
VeriPhy: Verified Controller Executables from
Verified Cyber-Physical System Models

Brandon Bohrer1, Yong Kiam Tan1, Stefan Mitsch1,
Magnus O. Myreen2, and André Platzer1

Carnegie Mellon University1

Chalmers University of Technology2

PLDI’18

A Real Cyber-Physical System 2

A Scary Cyber-Physical System 2

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

VeriPhy: Automatic, Verified EXEs from Controllers (VeriPhy.org) 3

HPs Model Control and Environment 4

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Far
Enough? Velocity

Envelope

Fallback

Physics Constraint

HPs Model Control and Environment 4

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Far
Enough?

Velocity
Envelope

Fallback

Physics Constraint

HPs Model Control and Environment 4

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Far
Enough? Velocity

Envelope

Fallback

Physics Constraint

HPs Model Control and Environment 4

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Far
Enough? Velocity

Envelope

Fallback

Physics Constraint

HPs Model Control and Environment 4

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Far
Enough? Velocity

Envelope

Fallback

Physics

Constraint

HPs Model Control and Environment 4

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Far
Enough? Velocity

Envelope

Fallback

Physics Constraint

KeYmaera X Enables Model Verification 5

ModelPlex: Provably Correct Monitors 6

Monitor whether transitions from previous state ~x to next state ~x+ are consistent with
control, environment models.

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Control Monitor

Plant Monitor

ModelPlex: Provably Correct Monitors 6

Monitor whether transitions from previous state ~x to next state ~x+ are consistent with
control, environment models.

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Control Monitor

Plant Monitor

ModelPlex: Provably Correct Monitors 6

Monitor whether transitions from previous state ~x to next state ~x+ are consistent with
control, environment models.

α ≡
(

(
drive︷ ︸︸ ︷

?d ≥ εV ; v := ∗; ?0 ≤ v ≤ V ∪
stop︷ ︸︸ ︷

v := 0); t := 0;

{
env .︷ ︸︸ ︷

d ′ = −v , t ′ = 1 & t ≤ ε}
)∗

Control Monitor
Plant Monitor

Provable Monitor Provable Sandbox 7

Sandboxed controller uses external controller when decision is safe, else uses verified
fallback. Detects non-compliant plants.

~x := ∗;
?φ(
~x+ := extCtrl
(?ctrlMon(~x , ~x+)
∪ fallback);

~x :=~x+

~x+ := ∗
?plantMon(~x , ~x+);
~x :=~x+)∗

V := ∗; ε := ∗; d := ∗; t := ∗;
?d ≥ 0 ∧ V ≥ 0 ∧ ε ≥ 0;(

t+ := ∗; v+ := ∗; d+ := d ;
(?ctrlMon(d , t, v , d+, t+, v+)
∪ t+ := 0; v+ := 0);

t := t+; v := v+;
d+ := ∗; t+ := ∗;
?plantMon(d , t, v , d+, t+, v+);
d := d+; t := t+)∗

Intervals Make ctrlMon and plantMon Computable 8

Example: Check whether π < e, efficiently.
Solution: Conservative interval approximation

Example
Let νI = {pi 7→ [3, 4], e 7→ [2, 3]}, then

• pi <w e is false (⊥)

• pi <w e + 3 is true (>)

• pi <w e + 1 is a known unknown (U)

Intervals Make ctrlMon and plantMon Computable 8

Example: Check whether π < e, efficiently.
Solution: Conservative interval approximation

Example
Let νI = {pi 7→ [3, 4], e 7→ [2, 3]}, then

• pi <w e is false (⊥)

• pi <w e + 3 is true (>)

• pi <w e + 1 is a known unknown (U)

Intervals Make ctrlMon and plantMon Computable 8

Example: Check whether π < e, efficiently.
Solution: Conservative interval approximation

Example
Let νI = {pi 7→ [3, 4], e 7→ [2, 3]}, then

• pi <w e is false (⊥)

• pi <w e + 3 is true (>)

• pi <w e + 1 is a known unknown (U)

Intervals Make ctrlMon and plantMon Computable 8

Example: Check whether π < e, efficiently.
Solution: Conservative interval approximation

Example
Let νI = {pi 7→ [3, 4], e 7→ [2, 3]}, then

• pi <w e is false (⊥)

• pi <w e + 3 is true (>)

• pi <w e + 1 is a known unknown (U)
When truth values can be unknown, resulting logic is 3-valued

Interval dL is 3-Valued (Lukasiewicz) 9

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

ωI [(θ1 + θ2)] = [l1+̌w l2, u1+̂w u2] where ωI [(θi)] = [li , ui]

ωI [(θ1<θ2)] =


> if ωI [(θi)] = (li , ui) and u1 < l2
⊥ if ωI [(θi)] = (li , ui) and l1 ≥ u2

U otherwise

(ωI , νI) ∈ [(α ∪ β)] iff (ωI , νI) ∈ [(α)] or (ωI , νI) ∈ [(β)]

Interval dL is a Sound Approximation 10

Theorem (Interval Soundness for Formulas)

• If ω ∈ ωI and ωI [(φ)]=> then ω ∈ [[φ]]
• If ω ∈ ωI and ωI [(φ)]=⊥ then ω /∈ [[φ]]
• No claims when ωI [(φ)]=U

Generalizes naturally to programs, but CakeML sandbox only runs simpler formula case

Sandbox HP Already Verified 11

V := ∗; ε := ∗; d := ∗; t := ∗; // ~x := ∗
?d ≥ 0 ∧ V ≥ 0 ∧ ε ≥ 0; // ?φ(

t+ := ∗; v+ := ∗; d+ := d ; // ~x+ := extCtrl
(?ctrlMon(d , t, v , d+, t+, v+)
∪ t+ := 0; v+ := 0); // ~x+ := fallback

t := t+; v := v+; // ~x :=~x+

d+ := ∗; t+ := ∗; // ~x+ := ∗
?
(
0≤t+≤ε ∧ d+≥v(ε− t+)

)
; // ?plantMon(~x , ~x+)

d := d+; t := t+ // ~x :=~x+)∗

Verified CakeML Source is Generated 11

CakeML source incorporates external control, actuation, sensing

fun cmlSandbox state =
if not (stop ()) then

state.ctrl+:= extCtrl state;
state.ctrl := if intervalSem ctrlMon state = >

then state.ctrl+

else fallback state;
actuate state.ctrl;
state.sensors+:= sense ();
if intervalSem plantMon state = > then

Runtime.fullGC ();
state.sensors := state.sensors+;
cmlSandbox state

else violation "Plant Violation"

CakeML Sandbox is Sound 12

Theorem (Soundness for CakeML Sandbox, Main Case)
If
(
[{ω}], [{ν}]

)
∈ [{cmlSandbox}] then ([(ω)], [(ν)]) ∈ [(sandbox)]

CakeML Compiler Preserves Guarantees 13

Code Executed on GoPiGo Robot 14

Operational Suitability?
Arithmetic Precision?

C†

C†

PE

C†

C!

CE

C†

CE
PE

CE
CE

CE0 1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

time [s]

distance [cm]

Controller A (correct)
Controller B (faulty)
Malicious obstacle
Small disturbance
Large disturbance C†

CE

Ob+

Ob-

Ob0

Ob+

1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

time [s]

distance [cm]

Controller A (correct)
Controller B (faulty)
Approaching obstacle

Robot follows obstacle

Control Fault CE, Plant Fault PE, Control Spike C†, Obstacle Motion Ob

Proof Chain Justifies Transformations 15

ν |= ψ

⇑

(ω, ν) ∈ [[sandbox]]
dL (KeYmaera X)

Real arithmetic,
nondeterministic

⇑(
ωI , νI

)
∈ [(sandbox)]

dL (Isabelle/HOL)

Interval word arithmetic,
nondeterministic

⇑(
[{ω}], [{ν}]

)
∈ [{cmlSandbox}]

CakeML (HOL4)

Interval word arithmetic,
deterministic

⇑(
{|ω|}, {|ν|}

)
∈ {|CML(cmlSandbox)|}

ARM/x64

Interval word arithmetic,
machine-executable

Takeaway Metaphor 16

Takeaway Metaphor 16

References I 17

Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André Platzer,
Formally verified differential dynamic logic, Certified Programs and Proofs - 6th
ACM SIGPLAN Conference, CPP 2017, Paris, France, January 16-17, 2017 (Yves
Bertot and Viktor Vafeiadis, eds.), ACM, 2017, pp. 208–221.

Joe Hurd, The OpenTheory standard theory library, NFM (Mihaela Gheorghiu
Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, eds.), LNCS, vol.
6617, Springer, 2011, pp. 177–191.

Magnus O. Myreen and Scott Owens, Proof-producing synthesis of ML from
higher-order logic, ICFP (Peter Thiemann and Robby Bruce Findler, eds.), ACM,
2012, pp. 115–126.

Isabelle/HOL Cross-Checks KeYmaera X 18

Problem: Later pipeline stages need understanding of dL semantics, which
KeYmaera X lacks

Solution: Import soundly into Isabelle/HOL from KeYmaera X

• Proof term exported from KeYmaera X, serialized
• Proof checker verified in Isabelle/HOL, extending [BRV+17]
• Executable checker code-generated [MO12]
• Scales to 100K’s of proof steps (≈6 seconds)
• Eliminates KeYmaera X core from trusted base!

Isabelle/HOL Cross-Checks KeYmaera X 18

Problem: Later pipeline stages need understanding of dL semantics, which
KeYmaera X lacks
Solution: Import soundly into Isabelle/HOL from KeYmaera X
• Proof term exported from KeYmaera X, serialized
• Proof checker verified in Isabelle/HOL, extending [BRV+17]

• Executable checker code-generated [MO12]
• Scales to 100K’s of proof steps (≈6 seconds)
• Eliminates KeYmaera X core from trusted base!

Isabelle/HOL Cross-Checks KeYmaera X 18

Problem: Later pipeline stages need understanding of dL semantics, which
KeYmaera X lacks
Solution: Import soundly into Isabelle/HOL from KeYmaera X
• Proof term exported from KeYmaera X, serialized
• Proof checker verified in Isabelle/HOL, extending [BRV+17]
• Executable checker code-generated [MO12]
• Scales to 100K’s of proof steps (≈6 seconds)
• Eliminates KeYmaera X core from trusted base!

Isabelle/HOL → HOL4 Translation is Trusted 19

Isabelle/HOL Strength: Library Access
• Analysis libraries (absolute must for dL soundness)
• Machine word libraries (must for interval arithmetic)

Isabelle/HOL Weakness: Weaker Verified Compiler Support
• This is a problem: need to generate source code!

We jump to HOL4 for access to verified CakeML compiler:
• Manually translate Isabelle/HOL definitions to HOL4
• Justification: Similar logical foundation
• Could be automated in principle, see OpenTheory [Hur11]

Isabelle/HOL → HOL4 Translation is Trusted 19

Isabelle/HOL Strength: Library Access
• Analysis libraries (absolute must for dL soundness)
• Machine word libraries (must for interval arithmetic)

Isabelle/HOL Weakness: Weaker Verified Compiler Support
• This is a problem: need to generate source code!

We jump to HOL4 for access to verified CakeML compiler:
• Manually translate Isabelle/HOL definitions to HOL4
• Justification: Similar logical foundation
• Could be automated in principle, see OpenTheory [Hur11]

Isabelle/HOL → HOL4 Translation is Trusted 19

Isabelle/HOL Strength: Library Access
• Analysis libraries (absolute must for dL soundness)
• Machine word libraries (must for interval arithmetic)

Isabelle/HOL Weakness: Weaker Verified Compiler Support
• This is a problem: need to generate source code!

We jump to HOL4 for access to verified CakeML compiler:
• Manually translate Isabelle/HOL definitions to HOL4
• Justification: Similar logical foundation
• Could be automated in principle, see OpenTheory [Hur11]

Future Work 20

Improve pipeline components:
• Reduce trusted base: OpenTheory, arithmetic witnesses in KeYmaera X
• Floating-point, mixed precision interval arithmetic
• Generalize proof-driven monitor synthesis

Exploit pipeline in case studies:
• UAVs
• High-speed robots
• Your favorite CPS

	Appendix
	Appendix
	For Further Reading

