &Q〉P

Γ ` 〈x′ = f(x) &Q〉P

M〈′〉
Q,R ` P Γ ` 〈x′ = f(x) &Q〉R

Γ ` 〈x′ = f(x) &Q〉P
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Axiom 〈·〉 expresses the duality between the box and diamond modalities. It
is used to switch between the two in proofs and to dualize axioms between the
box and diamond modalities. Axiom K is the modus ponens principle for the
box modality. Differential invariants dI< says that if the Lie derivatives obey the
inequality

.
p ≥ .

q, then p < q is an invariant of the ODE. Differential cuts dC
says that if we can separately prove that formula C is always satisfied along the
solution, then C may be assumed in the domain constraint when proving the
same for formula P . In the box modality, solutions are restricted to stay in the
domain constraint Q; differential weakening dW says that postcondition P is
always satisfied along solutions if it is already implied by the domain constraint.
Liveness arguments are often based on analyzing the duration that solutions
of the ODE are followed. Rule dGt is a special instance of the more general
differential ghosts rule [17,19,20] which allows new auxiliary variables to be
introduced for the purposes of proof. It augments the ODE x′ = f(x) with
an additional differential equation, t′ = 1, so that the (fresh) variable t, with
initial value t = 0, tracks the progress of time. Using dW,K,〈·〉, the final two
monotonicity proof rules M[′],M〈′〉 for differential equations are derivable. They
strengthen the postcondition from P to R, assuming domain constraint Q, for
the box and diamond modalities respectively.

Throughout this paper, we present proof rules, e.g., dW, that discard all
assumptions Γ on initial states when moving from conclusion to the premises.
Intuitively, this is necessary for soundness because the premises of these rules
internalize reasoning that happens along solutions of the ODE x′ = f(x) &Q
rather than in the initial state. On the other hand, the truth value of constant
assumptions P () do not change along solutions, so they can be soundly kept
across rule applications [19]. These additional constant contexts are useful when
working with assumptions on symbolic parameters e.g., v() > 0 to represent a
(constant) positive velocity.

3 Liveness via Box Refinements

Suppose we already know an initial liveness property 〈x′ = f(x) &Q0〉P0 for the
ODE x′ = f(x). How could this be used to prove a desired liveness property
〈x′ = f(x) &Q〉P for that ODE? Logically, this amounts to proving:

〈x′ = f(x) &Q0〉P0 → 〈x′ = f(x) &Q〉P (1)

Proving implication (1) refines the initial liveness property to the desired one.
Our approach is built on refinement axioms that conclude such implications from
box modality formulas. The following are two basic derived refinement axioms:

Lemma 2 (Diamond refinement axioms). The following 〈·〉 refinement ax-
ioms are derivable in dL.
DR〈·〉 [x′ = f(x) &R]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
K〈&〉 [x′ = f(x) &Q ∧ ¬P ]¬G→

(
〈x′ = f(x) &Q〉G→ 〈x′ = f(x) &Q〉P

)
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In axiom K〈&〉, formula [x′ = f(x) &Q ∧ ¬P ]¬G says the solution cannot get
to G before getting to P as G never happens while ¬P holds. In axiom DR〈·〉,
formula [x′ = f(x) &R]Q says that the ODE solution never leaves Q while stay-
ing in R, so the solution getting to P within R implies that it also gets to
P within Q. These axioms prove implication (1) in just one refinement step.
Logical implication is transitive though, so we can also chain a longer sequence
of such steps to prove implication (1). This is shown in (2), with neighboring
implications informally chained together for illustration:

〈x′ = f(x) &Q0〉P0

DR〈·〉 with [x′=f(x)&Q1]Q0︷︸︸︷→ 〈x′ = f(x) &Q1〉P0

K〈&〉 with [x′=f(x)&Q1∧¬P1]¬P0︷︸︸︷→ 〈x′ = f(x) &Q1〉P1

→ · · · → 〈x′ = f(x) &Q〉P (2)

The chain of refinements (2) proves the desired implication (1), but to for-
mally conclude the liveness property 〈x′ = f(x) &Q〉P , we still need to prove
the hypothesis 〈x′ = f(x) &Q0〉P0 on the left of the implication. The following
axioms provide a means of formally establishing such an initial liveness property:

Lemma 3 (Existence axioms). The following existence axioms are sound. In
both axioms, p() is constant for the ODE x′ = f(x), t′ = 1. In axiom GEx, the
ODE x′ = f(x) is globally Lipschitz continuous. In axiom BEx, the formula B(x)
characterizes a bounded set over variables x.
GEx 〈x′ = f(x), t′ = 1〉t > p()

BEx 〈x′ = f(x), t′ = 1〉(¬B(x) ∨ t > p())

Axioms GEx,BEx are stated for ODEs with an explicit time variable t, where
x′ = f(x) does not mention t. Within proofs, these axioms can be accessed after
using rule dGt to add a fresh time variable t. Solutions of globally Lipschitz ODEs
exist for all time so axiom GEx says that along such solutions, the value of time
variable t eventually exceeds that of the constant term p().5 This global Lipschitz
continuity condition is satisfied e.g., by αl, and more generally by linear ODEs
of the form x′ = Ax, where A is a matrix of (constant) parameters [5]. Global
Lipschitz continuity is a strong requirement that does not hold even for simple
non-linear ODEs like αn, which only have short-lived solutions (see Fig. 1). This
phenomenon, where the right-maximal ODE solution ϕ is only defined on a finite
time interval [0, T ) with T <∞, is known as finite time blow up of solutions [5].
Axiom BEx removes the global Lipschitz continuity requirement but weakens
the postcondition to say that solutions must either exist for sufficient duration
or blow up and leave the bounded set characterized by formula B(x).

Refinement with axiom DR〈·〉 requires proving the formula [x′ = f(x) &R]Q.
Näıvely, we might expect that adding ¬P to the domain constraint should also
work, i.e., the solution only needs to be in Q while it has not yet gotten to P :

DR〈·〉� [x′ = f(x) &R ∧ ¬P ]Q→
(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
5 It is important for soundness that p() is constant for the ODE, e.g., instances of

axiom GEx with postcondition t > 2t are clearly not valid.
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This conjectured axiom is unsound (indicated by �) as the solution could
sneak out of Q when it crosses from ¬P into P . In continuous settings, the
language of topology makes precise what this means. The following topological
refinement axioms soundly restrict what happens at the crossover point:

Lemma 4 (Topological refinement axioms). The following topological 〈·〉
refinement axioms are sound. In axiom COR, P,Q either both characterize topo-
logically open or both characterize topologically closed sets over variables x.
COR ¬P ∧ [x′ = f(x) &R ∧ ¬P ]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
SAR [x′ = f(x) &R ∧ ¬(P ∧Q)]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
Axiom COR is the more informative topological refinement axiom. Like the

(unsound) axiom candidate DR〈·〉�, it allows formula ¬P to be assumed in the
domain constraint when proving the box refinement. For soundness though, ax-
iom COR has additional topological side conditions on formulas P,Q so it can
only be used when these conditions are met. Axiom SAR applies more generally
but only assumes the less informative formula ¬(P ∧Q) in the domain con-
straint for the box modality formula in the refinement. Its proof crucially relies
on Q being a formula of real arithmetic so that the set it characterizes has tame
topological behavior [3], see the proof in the report [28] for more details.6

4 Liveness Without Domain Constraints

This section presents proof rules for liveness properties of ODEs x′ = f(x) with-
out domain constraints, i.e., where Q is the formula true. Errors and omissions
in the surveyed techniques are highlighted in blue.

4.1 Differential Variants

A fundamental technique for verifying liveness of discrete loops is the identifica-
tion of a loop variant, i.e., a quantity that decreases monotonically across each
loop iteration. Differential variants [15] are their continuous analog:

Corollary 5 (Atomic differential variants [15]). The following proof rules
(where < is either ≥ or >) are derivable in dL. Terms ε(), p0() are constant for
ODE x′ = f(x), t′ = 1. In rule dV<, x′ = f(x) is globally Lipschitz continuous.

dV∗<
¬(p < 0) ` .

p ≥ ε()
Γ, p=p0(), t=0, 〈x′ = f(x), t′ = 1〉

(
p0()+ε()t>0

)
` 〈x′ = f(x), t′ = 1〉p < 0

dV<
¬(p < 0) ` .

p ≥ ε()
Γ, ε() > 0 ` 〈x′ = f(x)〉p < 0

6 By topological considerations similar to COR, axiom SAR is also sound if it requires
that the formula P (or resp. Q) characterizes a topologically closed (resp. open) set
over the ODE variables x. These additional cases are also proved in the report [28]
without relying on the fact that Q is a formula of real arithmetic.
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Proof Sketch ([28]). Rule dV∗< derives by using axiom K〈&〉 with the choice of
formula G ≡ p0()+ε()t>0:

K〈&〉
Γ, p=p0(), t=0 ` [x′ = f(x), t′ = 1 &¬(p < 0)]p0()+ε()t ≤ 0

Γ, p=p0(), t=0, 〈x′ = f(x), t′ = 1〉
(
p0()+ε()t>0

)
` 〈x′ = f(x), t′ = 1〉p<0

Monotonicity M[′] strengthens the postcondition to p ≥ p0() + ε()t with the
domain constraint ¬(p < 0). A subsequent use of dI< completes the derivation:

¬(p < 0) ` .
p ≥ ε()

dI<Γ, p = p0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(p < 0)]p ≥ p0() + ε()t
M[′]Γ, p = p0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(p < 0)]p0() + ε()t ≤ 0

Rule dV< is derived in the report [28] as a corollary of rule dV∗<. It uses the
global existence axiom GEx and rule dGt to introduce the time variable.

The premises of both rules require a constant (positive) lower bound on
the Lie derivative

.
p which ensures that the value of p strictly increases along

solutions to the ODE, eventually becoming non-negative. Soundness of both
rules therefore crucially requires that ODE solutions exist for sufficiently long
for p to become non-negative. This is usually left as a soundness-critical side
condition in liveness proof rules [15,25], but such a side condition is antithetical
to approaches for minimizing the soundness-critical core in implementations [17]
because it requires checking the (semantic) condition that solutions exist for
sufficient duration. The conclusion of rule dV∗< formalizes this side condition as
an assumption while rule dV< uses global Lipschitz continuity of the ODEs to
show it. All subsequent proof rules can also be presented with sufficient duration
assumptions like dV∗< but these are omitted for brevity.

Example 6. Rule dV< enables a liveness proof for the linear ODE αl as suggested
by Fig. 1. The proof is shown on the left below and visualized on the right. The
first monotonicity step M〈′〉 strengthens the postcondition to the inner blue
circle u2 + v2 = 1

4 which is contained within the green goal region. Next, since
solutions satisfy u2 + v2 = 1 initially (black circle), the K〈&〉 step expresses
an intermediate value property: to show that the continuous solution eventually
reaches u2+v2 = 1

4 , it suffices to show that it eventually reaches u2+v2 ≤ 1
4 (see

Corollary 7). The postcondition is rearranged before dV< is used with ε() = 1
2 .

Its premise proves with R because the Lie derivative of 1
4 − (u2 +v2) with respect

to αl is 2(u2+v2), which is bounded below by 1
2 with assumption 1

4−(u2+v2) < 0.

∗
R 1

4 < u2 + v2 ` 2(u2 + v2) ≥ 1
2

1
4 − (u2 + v2) < 0 ` 2(u2 + v2) ≥ 1

2
dV< u2 + v2 = 1 ` 〈αl〉 14 − (u2 + v2) ≥ 0

u2 + v2 = 1 ` 〈αl〉u2 + v2 ≤ 1
4

K〈&〉 u2 + v2 = 1 ` 〈αl〉u2 + v2 = 1
4

M〈′〉 u2 + v2 = 1 ` 〈αl〉
(
1
4 ≤ ‖(u, v)‖∞ ≤

1
2

)
-1 0 1 u

-1

0

1

v
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The Lie derivative calculation shows that the value of u2+v2 decreases along
solutions of αl, as visualized by the shrinking (dashed) circles. However, the rate
of shrinking converges to zero as solutions approach the origin, so solutions never
reach the origin in finite time! This is why dV∗<,dV< need a constant positive

lower bound on the Lie derivative
.
p ≥ ε() instead of merely requiring

.
p > 0.

It is instructive to examine the chain of refinements (2) underlying the proof.
The first dV< step refines the initial liveness property from GEx, i.e., that solu-
tions exist globally (so, for at least 3

4 /
1
2 = 3

2 time), to the property u2 +v2 ≤ 1
4 .

Subsequent refinement steps can be read off from the proof steps above:

〈αl, t′ = 1〉t>3

2

dV<

→ 〈αl〉u2 + v2≤1

4

K〈&〉
→ 〈αl〉u2 + v2=

1

4

M〈′〉
→ 〈αl〉

(1

4
≤‖(u, v)‖∞≤

1

2

)
The latter two steps illustrate the idea behind the next two surveyed proof

rules. In the original presentation [27], the ODE x′ = f(x) is only assumed to
be locally Lipschitz continuous, which is insufficient for global existence of solu-
tions, making the original rules unsound. See the report [28] for counterexamples.

Corollary 7 (Equational differential variants [27]). The following proof
rules are derivable in dL. Term ε() is constant for ODE x′ = f(x) and the ODE
is globally Lipschitz continuous for both rules.

dV=

p < 0 ` .
p ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x′ = f(x)〉p = 0
dVM

=

p = 0 ` P p < 0 ` .
p ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x′ = f(x)〉P

The view of dV< as a refinement of GEx immediately yields generalizations
to higher Lie derivatives. For example, it suffices that any higher Lie derivative
.
p
(k)

is bounded below by a positive constant rather than just the first:

Corollary 8 (Atomic higher differential variants). The following proof
rule (where < is either ≥ or >) is derivable in dL. Term ε() is constant for
ODE x′ = f(x) and the ODE is globally Lipschitz continuous.

dVk
<

¬(p < 0) ` .
p
(k) ≥ ε()

Γ, ε() > 0 ` 〈x′ = f(x)〉p < 0

Proof Sketch ([28]). Since
.
p
(k)

is strictly positive, the (lower) Lie derivatives of p
all eventually become positive. This derives using a sequence of dC,dI< steps.

4.2 Staging Sets

The idea behind staging sets [25] is to use an intermediary staging set formula
S that can only be left by entering the goal region P . This staging property
is expressed by the box modality formula [x′ = f(x) &¬P ]S and is formally
justified as a refinement using axiom K〈&〉 with G ≡ ¬S.

Corollary 9 (Staging sets [25]). The following proof rule is derivable in dL.
Term ε() is constant for ODE x′ = f(x), which is globally Lipschitz continuous.

SP
Γ ` [x′ = f(x) &¬P ]S S ` p ≤ 0 ∧ .

p ≥ ε()
Γ, ε() > 0 ` 〈x′ = f(x)〉P
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In rule SP, the staging set formula S provides a choice of intermediary be-
tween the differential variant p and the desired postcondition P . Proof rules can
be significantly simplified by choosing S with desirable topological properties.
All proof rules derived so far either have an explicit sufficient duration assump-
tion (like dV∗<) or use axiom GEx by assuming that ODEs are globally Lipschitz.
To make use of axiom BEx, an alternative is to choose staging set formulas S(x)
that characterize a bounded (or even compact) set over the variables x.

Corollary 10 (Bounded/compact staging sets). The following proof rules
are derivable in dL. Term ε() is constant for x′ = f(x). In rule SPb, formula
S characterizes a bounded set over variables x. In rule SPc, it characterizes a
compact, i.e., closed and bounded, set over those variables.

SPb
Γ ` [x′ = f(x) &¬P ]S S ` .

p ≥ ε()
Γ, ε() > 0 ` 〈x′ = f(x)〉P

SPc
Γ ` [x′ = f(x) &¬P ]S S ` .

p > 0

Γ ` 〈x′ = f(x)〉P

Proof Sketch ([28]). Rule SPb derives using BEx and differential variant p to
establish a time bound. Rule SPc is an arithmetical corollary of SPb, using the
fact that continuous functions on a compact domain attain their extrema.

Example 11. Liveness for the non-linear ODE αn (as suggested by Fig. 1) is
proved using rule SPc by choosing the staging set formula S ≡ 1 ≤ u2 + v2 ≤ 2
(blue annulus) and the differential variant p = u2 + v2. The Lie derivative

.
p

with respect to αn is 2(u2 + v2)(u2 + v2 − 1
4 ), which is bounded below by 3

2
in S. Thus, the right premise of SPc closes trivially. The left premise (abbrevi-
ated 1©) requires proving that S is an invariant within the domain constraint
¬(u2 + v2 ≥ 2). Intuitively, this is true because the blue annulus can only be left
by entering u2 + v2 ≥ 2. Its (elided) invariance proof is easy [20].

1©
∗

RS ` .
p > 0

SPcu2 + v2 = 1 ` 〈αn〉u2 + v2 ≥ 2

∗
S ` [αn &¬(u2 + v2 ≥ 2)]S

cut,R 1© : u2 + v2 = 1 ` [αn &¬(u2 + v2 ≥ 2)]S

-1 0 1 u

-1

0

1

v

There are two subtleties to highlight in this proof. First, S characterizes a
compact, hence bounded, set (as required by rule SPc). Solutions of αn can blow
up in finite time which necessitates the use of BEx for proving its liveness prop-
erties. Second, S is cleverly chosen to exclude the red disk (dashed boundary)
characterized by u2 + v2 ≤ 1

4 . As mentioned earlier, solutions of αn behave dif-
ferently in this region, e.g., the Lie derivative

.
p is non-positive in this disk. The

chain of refinements (2) behind this proof can be seen from the derivation of
rules SPb,SPc in the report [28]. It starts from the initial liveness property BEx
(with time bound 1 / 3

2 = 2
3 ) and uses two K〈&〉 refinement steps, first showing
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that the staging set is left (〈αn〉¬S), then showing the desired liveness property:

〈αn, t′ = 1〉(¬S ∨ t > 2

3
)
K〈&〉
→ 〈αn〉¬S

K〈&〉
→ 〈αn〉u2 + v2 ≥ 2

The use of axiom BEx is subtle and is sometimes overlooked in surveyed
liveness arguments. For example, [23, Remark 3.6] incorrectly claims that their
liveness argument works without assuming that the relevant sets are bounded.
The following proof rule derives from SPc and adapts ideas from [24, Theorem
2.4, Corollary 2.5], but formula K in the original presentation is only assumed
to characterize a closed rather than compact set; the proofs (correctly) use the
fact that the set is bounded but this assumption is not made explicit [24].

Corollary 12 (Set Lyapunov functions [24]). The following proof rule is
derivable in dL. Formula K characterizes a compact set over variables x, while
formula P characterizes an open set over those variables.

SLyap
p ≥ 0 ` K ¬P,K ` .

p > 0

Γ, p < 0 ` 〈x′ = f(x)〉P

5 Liveness With Domain Constraints

This section presents proof rules for liveness properties x′ = f(x) &Q with do-
main constraint Q. Axiom DR〈·〉 provides direct generalizations of the proof
rules from Section 4 with the following derivation choosing R ≡ true:

Γ ` [x′ = f(x)]Q Γ ` 〈x′ = f(x)〉P
DR〈·〉 Γ ` 〈x′ = f(x) &Q〉P

This extends all chains of refinements (2) from Section 4 with an additional step:

· · · → 〈x′ = f(x)〉P
DR〈·〉
→ 〈x′ = f(x) &Q〉P

Liveness arguments become much more intricate when attempting to gener-
alize beyond DR〈·〉, e.g., recall the unsound conjecture DR〈·〉�. Indeed, unlike
the technical glitches of Section 4, our survey uncovers subtle soundness-critical
errors here. With our deductive approach, these intricacies are isolated to the
topological axioms (Lemma 4) which have been proved sound once and for all. As
before, errors and omissions in the surveyed techniques are highlighted in blue.

5.1 Topological Proof Rules

The first proof rule generalizes differential variants to handle domain constraints:

Corollary 13 (Atomic differential variants with domains [15]). The fol-
lowing proof rule (where < is either ≥ or >) is derivable in dL. Term ε() is
constant for the ODE x′ = f(x) and the ODE is globally Lipschitz continuous.
Formula Q characterizes a closed (resp. open) set when < is ≥ (resp. >).

dV<&
Γ ` [x′ = f(x) &¬(p < 0)]Q ¬(p < 0), Q ` .

p ≥ ε()
Γ, ε() > 0,¬(p < 0) ` 〈x′ = f(x) &Q〉p < 0
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Proof Sketch ([28]). The derivation uses axiom COR choosing R ≡ true, noting
that p ≥ 0 (resp. p > 0) characterizes a topologically closed (resp. open) set so
the appropriate topological requirements of COR are satisfied:

Γ ` [x′ = f(x) &¬(p < 0)]Q

¬(p < 0), Q ` .
p ≥ ε()

. . .
Γ, ε() > 0 ` 〈x′ = f(x)〉p < 0

COR Γ, ε() > 0,¬(p < 0) ` 〈x′ = f(x) &Q〉p < 0

The right premise follows similarly to dV< although it uses an intervening dC
step to add Q to the antecedents.

The original presentation of rule dV∗< [15] omits the highlighted assumption
¬(p < 0). This premise is needed for the COR step and the rule is unsound
without it. In addition, it uses a form of syntactic weak negation [15], which
is also unsound for open postconditions, as pointed out earlier [25]. See the
report [28] for counterexamples. Our presentation of dV<& recovers soundness
by adding topological restrictions on the domain constraint Q.

The next two corollaries similarly make use of COR to derive the proof
rule dVM

= & [27] and the adapted rule SLyap& [24]. They respectively general-
ize dVM

= and SLyap from Section 4 to handle domain constraints. The technical
glitches in their original presentations [24,27], which were identified in Section 4,
remain highlighted here:

Corollary 14 (Equational differential variants with domains [27]). The
following proof rules are derivable in dL. Term ε() is constant for the ODE
x′ = f(x) and the ODE is globally Lipschitz continuous in both rules. Formula
Q characterizes a closed set over variables x.

dV=&
Γ ` [x′ = f(x) & p < 0]Q p < 0, Q ` .

p ≥ ε()
Γ, ε() > 0, p ≤ 0, Q ` 〈x′ = f(x) &Q〉p = 0

dVM
= &

Q, p = 0 ` P Γ ` [x′ = f(x) & p < 0]Q p < 0, Q ` .
p ≥ ε()

Γ, ε() > 0, p ≤ 0, Q ` 〈x′ = f(x) &Q〉P

Corollary 15 (Set Lyapunov functions with domains [24]). The follow-
ing proof rule is derivable in dL. Formula K characterizes a compact set over
variables x, while formula P characterizes an open set over those variables.

SLyap&
p ≥ 0 ` K ¬P,K ` .

p > 0

Γ, p > 0 ` 〈x′ = f(x) & p > 0〉P

The staging sets with domain constraints proof rule SP& [25] uses axiom SAR:

Corollary 16 (Staging sets with domains [25]). The following proof rule
is derivable in dL. Term ε() is constant for ODE x′ = f(x) and the ODE is
globally Lipschitz continuous.

SP&
Γ ` [x′ = f(x) &¬(P ∧Q)]S S ` Q ∧ p ≤ 0 ∧ .

p ≥ ε()
Γ, ε() > 0 ` 〈x′ = f(x) &Q〉P
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The rules derived in Corollaries 13–16 demonstrate the flexibility of our re-
finement approach for deriving surveyed liveness arguments as proof rules. Our
approach is not limited to these surveyed arguments because refinement steps
can be freely mixed-and-matched for specific liveness questions.

Example 17. The liveness property u2 + v2 = 1 → 〈αn〉u2 + v2 ≥ 2 was proved
in Example 11 using the staging set formula S ≡ 1 ≤ u2 + v2 ≤ 2. Since S
and u2 + v2 ≥ 2 both characterize closed sets, axiom COR extends the chain of
refinements (2) from Example 11 to show a stronger liveness property for αn:

〈αn, t′ = 1〉(¬S ∨ t > 2

3
)
K〈&〉
→ 〈αn〉¬S

K〈&〉
→ 〈αn〉u2 + v2 ≥ 2

COR

→ 〈αn &S〉u2 + v2 ≥ 2

Formula S̃ ≡ 1 ≤ u2 +v2 < 2 also proves Example 11 but does not character-
ize a closed set. Thankfully, the careful topological restriction of COR prevents
us from unsoundly concluding the property u2 + v2 = 1→ 〈αn & S̃〉u2 + v2 ≥ 2.

This latter property is unsatisfiable because S̃ does not overlap with u2+v2 ≥ 2.

The refinement approach also enables discovery of new, general liveness proof
rules by combining refinement steps in alternative ways. As an example, the
following chimeric proof rule combines ideas from Corollaries 8, 10, and 16:

Corollary 18 (Combination proof rule). The following proof rule is deriv-
able in dL. Formula S characterizes a compact set over variables x.

SPkc&
Γ ` [x′ = f(x) &¬(P ∧Q)]S S ` Q ∧ .

p
(k)

> 0

Γ ` 〈x′ = f(x) &Q〉P

Our logical approach derives even complicated proof rules like SPkc& from
a small set of sound logical axioms, which ensures their correctness. The proof
rule Ec& below derives from SPkc& (for k = 1) and is an adapted version of
the liveness argument from [23, Theorem 3.5]. In the original presentation, addi-
tional restrictions are imposed on the sets characterized by Γ, P,Q, and different
conditions are given compared to the left premise of Ec& (highlighted below).
These original conditions are overly permissive as they are checked on a smaller
set than necessary for soundness. See the report [28] for counterexamples.

Corollary 19 (Compact eventuality [23]). The following proof rule is deriv-
able in dL. Formula Q ∧ ¬P characterizes a compact set over variables x.

Ec&
Γ ` [x′ = f(x) &¬(P ∧Q)]Q Q,¬P ` .

p > 0

Γ ` 〈x′ = f(x) &Q〉P

6 Related Work

Liveness Proof Rules. The liveness arguments surveyed in this paper were origi-
nally presented in various notations, ranging from proof rules [15,25,27] to other
mathematical notation [22,23,24,25]. All of them were justified directly through
semantical (or mathematical) means. We unify (and correct) all of these argu-
ments and present them as dL proof rules which are syntactically derived with
our refinement-based approach from dL axioms.
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Other Liveness Properties. The liveness property studied in this paper is the con-
tinuous analog of eventually [12] or eventuality [23,25] from temporal logics. In
discrete settings, temporal logic specifications give rise to a zoo of liveness prop-
erties [12]. In continuous settings, weak eventuality (requiring almost all initial
states to reach the goal region) and eventuality-safety have been studied [22,23].
In (continuous) adversarial settings, differential game variants [18] enable proofs
of (Angelic) winning strategies for differential games. In dynamical systems and
controls, the study of asymptotic stability requires both stability (an invariance
property) with asymptotic attraction towards a fixed point or periodic orbit (an
eventuality-like property) [5,24]. For hybrid systems, various authors have pro-
posed generalizations of classical asymptotic stability, such as persistence [26],
stability [21], and inevitability [7]. Controlled versions of these properties are also
of interest, e.g., (controlled) reachability and attractivity [1,27]. Eventuality(-like)
properties are fundamental to all of these advanced liveness properties. The for-
mal understanding of eventuality in this paper is therefore a key step towards
enabling formal analysis of more advanced liveness properties.

Automated Liveness Proofs. Automated reachability analysis tools [4,8] can also
be used for liveness verification. For an ODE and initial set X0, computing an
over-approximation O of the reachable set Xt ⊆ O at time t shows that all states
in X0 reach O at time t [26] (if solutions do not blow up). Similarly, an under-
approximation U ⊆ Xt shows that some state in X0 eventually reaches U [10] (if
U is non-empty). Neither approach handles domain constraints directly [10,26]
and, unlike deductive approaches, the use of reachability tools limits them to con-
crete time bounds t and bounded initial sets X0. Deductive liveness approaches
can also be automated. Lyapunov functions guaranteeing (asymptotic) stability
can be found by sum-of-squares (SOS) optimization [14]. Liveness arguments
can be similarly combined with SOS optimization to find suitable differential
variants [22,23]. Other approaches are possible, e.g., a constraint solving-based
approach can be used for finding so-called set Lyapunov functions [24]. Crucially,
automated approaches must be based on sound liveness arguments. The correct
justification of these arguments is precisely what our approach enables.

7 Conclusion

This paper presents a refinement-based approach for proving liveness for ODEs.
Exploration of new ODE liveness proof rules is enabled by piecing together
refinement steps identified through our approach. Given its wide applicability
and correctness guarantees, our approach is a suitable framework for justifying
ODE liveness arguments, even for readers less interested in the logical aspects.

Acknowledgments. We thank Katherine Cordwell, Frank Pfenning, Andrew
Sogokon, and the anonymous reviewers for their feedback on this paper. This
material is based upon work supported by the Alexander von Humboldt Foun-
dation and the AFOSR under grant number FA9550-16-1-0288. The first author
was also supported by A*STAR, Singapore.



386 Tan Y.K., Platzer A.

References

1. Abate, A., D’Innocenzo, A., Benedetto, M.D.D., Sastry, S.: Understanding dead-
lock and livelock behaviors in hybrid control systems. Nonlinear Anal. Hybrid Syst.
3(2), 150 – 162 (2009). https://doi.org/10.1016/j.nahs.2008.12.005

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press (2015)
3. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Heidelberg

(1998). https://doi.org/10.1007/978-3-662-03718-8
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