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Abstract

Hybrid dynamical systems describe the mixed discrete dynamics and continuous
dynamics of cyber-physical systems such as aircraft, cars, trains, and robots. To
justify correctness properties of the safety-critical control algorithms for their
physical models, differential dynamic logic (dL) provides deductive specification
and verification techniques implemented in the theorem prover KeYmaera X.
The logic dL is useful for proving, e.g., that all runs of a hybrid dynamical sys-
tem α satisfy safety property φ (i.e., [α]φ), or that there is a run of the hybrid
dynamical system α ultimately reaching the desired goal φ (i.e., ⟨α⟩φ). Logi-
cal combinations of dL’s operators naturally represent safety, liveness, stability
and other properties. Variations of dL serve additional purposes. Differential
refinement logic (dRL) adds an operator α ≤ β expressing that hybrid system
α refines hybrid system β, which is useful, e.g., for relating concrete system
implementations α to their abstract verification models β. Just like dL, dRL is
a logic closed under all operators, which opens up systematic ways of simulta-
neously relating systems and their properties, of reducing system properties to
system relations or, vice versa, reducing system relations to system properties.
A second variant of dL, differential game logic (dGL), adds the ability of referring
to winning strategies of players in hybrid games, which is useful for establish-
ing correctness properties where the actions of different agents may interfere
either because they literally compete with one another or because they may
interact accidentally. In the theorem prover KeYmaera X, dL and its variations
have been used for verifying ground robot obstacle avoidance, the Federal Avi-
ation Administration’s Next-Generation Airborne Collision Avoidance System
ACAS X, and the Federal Railroad Administration’s train control model.

Keywords: Differential dynamic logic, Differential refinement logic,
Differential game logic, Hybrid systems, Hybrid games, Theorem proving

1. Introduction

Hybrid dynamical systems, or hybrid systems for short, describe systems with
a mixture of discrete dynamics and continuous dynamics and have many im-
portant applications [1–13]. The most canonical applications are those where
the discrete dynamics of stepwise computation comes from computer controllers
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while the continuous dynamics following continuous functions comes from physi-
cal motion, as, e.g., in cars, aircraft, trains, and robots. In those cases a discrete
computer reaches decisions, e.g., to steer, accelerate or brake, while the vehi-
cle moves continuously, affected by the braking and steering decisions. Other
applications of hybrid systems include biological systems [14, 15] and chemical
processes [16, 17]. Many of these applications are safety-critical [8, 13], which
explains why a great deal of attention has been paid to the development of tech-
niques that help to either find mistakes in controllers, or to verify that there
are no mistakes by establishing that the controllers are guaranteed to satisfy de-
sired correctness properties in the hybrid dynamical systems model [3, 6, 18, 19].
Dealing with the real world is always difficult, which explains why verification
of hybrid dynamical systems is challenging, even undecidable [3]. However, the
benefits of a more reliable system outweigh the verification cost whenever ap-
plications are important enough that mistakes could incur significant financial
loss or even risk loss of life. This is the case in automotive, aerospace, robotics,
and railway domains but also the energy domain and chemical process control.

This article reports on logics for hybrid dynamical systems. Differential
dynamic logic (dL) [20–23] is a logic for specifying and verifying correctness
properties of hybrid dynamical systems [18, 19, 24] that is also implemented
in the hybrid systems theorem prover KeYmaera X [25] that is available on
the web1. KeYmaera X has been used in interesting applications, including
aircraft collision avoidance [26], ground robot obstacle avoidance [27], and train
control [28]. The logic dL is the foundation for a whole family of logics with
several useful variations. Differential refinement logic (dRL) [29] adds refinement
relations between hybrid systems as a first-class citizen logical operator, which is
useful for relating different models of a system or for relating those to properties
of the systems. Differential game logic (dGL) [19, 30, 31] adds the ability to
refer to the existence of winning strategies for games played on hybrid systems,
which is useful for describing systems where different agents interact and may
possibly interfere. The main purposes of all three of these logics will be sketched
in this article. Other extensions of dL are useful but beyond the scope of this
article, such as quantified differential dynamic logic (QdL) for distributed hybrid
systems [32], stochastic differential dynamic logic (SdL) for stochastic hybrid
systems [33], dynamic logic for communicating hybrid programs (dLCHP) with
parallelism [34], as well as hybrid-nominal differential dynamic logic (dHL) whose
nominals support hyper properties such as hybrid information flow [35].

A technical survey of classical differential dynamic logic appeared at LICS’12
[21], a short high-level survey of its principles at IJCAR’16 [36]. Information on
the theory of dL can be found in a book [18]. A very readable comprehensive
account of dL and dGL is provided in a textbook [19]. This article is an extended
version of an invited paper at ABZ’23 [37] extending it with detail on reasoning
principles, explanations, intuition, examples, theorems, and justifications of the
purpose, as well as more detail on games, and a short survey of applications.

1KeYmaera X is open-source software available at http://keymaeraX.org/

2

http://keymaeraX.org/


2. Differential Dynamic Logic Concepts

Differential dynamic logic is an extension of dynamic logic [38, 39], which
was meant for program verification, and was generalized to Java programs [40].

2.1. Differential Dynamic Logic

Differential dynamic logic dL [18–24] provides a programming language for
hybrid systems called hybrid programs, which works like an ordinary imperative
programming language except that it supports nondeterminism to reflect the
inherent uncertainty of the behavior of the real world and, crucially, supports
differential equations x′ = f(x)&Q to describe continuous dynamics within the
evolution domain constraint Q (an overview can be found in the literature [18,
19, 24]). Besides the operators of first-order logic of real arithmetic, dL crucially
provides modalities for hybrid programs α, where the dL formula [α]φ means
that all final2 states reachable by hybrid program α satisfy formula φ (safety),
while the formula ⟨α⟩φ means that some final state reachable by hybrid program
α satisfies formula φ (liveness).

A dL formula φ is valid, written ⊨ φ, iff φ is true in all states. Valid
dL formulas are the most valuable formulas because one can rely on them no
matter what state the world is in. Typical patterns for safety properties are dL
formulas of the form:

ψ → [α]ϕ (1)

dL formula (1) is valid iff in every state where the precondition formula ψ is true
it is the case that, after all runs of hybrid program α, postcondition formula ϕ
holds. Typical patterns for liveness properties are dL formulas of the form:

ψ → ⟨α⟩ϕ (2)

dL formula (2) is valid iff in every state where the precondition formula ψ is
true it is the case that there is a run of hybrid program α that leads to a (final)
state where the postcondition formula ϕ holds.

The dL shape (1) is akin to Hoare triples {ψ}α{ϕ} except generalized to hy-
brid systems. Like a Hoare triple for partial correctness, it does not say whether
α terminates, just that ϕ holds after it did. But since control applications are
typically meant to run for an arbitrary amount of time and stop at any moment
anyhow, termination is less of a concern than in conventional discrete programs.
The dL formula (2) says that, if ψ holds initially, then α can run to a final state
in which ϕ is true. In particular, α can terminate. Note, however, that the pres-
ence of nondeterminism is typically central in hybrid systems applications giving
the universal and existential quantification over runs of [α] and ⟨α⟩, respectively,

2Most hybrid programs are written such that all intermediate states are final states, be-
cause of their emphasis on nondeterminism. For instance, nondeterministic repetitions and
differential equations in hybrid programs can stop nondeterministically after any number of
rounds or any amount of time. The extension to differential temporal dynamic logic dTL,
formalized in PVS [41], handles cases where other intermediate states play a role [42].
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a genuinely interesting and useful meaning. The following dL formulas are more
general and have no counterpart in Hoare triples.

In the same spirit, the dL formula [α]ϕ already is “its own” weakest liberal
precondition. The weakest liberal precondition of ϕ under α is the weakest of all
the formulas that imply that ϕ holds after running α (if α terminates) [43]. But
that is exactly what the dL formula [α]ϕ already expresses, that always after
running α, ϕ holds true. Yet, [α]ϕ is not an extra-logical predicate transformer
defined via an implicit characterization of a universal property among the set
of all formulas, but rather simply a logical formula of dL itself. Similarly, for
deterministic α, ⟨α⟩ϕ is a syntactic formula that is “its own” weakest precon-
dition, since ⟨α⟩ϕ is true iff α can complete a (terminating) run to a state in
which ϕ is true.

Even if (1) and (2) are fairly common shapes for dL formulas, dL’s modal-
ities can also be combined by propositional or first-order logic operators. For
instance, the following formula expresses that, if formula ψ is true initially, then
all runs of α satisfy ϕ1 and also all runs of α satisfy ϕ2 (which can easily be
proved in dL to be equivalent to the dL formula ψ → [α](ϕ1 ∧ϕ2) that expresses
both postconditions simultaneously):

ψ → [α]ϕ1 ∧ [α]ϕ2 (3)

Mixed safety and liveness formulas, are, of course, also possible in dL. The
following formula expresses that if ψ holds initially, then all runs of α satisfy ϕ1
and at least one run of α also reaches a state where ψ is true again and, if ψ2

also holds initially, then there is even a run of β after which ϕ2 holds:

ψ →
(
[α]ϕ1 ∧ ⟨α⟩ψ ∧ (ψ2 → ⟨β⟩ϕ2)

)
(4)

The outer gray parentheses are superfluous, as they are implied by the notational
convention that unary operators including ∀,∃, [·], ⟨·⟩ bind stronger than binary
operators and that ∧ binds stronger than ∨, which binds stronger than →,↔.

Just like its quantifiers, dL’s operators can also be nested. For instance,
[α]⟨β⟩φ means that after all runs of hybrid system α there is still a run of
hybrid system β to reach a state satisfying φ, which is useful, e.g., to describe
that system β can always get all α behavior back into a safe spot. Stability
properties nest even more operators of dL. For example, stability of the origin
for the differential equation x′ = f(x) is characterized by the dL formula [44]:

∀ε>0 ∃δ>0 ∀x (Uδ(x = 0)→ [x′ = f(x)]Uε(x = 0)) (5)

The δ-neighborhood Uδ(x = 0) of the set of states where formula x = 0 is true is
definable by the formula x2 < δ2. The dL formula (5) expresses stability by say-
ing that for every desired ε-neighborhood of the origin there is a δ-neighborhood
of the origin from which all solutions of the differential equation x′ = f(x) al-
ways stay within that ε-neighborhood of the origin. Attractivity of the origin
for the differential equation x′ = f(x) is characterized by the dL formula [44]:

∃δ>0 ∀x (Uδ(x = 0)→ ∀ε>0 ⟨x′ = f(x)⟩[x′ = f(x)]Uε(x = 0)) (6)
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The dL formula (6) expresses that there is a δ-neighborhood of the origin from
which the differential equation eventually stays within every ε-neighborhood of
the origin forever. Asymptotic stability of the origin is characterized by the
conjunction of dL formulas (5) and (6) [44]. The logic dL is a proper logic, so
closed under all operators, which explains why the single logic dL can be used
to characterize so many different properties of hybrid systems. Other properties
such as controllability and reactivity can be expressed as well [45].

Example 1 (Two gear car). As a specific example consider this dL formula:

b > 0 ∧A < 0 ∧ v2 ≤ 2b(m− x) ∧ v2 ≤ 2(−A)(m− x)→
[(a :=A ∪ a :=−b); {x′ = v, v′ = a}]x ≤ m

It expresses that, under some assumptions on the parameters, a simple car that
can, by a nondeterministic choice (∪), either drive with acceleration A or with
acceleration −b following a differential equation system for any arbitrary amount
of time, in which the time-derivative x′ of position x is velocity v, whose time-
derivative is a, will always satisfy x ≤ m. More interesting car models repeatedly
choose different gears corresponding to different accelerations. Since the above
simplistic car model only has a single initial choice, and either choice is possible,
nondeterministically, its safety needs positive b but negative A, as well as a safe
distance for A and b compared to the velocity.

Axiomatics. While it is crucial that dL has a simple and elegant unambiguous
mathematical semantics [18–24] such that all dL formulas have a clear meaning
aligning with operational intuition, it is just as important that the logic dL
comes with a proof calculus with which the validity of dL formulas can be verified
rigorously [18–24, 46]. A dL formula φ is provable, written ⊢ φ, iff it has a proof
from the axioms of dL using the proof rules of dL. For example, the dL calculus
includes the axiom of nondeterministic choice:

[∪] [α ∪ β]P ↔ [α]P ∧ [β]P

Axiom [∪] states that all runs of a hybrid program α ∪ β that has a nonde-
terministic choice between hybrid program α and hybrid program β satisfy the
postcondition P iff all runs of hybrid program α satisfy P and, independently,
all runs of hybrid program β satisfy P . This equivalence is true in every state
and can be used in every context. Axiom [∪] can be used to decompose its left-
hand side [α ∪ β]P to its corresponding right-hand side [α]P ∧ [β]P . This has
the benefit of making all hybrid programs in the remaining formulas simpler and
smaller. With this simple axiom [∪], dL captures the essence of all finite branch-
ing behavior in systems [38] and supports the nondeterministic uncertainty that
is so crucial for describing the real world such as when we do not know whether
another vehicle will accelerate (α) or brake (β) so that both behaviors need to
be safe (P ).

Additionally, the dL calculus includes the axiom of sequential composition

[;] [α;β]P ↔ [α][β]P
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Axiom [;] states that all runs of a hybrid program α;β with a sequential com-
position between hybrid program α and β satisfy the postcondition P iff after
all runs of α it is true that all runs of β satisfy the postcondition P . This
axiom captures the essence of behavior happening one step at a time such as
when a car first runs its discrete control actions and then follows its continuous
plant dynamics. By using axiom [;] to decompose its left-hand side [α;β]P to
its right-hand side [α][β]P , all remaining hybrid programs also get simpler. The
subformula [β]P itself clearly is simpler but it also is a more difficult postcon-
dition for the modality [α]. These equivalence decompositions from left to right
are well-founded, because hybrid programs can only get smaller finitely often.

Example 2. Using axiom [;] in the direction from left to right on Example 1
will equivalently decompose its sequential composition into two separate box
modalities, one for the discrete program, and one for the differential equation:

b > 0 ∧A < 0 ∧ v2 ≤ 2b(m− x) ∧ v2 ≤ 2(−A)(m− x)→
[a :=A ∪ a :=−b][x′ = v, v′ = a]x ≤ m

A subsequent use of axiom [∪] in the direction from left to right will equivalently
split the nondeterministic choice into its two possible cases:

b > 0 ∧A < 0 ∧ v2 ≤ 2b(m− x) ∧ v2 ≤ 2(−A)(m− x)→
[a :=A][x′ = v, v′ = a]x ≤ m ∧ [a :=−b][x′ = v, v′ = a]x ≤ m

An assignment axiom [:=] can now, equivalently, substitute in both assignments:

b > 0 ∧A < 0 ∧ v2 ≤ 2b(m− x) ∧ v2 ≤ 2(−A)(m− x)→
[x′ = v, v′ = A]x ≤ m ∧ [x′ = v, v′ = −b]x ≤ m

Of course, dL’s axioms for differential equations are fundamental to its suc-
cess. The most exciting part of dL’s differential equations axiomatization [23]
is that it decides all equational properties of differential equations and decides
all invariants of differential equations [46]. What is significantly less powerful
but also easier to understand is dL’s axiom that replaces differential equations
x′ = f(x) with their solutions y(t) and a universal quantifier for time t ≥ 0:

[′] [x′ = f(x)]p(x)↔ ∀t≥0 [x := y(t)]p(x) (y′(t) = f(y), y(0) = x)

Example 3 (Two gear car proof). Using axiom [′] for the last part of the last
formula of Example 2 yields the following equivalence:

[x′ = v, v′ = −b]x ≤ m↔ ∀t≥0 [x :=−b/2t2 + vt+ x]x ≤ m

A subsequent use of the axiom [:=] substitutes in the assignment:

[x′ = v, v′ = −b]x ≤ m↔ ∀t≥0 (−b/2t2 + vt+ x ≤ m)

Plugging this equivalence (and a similar one for x′ = v, v′ = A into the last
formula of Example 2 yields an equivalent formula in first-order real arithmetic,
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which is decidable by quantifier elimination [47–49] and will turn out to be valid.
Consequently, following the chain of equivalences backwards, this implies that
the formula in Example 1 is valid. Proofs in dL can work like in this example,
except that they are typically conducted with all the additional proof structuring
principles of sequent calculus [18, 19]. The resulting dL proof is shown in Fig. 1
where the sequent Γ ⊢ ∆ is short for

∧
F∈Γ F →

∨
G∈∆G and A is short for the

assumptions b > 0∧A < 0∧ v2 ≤ 2b(m− x)∧ v2 ≤ 2(−A)(m− x) and R marks
the use of real arithmetic decision procedures.

∗
R A ⊢ ∀t≥0 (A/2t2 + vt+ x ≤ m) ∧ ∀t≥0 (−b/2t2 + vt+ x ≤ m)

[:=]A ⊢ ∀t≥0 [x :=A/2t2 + vt+ x]x ≤ m ∧ ∀t≥0 [x :=−b/2t2 + vt+ x]x ≤ m
[′] A ⊢ [x′ = v, v′ = A]x ≤ m ∧ [x′ = v, v′ = −b]x ≤ m
[:=]A ⊢ [a :=A ∪ a :=−b][x′ = v, v′ = a]x ≤ m
[∪]A ⊢ [a :=A ∪ a :=−b][x′ = v, v′ = a]x ≤ m
[;] A ⊢ [(a :=A ∪ a :=−b); {x′ = v, v′ = a}]x ≤ m
→R ⊢ A → [(a :=A ∪ a :=−b); {x′ = v, v′ = a}]x ≤ m

Figure 1: A proof of Example 1 in dL’s sequent calculus

The advantage of the axiom [′] is that its use explicitly replaces a differ-
ential equation by its solution. The downside is that the resulting universal
quantifier quickly leads to highly undecidable arithmetic [50] and that most dif-
ferential equations do not even have closed-form solutions to begin with [51].
This is where dL’s axioms for implicitly proving properties of differential equa-
tions without explicitly solving [23, 46] are significantly more general.

The easiest example is the differential invariant axiom for equality to 0 [19]:

DI=0

(
[x′ = f(x)] e = 0↔ e = 0

)
← [x′ = f(x)] (e)′ = 0

The axiom is written using the backwards implication φ← ψ, which is syntac-
tic sugar for the forward implication ψ → φ. The axiom gives a conditional
equivalence: The equality e = 0 is always true in the future when following the
differential equation x′ = f(x) iff the equality e = 0 is true right now, provided
the differential (e)′ = 0 is always true when following the differential equation.
Since the differential (e)′ after the ODE intuitively refers to the rate of change
of term e, axiom DI=0 expresses that e always stays zero if it starts zero and has
a zero rate of change. Defining a rate of change in a sound way is a nontrivial
challenge, requiring the use of differentials [23], but the intuitive reading suffices
for this overview. Furthermore, the axiom DI=0 is a simple illustration of the
phenomenon that dL proves equivalences between current and future truth. In
fact, one can, for equalities, even derive the differential equational equivalence:

DI′=0 [x′ = f(x)] e = 0↔ e = 0 ∧ [x′ = f(x)] (e)′ = 0

It expresses that an equation is always true after a differential equation iff it is
currently true and the differential (e)′ = 0 is always true after the differential
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equation. Besides proving an equivalence of a current and future truth, this
gives rise to an induction principle [46].

The dL proof calculus is a sound and complete axiomatization of hybrid
systems relative to either discrete dynamics [22] or to continuous dynamics
[20, 22]. That is, every formula it proves is valid (true in all states), but also
every valid formula is provable in the dL calculus from elementary properties of
the respective subdynamics.

Theorem 1 (Relative completeness of dL [20, 22, 23]). The dL calculus is a
sound and complete axiomatization of hybrid systems relative to any differen-
tially expressive3 logic L (such as the first-order logic FOD of differential equa-
tions or the discrete dynamic logic DL), i.e., every provable dL formula is valid
and every valid dL formula can be proved from L tautologies:

⊨ ϕ iff TautL ⊢ ϕ

For differential equation invariants, dL’s axioms give a sound and complete
axiomatization [46, 52] with which all true arithmetic invariants of (polynomial)
differential equations can be proved in dL while all false ones can be disproved
in dL, thereby giving a logical decision procedure. The soundness and complete-
ness theorem for differential equations in dL’s axiomatization is actually much
stronger, but one easily understandable corollary is the following, giving a pure
logic-based decision procedure of differential equation invariants:

Theorem 2 (Completeness of dL for differential equation invariants [46, 52]).
The dL calculus is a sound and complete axiomatization of differential equation
invariants, both if true and if false, i.e., when Q,P are formulas of first-order
logic of real arithmetic, then

⊨ P → [x′ = f(x)&Q]P iff ⊢ P → [x′ = f(x)&Q]P

⊨ ¬(P → [x′ = f(x)&Q]P ) iff ⊢ ¬(P → [x′ = f(x)&Q]P )

Theorem 3 (Analytic completeness [46, 52]). The differential radical invariant
axiom DRI derives in dL (where, e.g., Q is a real arithmetic formula formed

from conjunctions and disjunctions of strict inequalities and e·(∗) = 0 is a finite
computable real arithmetic formula indicating that all Lie derivatives are 0):

DRI [x′ = f(x)&Q]e = 0↔
(
Q→ e·(∗) = 0

)
Like its inductive consequence, derived axiom DI′=0, derived axiom DRI is

an equivalence of future and current truth, yet its right-hand side is even purely
arithmetical! For more general formulations with arbitrary domain constraints
and generalizations to Noetherian functions as well as decidability of algebraic

3A logic L closed under first-order connectives is differentially expressive (for dL) if every
dL formula ϕ has an equivalent ϕ♭ in L and all equivalences of the form ⟨x′ = f(x)⟩G ↔
(⟨x′ = f(x)⟩G)♭ for G in L are provable in its calculus.
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properties of algebraic hybrid systems, see elsewhere [46, 52]. Similar soundness
and completeness results hold for invariants of switched systems [53]. Liveness
properties and existence properties of differential equations have corresponding
proof principles derived in dL [54] and stability properties have proof principles
derived in dL [44, 55] using Lyapunov functions. These syntactic derivations
give the best of both worlds: fast-paced high-level reasoning yet with strong
soundness guarantees coming from the parsimonious axiomatic foundation of dL.
In fact, dL’s syntactic derivations led to the discovery of several mistakes in prior
liveness verification principles for differential equations [54] and in previously
reported Lyapunov functions [44, 55].

2.2. Differential Refinement Logic

Specifying and verifying correctness properties of hybrid systems is impor-
tant and useful, and dL is a versatile logic with a powerful proof calculus for
the job. But some aspects of hybrid systems correctness go beyond what dL is
naturally meant for. Differential refinement logic (dRL) [29, 56] adds a refine-
ment operator between hybrid programs where the dRL formula α ≤ β means
that hybrid system α refines hybrid system β. That is, dRL formula α ≤ β is
true in a state whenever all states reachable from that state by following the
transitions of α can also be reached by following the transitions of β. Note that
α ≤ β is a formula, however, not just a judgment, so it is true in some states
and false in others. Whether all α behavior is subsumed by some β behavior
may well depend on where the systems start, for which case formulas of the
form P → α ≤ β are useful to condition on formula P being true initially. The
refinement operator is useful, e.g., as γ ≤ α to say that all runs of a concrete
controller implementation γ are also runs of the abstract verification model α.

Example 4 (Two gear car refinements). Consider a time-triggered control vari-
ation of Example 1 with some test condition ST when it is safe to accelerate
for a reaction time of T , where the clock t′ = 1 is reset via t := 0 before the
differential equation and bounded by the evolution domain constraint t ≤ T :

b > 0 ∧A ≥ 0 ∧ v2 ≤ 2b(m− x)→
[(?ST ; a :=A ∪ a :=−b); t := 0; {x′ = v, v′ = a, t′ = 1& t ≤ T}︸ ︷︷ ︸

carT

]x ≤ m

Also consider an event-triggered control variation of Example 1 that uses some
other test condition SE and an event condition E to stop the differential equation
before missing the critical event of having to brake:

b > 0 ∧A ≥ 0 ∧ v2 ≤ 2b(m− x)→
[(?SE ; a :=A ∪ a :=−b); t := 0; {x′ = v, v′ = a, t′ = 1&E}︸ ︷︷ ︸

carE

]x ≤ m

The time-triggered system is easy to implement yet the event-triggered system
is easy to verify, because it merely reacts to the event in E as needed rather
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than having to predict the impact of the acceleration control decision for the
reaction time T . A dRL proof of safety of the time-triggered system derives from
the simpler proof of safety of the event-triggered system together with a simple
proof that the time-triggered system refines the event-triggered system [56]:

b > 0 ∧A ≥ 0 ∧ v2 ≤ 2b(m− x)→ carT ≤ carE ∧ [carE ]x ≤ m (7)

Axiomatics. The box refinement rule shows that, if precondition P is true, then
all runs of the concrete system γ satisfy postcondition Q (conclusion below rule
bar), provided that the same implication holds for the abstract system α (left
premise) and that the concrete system γ refines the abstract system α when
starting in any state satisfying the precondition P (right premise).

[≤]
P → [α]Q P → γ ≤ α

P → [γ]Q

The box refinement rule [≤] reduces one box property (conclusion) to another
box property (left premise) and a refinement property (right premise), which is
clever if the abstract system α is easier to verify than the concrete system γ.
Even if the abstract system α has more behavior than the concrete γ from initial
states satisfying P according to the second premise, its description and its proof
of safety may still be easier. This happens, for example, when the abstract
system α is more nondeterministic leaving out implementation detail that is
important for performance of the actual implementation but quite irrelevant to
safety. The logic behind rule [≤] can also be summarized more succinctly with
the box refinement axiom that it derives from, saying that if α refines β then
all α runs satisfy P provided that all β runs satisfy P :

[≤] α ≤ β → ([α]P ← [β]P )

A similar diamond refinement rule handles refinements of ⟨·⟩ properties (conclu-
sion and left premise), but the converse refinement is required (right premise),
because only if the hybrid system α refining the system γ from any state satis-
fying P can reach Q can the more flexible system γ reach Q, too:

⟨≤⟩
P → ⟨α⟩Q P → α ≤ γ

P → ⟨γ⟩Q

Example 5. By axiom [≤], the provable dRL formula (7) in Example 4 with
its event-triggered safety and time-triggered refinement of the event-triggered
system directly yields a simple dRL proof of safety of the time-triggered system:

b > 0 ∧A ≥ 0 ∧ v2 ≤ 2b(m− x)→ [carT ]x ≤ m

Just as dRL’s box and diamond refinement rules [≤],⟨≤⟩ reduce a system
property to a refinement property (second premise), the converse reduction is
possible in dRL as well. The sequential composition refinement rule (;) reduces a
refinement of a sequential composition (conclusion) to a refinement of the first
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program (left premise) and a property of the first concrete system α1 (right
premise) which in turn refers to a postcondition that is a refinement (β1 ≤ β2):

(;)
P → α1 ≤ α2 P → [α1](β1 ≤ β2)

P → (α1;β1) ≤ (α2;β2)

The (;) rule of dRL is particularly clever, exploiting the fact that dRL is a proper
logic closed under all operators. Unlike the following easier (derived) version

(;)s
P → α1 ≤ α2 β1 ≤ β2
P → (α1;β1) ≤ (α2;β2)

rule (;) maintains more knowledge (such as assumption P and the effects of
hybrid system α1) than the simple structural refinement rule (;)s which loses
all information (even just assuming P would be unsound in its second premise,
because P may have become false after αi). Since the simple rule (;)s has to dis-
card all assumptions, it rarely applies, because hybrid systems often only refine
each other given the contextual information of what happened previously and
what was assumed initially, which is explicitly available in the second premise of
the composition refinement rule (;). Again, the logic behind the sequential com-
position refinement rule (;) can be summarized more succinctly with the axiom
that it derives from, which expresses that two sequential compositions are in re-
finement if the respective heads of the sequential compositions are in refinement
and, always after the refining head, the respective tails are in refinement:

(;) α1;α2 ≤ β1;β2 ← α1 ≤ β1 ∧ [α1](α2 ≤ β2)

The same idea is behind the unlooping axiom that reduces the refinement of
two loops to a refinement of the loop bodies always after the refining loop:

(unloop) α∗ ≤ β∗ ← [α∗](α ≤ β)

There are further dRL axioms for proving refinements of loops, though, by a
fixpoint-like argument when the loop is left or right of ;, respectively:

(loopl) α
∗;β ≤ β ← [α∗](α;β ≤ β) (loopr) α;β

∗ ≤ α← α;β ≤ α

Observe how the [α∗] modality is only needed when the fixpoint starts at the
end of the loop as in (loopl), not when it starts in the beginning as in (loopr).
The elegant compositional (unloop) axiom and dL’s complete axiomatization for
equational properties of differential equations [46] are exploited to obtain de-
cidability for refinements of a nontrivial fragment of hybrid programs [56]. The
key axiom about differential equation refinements is the following equivalence:

(ODE) x′ = e&P ≤ x′ = k&Q↔ [x′ = e&P ](x′ = k ∧Q)

It expresses that, for arbitrary terms e and k, differential equation x′ = e&P
refines differential equation x′ = k&Q iff, always after the former differential
equation, the latter differential equation and evolution domain constraint holds.
Notice how the postcondition x′ = k∧Q is a conjunction of an equation of differ-
entials and the formula constituting the evolution domain constraint [23], hence,
for suitable Q, decidable by a logical equivalence transformation (Theorem3).
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2.3. Differential Game Logic

dGL generalizes dL to provide modalities referring to the existence of winning
strategies for hybrid games [19, 30, 31]. Hybrid games describe games played on
hybrid systems. The essential difference is that hybrid systems merely feature
nondeterministic resolution of choices (such as at ∪) while hybrid games feature
adversarial resolution of choices with competing intent or effect. Imagine two
players, called Angel and Demon, are each in charge of some of the decisions
during the run of a hybrid system. Then, rather than asking whether all or
some runs of the hybrid system satisfy a property, it makes sense to, instead,
ask which of the players has a winning strategy to ensure their desired property
when playing the hybrid game, no matter what strategy the opponent follows.
Games are useful to investigate whether one player has a winning strategy in a
truly competitive situation such as when Angel and Demon each control soccer
robots from competing RoboCup teams. It is also useful to model the game that
a controlled system played by Angel plays against an unknown environment
played by Demon. For the same reason, hybrid games can also be useful to
model the game that two pilots play with each other who both want to avoid
collisions but may, nevertheless, reach decisions that inadvertently interfere with
one another, for example, if both pilots decide to try to prevent a collision by
ascending above the respective other aircraft, which they cannot both achieve.

Besides properties of competitive hybrid games, dGL is useful for correctness
properties of hybrid systems in which some but not all actions are under the
system designer’s control. This includes systems with uncertainty caused by
actions of other agents or the environment that may interfere. Hybrid games
reasoning in dGL is useful for systematically synthesizing safe hybrid system
controllers [57] by solving how the control player resolves its choices to win
against the environment. Hybrid systems synthesis is hybrid game solving [57,
58].

Hybrid games α of dGL have actions where each decision is resolved by one of
the two players Angel and Demon, respectively. In dL and dRL, the modality [α]
refers to all runs of hybrid system α and ⟨α⟩ refers to some run of hybrid system
α. Hybrid games α do not have runs like systems do, because the outcome of
a game play depends on the interplay of decisions of both players during the
game α, where Angel decides all of her choices while Demon decides all of his
choices, both of which are resolved interactively during game play.

In dGL, the modality [α], thus, instead refers to the existence of winning
strategies for Demon in hybrid game α. The dGL formula [α]φ expresses that
there is a winning strategy for player Demon in the hybrid game α with which he
can resolve Demon’s decisions to reach any state in which formula φ is true, no
matter what counterstrategy Angel plays to resolve her decisions during α. The
dGL formula ⟨α⟩φ expresses that there is a winning strategy for player Angel in
the hybrid game α with which she can resolve Angel’s decisions to reach any
state in which formula φ is true, no matter what counterstrategy Demon plays.

This conservatively extends dL since player Demon has no decisions in a
hybrid system α where Angel resolves all nondeterminism, because the dGL
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formula [α]φ then exactly means that Demon has a strategy to achieve φ in the
game α where Demon has no say and only Angel gets to make any decisions, i.e.,
φ is true after all runs of α. Likewise, the dGL formula ⟨α⟩φ for a hybrid system
α exactly means that Angel has a strategy to achieve φ in a game where Angel
gets to make all decisions (so she always helps) and Demon can never interfere,
i.e., φ is true after at least one run of α. Hybrid systems are the hybrid games
where only a single player, Angel, gets to make any choices. The other extreme
is dGL with differential hybrid games [31], which are hybrid games featuring
differential games [59], i.e., differential equations whose behavior is subject to
continuous-time decisions by the two players Angel and Demon. In other words,
differential hybrid games even feature player interaction during their continuous
dynamics, not just during their discrete, temporal, and adversarial dynamics.

Read as a dGL formula with hybrid game α, dGL formula

ψ → [α]ϕ (1∗)

is valid iff from every state satisfying precondition ψ, Demon has a winning
strategy in game α to achieve ϕ no matter what Angel plays. As a dGL formula,

ψ → ⟨α⟩ϕ (2∗)

is valid iff from every state satisfying ψ, Angel has a winning strategy in game
α to achieve ϕ. The interactive nature of game play in dGL gives (1) and (2)
with hybrid games α in dGL more flexible interactions between the players than
merely referring to all runs in dL formula (1), or to some run in dL formula (2).

Example 6 (Two gear car game). As a specific example consider this dGL for-
mula, which is a variation of the dL car from Example 1:

b > 0 ∧ v2 ≤ 2b(m− x)→ [(a :=A ∪ a :=−b)d; {x′ = v, v′ = a}]x ≤ m

This dGL formula expresses that Demon has a winning strategy to ensure x ≤ m
since, being in scope of a dual game ·d, Demon is in charge of deciding whether
the left choice a :=A of ∪ is taken or the right choice a :=−b. Strictly speaking,
the assignments are also in a dual game context, but it does not matter who
plays the assignment, because assignments leave nothing to be decided. Note
how the above dGL formula needs less assumptions than the dL formula from
Example 1 precisely because the player has more control over what happens.
Demon controls the choice in ·d but Angel controls the duration of the subse-
quent differential equation. If the dual operators are placed elsewhere, even less
assumptions are needed for Demon to have a winning strategy:

x ≤ m→ [(a :=A ∪ a :=−b); {x′ = v, v′ = a}d]x ≤ m

But in this case, the game trivializes, because, after Angel picks either accelera-
tion, Demon is in control of the differential equation (since it is in the ·d context),
so he can simply choose to evolve for 0 time making the choice of a irrelevant.
Since Demon already has a winning strategy, Angel cannot possibly also have a
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winning strategy for the opposite goal ¬x ≤ m, because otherwise playing both
winning strategies against one another would simultaneously achieve x ≤ m and
¬x ≤ m, which is impossible. That is, the following dGL formula is not valid:

x ≤ m→ ⟨(a :=A ∪ a :=−b); {x′ = v, v′ = a}d⟩¬x ≤ m

All these dGL formulas are provable in the dGL proof calculus with a proof similar
to the one in Fig. 1 but suitably adapted to handle the presence of ·d dualities.
The last dGL formula, which is not valid, instead can be disproved in dGL.

Axiomatics. Somewhat ironically but unsurprisingly, many dGL axioms are the
same as dL axioms. For example, axiom ⟨∪⟩ expresses that Angel has a winning
strategy in the game of choice α∪ β to achieve P iff she has a winning strategy
in the subgame α to achieve P or if she has such a strategy in subgame β.

⟨∪⟩ ⟨α ∪ β⟩P ↔ ⟨α⟩P ∨ ⟨β⟩P

This axiom is the same as for hybrid systems even if it now refers to hybrid
games α, β rather than just hybrid systems, because as long as the player mak-
ing the choice is the one currently being asked for the existence of a winning
strategy, there is no noticeable change in these simple cases even if the semantic
justification of soundness is vastly different. With the ⟨·⟩ modality, axiom ⟨∪⟩
refers to the existence of Angel’s winning strategy for the respective games, but
Angel is the one deciding how to play her ∪ operator, explaining the disjunction.

The most important defining axiom of dGL, instead, is for the game duality
operator αd which swaps the roles of the two players Angel and Demon:

⟨d⟩ ⟨αd⟩P ↔ ¬⟨α⟩¬P

That is, Angel has a winning strategy to achieve P in the dual game αd that
flips the game around iff, when pretending to play for her opponent, it is not
the case that she has a winning strategy in the opposite game α to achieve the
opposite ¬P of what she truly wants to achieve. Since the [·] axiom (which
is the determinacy axiom in hybrid games saying that Demon has a winning
strategy in α iff Angel has no winning strategy in α to achieve the opposite)
still shows [α]P ↔ ¬⟨α⟩¬P for dGL, the duality

⟨αd⟩P ↔ [α]P (8)

derives from axiom ⟨d⟩, which implies that duality operators swap diamond
modalities with box modalities and vice versa, giving rise to the dynamic in-
teractivity of hybrid games. That is, dGL formula (8) makes explicit that the
·d operator indicates where the game flips around from Angel’s perspective to
Demon’s perspective. The easiest way to understand the added power of dGL
compared to dL exactly uses the fact that dualities make modalities flip from
box to diamond and back via (8). The dL modalities [α] and ⟨α⟩ refer to all or
some runs of α. Since dGL dualities αd cause modalities to flip via (8), every
part of a hybrid game may alternate between universal and existential resolution
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of the remaining decisions in the subgame, leading to unbounded alternation,
directly in line with the alternating roles of game play resolution by Angel and
Demon, respectively [30]. Another way to understand the nesting of dualities in
hybrid games is that they cause similar nestings of fixpoint alternations [60, 61].

dGL is a gentle, innocent generalization of dL, because the addition of the
duality operator ·d is the only syntactic change. However, games call for an
entirely new reading of the modalities and a different style of semantics for the
interactivity of game play that is absent from systems that either run or don’t.
This fundamental change causes new opportunities and new proving challenges.

In fact, some reasoning principles that are perfectly fine for hybrid systems
are unacceptable for hybrid games, because game dualities may turn boxes into
diamonds and vice versa. For example, the hybrid systems axiom ⟨⟩∨ commut-
ing diamonds with disjunctions is unsound for hybrid games

⟨⟩∨ ⟨α⟩(P ∨Q)↔ ⟨α⟩P ∨ ⟨α⟩Q

because using βd for α would, by formula (8), flip its diamonds into boxes, but
neither [β]P nor [β]Q nor their disjunction follows from [β](P ∨Q). Indeed, the
resulting formula [β](P ∨Q)↔ [β]P ∨ [β]Q is not even valid for hybrid systems,
because, even if all runs of β satisfy the disjunction P ∨ Q, that still does not
mean they would either all satisfy P or all satisfy Q.

But this duality principle from formula (8) does not explain why the following
hybrid systems axiom for backwards iteration is unsound for hybrid games:

←−
[∗] [α∗]P ↔ P ∧ [α∗][α]P

The reason why
←−
[∗] is unsound for hybrid games is that its right-hand side expects

one round of advance notice when terminating a repetition α∗, which is a harder
game challenge that has nothing to do with box versus diamond modalities.

Not just axioms but proof rules are affected by the presence of games as well.
dL’s Gödel generalization rule G concludes that any formula P with a proof also
holds after all runs of hybrid program α, because if P is true everywhere then
it’s also true always after running hybrid program α.

G
P

[α]P

But dL’s rule G would be unsound for dGL. Even for trivially true postconditions
such as x2 ≥ 0, Demon may not have a winning strategy to achieve x2 ≥ 0 in
the hybrid game α in case Angel has a strategy to trick Demon into not having
any more permitted moves in the hybrid game α before even ever making it to
a final state. dGL still obeys the monotonicity rule saying that if Demon has a
strategy in hybrid game α to achieve P , then if P implies Q (premise), Demon
also has a strategy in the same game α to achieve Q:

M[·]
P → Q

[α]P → [α]Q

dGL is sound and complete relative to dGL’s differentially expressive logics.
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Theorem 4 (Relative completeness of dGL [30]). The dGL calculus is a sound
and complete axiomatization of hybrid games relative to any differentially ex-
pressive logic L (for dGL), i.e., every provable dGL formula is valid and every
valid dGL formula can be proved from L tautologies:

⊨ ϕ iff TautL ⊢ ϕ

The addition of differential games to differential game logic does not af-
fect expressibility and yet still leads to natural differential game invariant proof
principles [31] that prove properties of differential games without solving them.
Analyzing differential games is notoriously challenging. Differential game invari-
ants were the first verification technique for differential games with a correctness
proof (discounting verification techniques whose correctness proofs were later
shown incorrect).

3. KeYmaera X Theorem Prover for Hybrid Systems

The dL, dRL and dGL proof calculi are implemented in the KeYmaera X the-
orem prover4 [25], enabling users to specify and verify their hybrid systems and
hybrid games applications. KeYmaera X provides automatic, interactive, and
semiautomatic proofs, proof search tactics and custom proofs [64], interfacing
with real arithmetic decision procedures implemented in Mathematica or Z3.

Unlike its predecessor KeYmaera [62], KeYmaera X [25] is a microkernel
prover with an exceedingly small trusted core of only a few thousand lines of
code, which leads to several design advantages [66]. The biggest advantage of
the microkernel design of KeYmaera X is that its uniform substitution proof
calculus for dL [23] is simple and parsimonious to implement and also verified
to be sound in both Isabelle/HOL and Coq [67]. The implementation of an ax-
iom therefore consists solely of the single concrete dL formula that it represents,
with all other instances generated by uniform substitution. This design isolates
potential soundness mistakes in KeYmaera X to the specific source code imple-
mentation and the decision procedures it is calling for real arithmetic (which
have provably sound implementations [68–70] even if they are not yet compet-
itive with unverified implementations for high degree polynomials). The fact
that dL’s soundness proofs [23] have been proved formally [67] and that the re-
maining real arithmetic is decidable by an algorithm with a formal correctness
proof [70] gives dL an exceedingly strong soundness foundation. With a chain of
theorem provers, the resulting guarantees can also be carried forward to verified
machine code [71]. Overall, dL provides increasingly strong chains of proofs to
establish the correctness of dynamical systems.

4The name KeYmaera X comes from its predecessor KeYmaera [62] which was based on the
KeY prover for Java [63]. KeYmaera sounds like the hybrid animal Chimaera from ancient
Greek mythology. This naming tradition also explains the name of KeYmaera X’s tactic
language, Bellerophon [64], named after the hero who defeated the Chimaera, and why Pegasus
[65], named after the winged horse that helped Bellerophon, is the name of the invariant
generator for KeYmaera X.
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4. Application Overview

Applications of dL include verified collision freedom in the Federal Aviation
Administration’s (FAA) Next-Generation Airborne Collision Avoidance System
ACAS X [26], verified ground robot obstacle avoidance despite actuator distur-
bance and sensor uncertainty [27], and verified train separation of train con-
trollers for the kinematic model of the Federal Railroad Administration (FRA)
with roll and curvature resistance, track slope forces, and air pressure brake force
propagation [28]. The technical challenges overcome in these case studies are
different, beyond the high-level differences of flying [26], free ground motion [27],
and railroad motion [28], respectively. The ACAS X verification dealt with the
complexity of a complicated high-dimensional but spatially sparse MDP policy
optimization with the uncertainty of human pilot reactions in vertical aircraft
motion. The ACAS X verification reduced half a trillion cases to one page of dL
and found 15 billion counterexamples in ACAS X. The ground robot verification
dealt with static, passive and passive friendly safety with static and dynamic
obstacles in unstructured environments of robot motion as well as the common
challenge of sensor and actuator uncertainty. Identifying the safe distance that
a ground robot needs to keep to avoid colliding with an obstacle now reduces
to identifying the obstacle’s parameter bounds. The train control verification
handled the full physics of the FRA’s kinematic model with the competing ef-
fect of gravity slowing down trains uphill and speeding them up downhill while
faster motion generates more velocity from downhill motion yet also increases
resistance, all while air pressure brakes slowly build up and propagate braking
force along the train, needing dual speed bounds.

Other applications of dL include automotive [72–75], correct-by-construction
driving [76], robotics [77–79] and robot manipulation [80], component-based [81],
skill-based [82] and service-oriented decompositions [83], multi-choice reactive
controllers [84], hybrid active objects [85, 86], PLC control transformations [87],
Simulink model transformations [88–90], and safe AI for CPS [91–95]. Applica-
tions of dL beyond conventional mobile cyber-physical systems include verified
controllers for plasma positioning [96], chemical reactions [17], SCUBA diving
[97], and numerical software [98].

The logic dRL is useful for proving refinement relations of implementations to
abstract verification models. Applications of dRL include general proofs estab-
lishing relations of easily verified event-triggered models to easily implemented
time-triggered models [99]. Event-triggered models are easier to verify, because
their correctness solely relies on immediately following the correct response for
every relevant event, which are assumed to be detected perfectly and immedi-
ately. Time-triggered models instead are easy to implement, because all they
do is read sensors and act within a certain period of time, but they are much
harder to verify, because reaction delays may make the system miss a critical
event, causing safety hazards and indicating poor event abstraction.

Applications of dGL include verified collision freedom despite intruder ac-
tions in the Next-Generation Airborne Collision Avoidance System ACAS X
[100] as well as structured proof languages for hybrid systems and hybrid games
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[101, 102], and systematic control envelope synthesis for hybrid systems [57].
Constructive versions of dGL [103] have applications in setting the foundation
for correct monitors for cyber-physical system controllers [102], constructive
crossovers of dGL and dRL provide refinements between hybrid games and sys-
tems proving that winning strategies reify as programs winning the games [58],
and in the verification of intermittently powered embedded systems [104], where
correct behavior needs to be maintained despite temporary power loss.

Yet other applications use the QdL extension of dL for distributed hybrid sys-
tems [32] to study distributed car controllers for an unbounded number of cars
on a road [72], distributed aircraft controllers for an unbounded number of, e.g.,
unmanned aerial vehicles [105], surgical robot controls for an unbounded num-
ber of surgical operating boundaries [106], and mobile ground robot controllers
for an unbounded number of static and moving dynamic obstacles [27].

5. Related Work

There are three primary approaches for analyzing hybrid systems properties
[3, 7, 107–109] all of which are too wide to discuss here in full: reachability and
model checking, abstract interpretation, and deductive proofs.

Reachability analysis and model checking [110] systematically compute the
set of all reachable states from a sufficiently small initial region and focus on
linear systems [111, 112], use support function representations [113], or Taylor
models [114]. The advantage of reachability analysis and model checking is
that their basis in numerical computation makes them fairly automatic, but
challenges include the need to manually select parameters such as step sizes,
time horizons, and support function templates to obtain results. That is why
analyses typically have to focus on small compact initial regions and state spaces
for fixed finite time horizons to obtain meaningful results. SpaceEx, for instance,
also generates images illustrating the computed reachable sets [112], which can
give users an intuition about the system.

Abstract interpretation has been proposed for hybrid systems focusing on
fixed representations of overapproximations of reachable sets in which the actual
control software is analyzed [115]. Abstract interpretation has been quite suc-
cessful for discrete software programs and is often more automatic than model
checking, but abstract interpretation tools are customized to one particular type
of question that the abstract domain is tuned for. The core essential difference
between model checking [116, 117] and abstract interpretation [118] is the pres-
ence of a widening operator in abstract interpreters that speeds up convergence
at the expense of losing some precision.

Deduction for hybrid systems [18, 19, 24, 119, 120] is rooted in logic and
systematically constructs a symbolic proof of correctness. The advantage is
that symbolic constructs are easier to get sound than numerical computations
and that the proof is a direct witness of truth. Proofs for hybrid systems can
also work compositionally stemming from the compositional semantics of logics
for hybrid systems [18–24, 121]. The downside is that proofs for applications
that exceed the present proof automation capabilities need to be guided by
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manual insights, but the resulting advantage is that they can be guided by
human insights, because proofs are transparent and explain the reasoning. Solid
progress in proof automation often subsequently automates more generally [46,
52, 54–57, 65, 81, 122, 123] what previously still needed human guidance.

Among the deductive hybrid systems proof approaches, and certainly within
the dL family, differential dynamic logic may have received the most signifi-
cant attention. This makes it harder to compare it on a fair basis to other
approaches. dL features an exceedingly rich meta-theory of soundness and com-
pleteness [20, 22, 23, 46]. dL and its siblings have been implemented in a series
of three very different theorem provers KeYmaera [62], KeYmaeraD [124] and
KeYmaera X [25], which helped tease out the right way of doing sound hybrid
systems deduction. A technical comparison between the provers is reported in
the literature [66]. Completeness on the theoretical side and usable tools on the
practical side may help explain why dL has been used in so many case studies.

dL has also been implemented both as a deep embedding in Isabelle/HOL as
well as Coq [67] and as a shallow embedding in Isabelle/UTP [125, 126]. The
deep embedding is needed to establish formal meta theorems about dL such as
soundness and is needed to obtain a provably sound prover microkernel. The
shallow embedding, instead, establishes a notational embedding of dL, thereby
reusing Isabelle Isar proof styles and Sledgehammer without hybrid systems
reasoning. A temporal logic extension of dL [42] is formalized in PVS [41].

Hybrid Hoare Logic (HHL) provers for Hybrid CSP with Duration Calculus
have been implemented both in Isabelle/HOL [127] and in Python [128]. HHL
proof rules are often more complicated, because the semantics is more determin-
istic, giving more intricate conditions for handovers between different parts of
Hybrid CSP. Hybrid CSP supports generation of SystemC code [129], which is
useful even if it is not formally verified like dL’s VeriPhy pipeline to executable
code [71]. The Chinese Train Control System has been verified in HHL [130],
which is comparable to the European Train Control System verified in dL [45].

6. Conclusions and Research Outlook

Differential dynamic logic and its siblings provide a solid logical foundation
for dynamical systems analysis and design. They come with an exceedingly rich
theory, including completeness, practical theorem prover implementations with
significant automatic proof search procedures, and have played an important role
in applications, including leading to the discovery of 15 billion counterexamples
in the Next-Generation Airborne Collision Avoidance System ACAS X.

Owing to the generality of dynamical systems, it is no surprise that the gen-
erality of dL and its siblings make them suitable for a wide range of applications.
Since dL provides modalities for every hybrid dynamical system and a relatively
complete axiomatization, dL can be used for proofs of any such dynamical sys-
tem. At the same time, there are interesting practical challenges and insights
waiting in every application. After all, every application has different control
challenges and needs different control insights. Flying drones also requires dif-
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ferent decisions than driving trains. But the same logic can be used to find out
what these control decisions are, and then justify that they are chosen correctly.

Cyber-physical systems are everywhere as technical systems, and dynamical
systems are everywhere as mathematical models. Both can be analyzed using
dL and its siblings. Having said that, even if dL and its siblings are perfectly
compositional [18, 19, 21, 36, 121] so that a proof of a big model reduces to a
logical combination of proofs of its submodels, it is still a challenge to scale to
large systems. Even if component techniques [81], systematic refinement refac-
torings [131] and design processes [132] help, applications, nevertheless, have a
never-ending hunger for scale that is in need of additional structuring principles
[101] and additional proof automation techniques [65]. While dL and its siblings
identify all the right principles, it is still an interesting and impactful challenge
to influence industrial practice by affecting and translating standard industrial
notation. The trick is to do this in a way that minimizes overhead in both
directions and maximizes the free preservation of information and invariants.

While dL shines particularly at establishing correctness of hybrid systems
algorithms themselves, the correctness of lower-level implementations is no less
important. Of course, low-level implementations are doomed to be wrong if the
high-level control algorithms are incorrect. But low-level implementations may
still have mistakes once the high-level control algorithms are correct. The dL
line of work has three potential remedies, all of which deserve further study to
increase practicality. One is the use of dRL with explicit proofs of refinement of
verified abstract models to concrete controllers inheriting their safety guarantees
[29, 99]. Another is the use of the dL-based shielding technique ModelPlex for
provably correct monitor synthesis to carry safety guarantees about hybrid sys-
tems models over to cyber-physical system implementations [133], which also
forms the basis of a verified pipeline from verified hybrid systems models to
verified machine code [71]. ModelPlex is also the technical heart and soul of
the dL-based shielding technique that enables the safe use of artificial intelli-
gence techniques such as reinforcement learning [91, 134] and neural network
control [95] in cyber-physical systems. Yet another are systematic relations in
constructive dGL of verified models to monitors and controllers [58, 102].
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differential dynamic logic, in: Y. Bertot, V. Vafeiadis (Eds.), Certified
Programs and Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris,
France, January 16-17, 2017, ACM, New York, 2017, pp. 208–221. doi:

10.1145/3018610.3018616.

[68] A. Platzer, J.-D. Quesel, P. Rümmer, Real world verification, in: R. A.
Schmidt (Ed.), CADE, Vol. 5663 of LNCS, Springer, Berlin, 2009, pp.
485–501. doi:10.1007/978-3-642-02959-2_35.

[69] M. Scharager, K. Cordwell, S. Mitsch, A. Platzer, Verified quadratic vir-
tual substitution for real arithmetic, in: M. Huisman, C. S. Pasareanu,
N. Zhan (Eds.), FM, Vol. 13047 of LNCS, Springer, 2021, pp. 200–217.
doi:10.1007/978-3-030-90870-6_11.

[70] K. Kosaian, Y. K. Tan, A. Platzer, A first complete algorithm for real
quantifier elimination in Isabelle/HOL, in: B. Pientka, S. Zdancewic
(Eds.), Proceedings of the 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs, ACM, New York, 2023, p. 211–224.
doi:10.1145/3573105.3575672.

[71] B. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, A. Platzer, VeriPhy:
Verified controller executables from verified cyber-physical system models,
in: D. Grossman (Ed.), Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2018,
ACM, 2018, pp. 617–630. doi:10.1145/3192366.3192406.

26

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/s10703-020-00355-z
https://doi.org/10.1007/s10703-020-00355-z
https://doi.org/10.1007/978-3-030-64354-6_2
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1007/978-3-030-90870-6_11
https://doi.org/10.1145/3573105.3575672
https://doi.org/10.1145/3192366.3192406


[72] S. M. Loos, A. Platzer, L. Nistor, Adaptive cruise control: Hybrid, dis-
tributed, and now formally verified, in: M. Butler, W. Schulte (Eds.),
FM, Vol. 6664 of LNCS, Springer, Berlin, 2011, pp. 42–56. doi:10.1007/
978-3-642-21437-0_6.

[73] A. Abhishek, H. Sood, J. Jeannin, Formal verification of braking while
swerving in automobiles, in: A. D. Ames, S. A. Seshia, J. Deshmukh
(Eds.), HSCC ’20: 23rd ACM International Conference on Hybrid Sys-
tems: Computation and Control, Sydney, New South Wales, Australia,
April 21-24, 2020, ACM, 2020, pp. 27:1–27:11. doi:10.1145/3365365.

3382217.

[74] M. Strauss, S. Mitsch, Slow down, move over: A case study in formal
verification, refinement, and testing of the responsibility-sensitive safety
model for self-driving cars, in: V. Prevosto, C. Seceleanu (Eds.), Tests
and Proofs - 17th International Conference, TAP 2023, Leicester, UK,
July 18-19, 2023, Proceedings, Vol. 14066 of LNCS, Springer, 2023, pp.
149–167. doi:10.1007/978-3-031-38828-6_9.

[75] Y. Selvaraj, W. Ahrendt, M. Fabian, Formal development of safe auto-
mated driving using differential dynamic logic, IEEE Trans. Intell. Veh.
8 (1) (2023) 988–1000. doi:10.1109/TIV.2022.3204574.

[76] A. Kittelmann, T. Runge, T. Bordis, I. Schaefer, Runtime verification
of correct-by-construction driving maneuvers, in: T. Margaria, B. Stef-
fen (Eds.), Leveraging Applications of Formal Methods, Verification
and Validation. Verification Principles - 11th International Symposium,
ISoLA 2022, Rhodes, Greece, October 22-30, 2022, Proceedings, Part
I, Vol. 13701 of LNCS, Springer, 2022, pp. 242–263. doi:10.1007/

978-3-031-19849-6_15.

[77] R. R. da Silva, B. Wu, H. Lin, Formal design of robot integrated task
and motion planning, in: 55th IEEE Conference on Decision and Control,
CDC 2016, Las Vegas, NV, USA, December 12-14, 2016, IEEE, 2016, pp.
6589–6594. doi:10.1109/CDC.2016.7799283.

[78] A. Kopylov, S. Mitsch, A. Nogin, M. Warren, Formally verified safety
net for waypoint navigation neural network controllers, in: M. Huis-
man, C. S. Pasareanu, N. Zhan (Eds.), Formal Methods - 24th Inter-
national Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings, Vol. 13047 of LNCS, Springer, 2021, pp. 122–141. doi:

10.1007/978-3-030-90870-6_7.

[79] Q. Lin, S. Mitsch, A. Platzer, J. M. Dolan, Safe and resilient practical
waypoint-following for autonomous vehicles, IEEE Control. Syst. Lett. 6
(2022) 1574–1579. doi:10.1109/LCSYS.2021.3125717.

[80] A. Partovi, R. R. da Silva, H. Lin, Reactive integrated mission and mo-
tion planning for mobile robotic manipulators, in: 2018 Annual American

27

https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1145/3365365.3382217
https://doi.org/10.1145/3365365.3382217
https://doi.org/10.1007/978-3-031-38828-6_9
https://doi.org/10.1109/TIV.2022.3204574
https://doi.org/10.1007/978-3-031-19849-6_15
https://doi.org/10.1007/978-3-031-19849-6_15
https://doi.org/10.1109/CDC.2016.7799283
https://doi.org/10.1007/978-3-030-90870-6_7
https://doi.org/10.1007/978-3-030-90870-6_7
https://doi.org/10.1109/LCSYS.2021.3125717


Control Conference, ACC 2018, Milwaukee, WI, USA, June 27-29, 2018,
IEEE, 2018, pp. 3538–3543. doi:10.23919/ACC.2018.8431866.

[81] A. Müller, S. Mitsch, W. Retschitzegger, W. Schwinger, A. Platzer, Tacti-
cal contract composition for hybrid system component verification, STTT
20 (6) (2018) 615–643, special issue for selected papers from FASE’17.
doi:10.1007/s10009-018-0502-9.
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