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Problem

● Real arithmetic questions involving the ∃ (exists) and ∀ (for all) 

quantifiers (ranging over the reals) are difficult for computers

● Quantifier elimination (QE): The process of transforming a quantified 

statement into a logically equivalent quantifier-free statement
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*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and 
Semidefinite Optimization”).  Accessible through his webpage: https://www.mit.edu/~parrilo/index.html

Example*

QE

Example

∀x. x2 + 1 > 0

True

QE

Examples
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QE is identifying exactly what 
conditions on a will make the 
original formula true!



A Miraculous Result

● Algorithms for QE exist (Tarski, 1930)

● Algorithms for QE are complicated

Alfred Tarski
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● Formulas: Conjunctions and disjunctions of polynomial inequalities and 

equations (with rational coefficients)

● If a formula in a QE problem involves only one variable, we call it a 

univariate QE problem.  Else it is a multivariate QE problem

● Decision problems are problems where all variables are quantified

Terminology
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*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and 
Semidefinite Optimization”).  Accessible through his webpage: https://www.mit.edu/~parrilo/index.html

Example*

QE

Example

∀x. x2 + 1 > 0

True

QE

A univariate decision problem A multivariate QE question
Not a decision problem

Examples, Revisited
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● Quantified statements arise in a number of applications

○ Geometry proofs

○ Stability analysis

○ Verification of cyber-physical systems (like robots!)

For more information, see:
Sturm, T. A Survey of Some Methods for Real Quantifier Elimination, Decision, and 
Satisfiability and Their Applications. Math.Comput.Sci. 11, 483–502 (2017).

Motivation
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Motivation

● Quantified statements arise in a number of applications

○ Geometry proofs

○ Stability analysis

○ Verification of cyber-physical systems (like robots!)

● Two conclusions 

○ We want to know how to do QE

○ We want to be sure that we know how to do QE correctly 
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● What we want: Formally verified QE algorithms

Motivation
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Motivation

● What we want: Formally verified QE algorithms

● Problem: Dearth of efficient verified QE support

○ CPS theorem prover KeYmaera X outsources 

QE to unverified software

○ This can introduce bugs 
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= YES

= NO
= IN BETWEEN 

Related Work
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= YES

= NO
= IN BETWEEN 

Related Work
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*Michael Ben-Or, Dexter Kozen, and John H. Reif.  The complexity of elementary algebra and geometry. J. 
Comput. Syst. Sci., 32(2):251-264, 1986.

**James Renegar. On the computational complexity and geometry of the first-order theory of the reals, part III: 
quantifier elimination. J. Symb. Comput., 13(3):329-352,1992.

BKR and Renegar

● Originally BKR* was a decision procedure

● Renegar** extended BKR to a general-purpose QE algorithm

○ Explains BKR in more detail

○ Fixes an error in BKR’s multivariate complexity analysis
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We formally verify* the 
univariate cases of BKR and 
Renegar in Isabelle/HOL.

*Available on the Archive of Formal Proofs at: 
https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
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High-level Context

● ~7000 LOC

○ Algorithm: ~110 LOC

○ Matrix library extensions: ~1800 LOC
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High-level Context

● ~7000 LOC

○ Algorithm: ~110 LOC

○ Matrix library extensions: ~1800 LOC

● Why Isabelle/HOL?

○ Well-suited to formalizing mathematics

○ Strong math libraries

○ Sledgehammer
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The main 
formalization 
challenge

Univariate BKR: Bird’s Eye View

● Transform the problem:

1. Decision problems to sign determination

2. Sign determination to restricted sign determination

3. To solve restricted sign determination, set up a matrix equation.
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Definition (sign assignment for {g1, …, gn}).  A mapping σ: {g1, …, gn} → {+, -, 0}
σ is consistent if there is a real x where, for all i, the sign of gi(x) matches σ(gi).

Step 1: Decision to Sign Determination

● Solve decision problems by finding the consistent sign assignments 
(CSAs) for a set of polynomials (sign determination)
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Decision Problem:
∃x. (x2+1 ≥ 0 ∧ 3x < 
0)

Find all consistent sign 
assignments for x2 + 1 and 3x

CSAs: (+, -), (+, 0), (+, +)
CSA (+, -) indicates the 
existence of a point k 
with (k2+1  ≥ 0 ∧ 3k < 0) 

Step 1: Decision to Sign Determination

● Solve decision problems by finding the consistent sign assignments 
(CSAs) for a set of polynomials (sign determination)
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Our algorithmsCanonical semantics for formulas 
(defines what it means for a formula 
to hold at x in the standard way)

Correctness Results for Step 1
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Technical detail: BKR 

imposes some conditions on 

{q
1

, . . ., q
n
}, p

Step 2: Restricted Sign Determination

● Restrict sign determination to finding all CSAs for a set of polynomials 

{q
1

, . . ., q
n
} at the roots of an auxiliary nonzero polynomial p
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Step 2: Restricted Sign Determination

● Restrict sign determination to finding all CSAs for a set of polynomials 

{q
1

, . . ., q
n
} at the roots of an auxiliary nonzero polynomial p
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Solve for the roots of a 
polynomial

Plug in the roots to the q_i’s, 
take the resulting signs

Correctness Results for Step 2
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Correctness Results for Step 2
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the nonconstructive definitionour (constructive) algorithm



Alfred Tarski

*Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic 
geometry: from ordered fields to quantifier elimination. Log. Methods 
Comput. Sci., 8(1), 2012. doi:10.2168/ LMCS-8(1:2)2012.

Step 3: The Matrix Equation

● Stores all relevant information for sign determination

● Idea dates back to Tarski; similarities to Cohen and Mahboubi’s 

formalization*

● But BKR does it efficiently
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Tarski

Step 3: The Matrix Equation

Find sign assignments to q
1

, ... , q
n
 at the roots of p

=
# of (+ ,…, +,+)
# of (+ ,..., +, -)

# of (- ,..., -, -)

M-1
*

TQ subset 1
TQ subset 2

TQ subset 2n

Invertible matrix
Size 2n x 2n 

Can be computed

TQ stands for “Tarski 
query”, refers to invoking 
the (computational) 
Sturm-Tarski theorem
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Step 3: The Matrix Equation

Find sign assignments to q
1

, ... , q
n
 at the roots of p

BKR builds its matrix equation (ME) inductively
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ME for q
1

ME for q
2

ME for q
n

. . . ME for q
n-1

ME for q
1

, q
2

ME for q
n-1

, q
n

ME for q
1 

,..., q
n

REDUCE REDUCE

REDUCE

. . .



Step 3: The Matrix Equation

Signs: ++, + - , - +, -- Signs: ++, + - , - +
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After each combination, remove all inconsistent sign assignments 
(reduction step)



*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https: 
//isa-afp.org/entries/Sturm_Tarski.html, Formal proof development.

Reflections on Formalizing the Matrix Equation

● Inductive construction, inductive proof!

○ It took some work to identify the right inductive invariant 

○ The reduction step poses the biggest challenge 

● The reduction step requires extra proofs 

29



*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https: 
//isa-afp.org/entries/Sturm_Tarski.html, Formal proof development.

Reflections on Formalizing the Matrix Equation

● Isabelle/HOL has well-developed libraries

○ The Sturm-Tarski theorem is already formalized* (the key 

computational tool for the matrix equation)

○ A number of linear algebra libraries are available 

30



*Rene Theimann and Akihisa Yamada. Matrices, Jordan normal forms, and spectral radius theory. Archive of Formal Proofs, August 2015.

Extending the Matrix Libraries

● We build on a matrix library by Thiemann and Yamada*

● Our additions (~1800 LOC):

○ A computational notion of the Kronecker product

○ An algorithm to extract a basis from the rows of a matrix

■ Involved proving that row rank equals column rank
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Code Export and Experiments
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*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using 
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

● We export our formally verified algorithm to SML for experimentation

● Compare to:

○ A naive (unverified) version of Tarski’s algorithm

○ Li, Passmore, and Paulson*
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*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using 
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

● We export our formally verified algorithm to SML for experimentation

● Compare to:

○ A naive (unverified) version of Tarski’s algorithm

○ Li, Passmore, and Paulson*

● Li et. al is faster:

○ CAD is generally faster than BKR

○ Their procedure is highly optimized

○ They use Mathematica as an untrusted oracle
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*Compiled with mlton 

*Run on a laptop

*Dashes indicate timeout

*Times in seconds

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates 
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

Benchmarks 
from [18]
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3s startup time for 
Mathematica



[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates 
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code *Compiled with mlton 

*Run on a laptop

*Dashes indicate timeout

*Times in seconds
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[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates 
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code *Compiled with mlton 

*Run on a laptop

*Dashes indicate timeout

*Times in seconds
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Future Work and Conclusion
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Future Work

● Optimizing univariate BKR

○ Add parallelism

○ Optimize Tarski queries

● Formally verified complexity analysis (ambitious!)

● Formalizing multivariate BKR
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Conclusion

● We have formally verified the univariate case of BKR’s QE algorithm

○ BKR hits a potential sweet spot in between practicality and ease 
of verification

○ Contributes to Isabelle/HOL’s matrix libraries

○ Export code to SML for faster runtime

● Multivariate BKR is ongoing work
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∃ Questions?

Conclusion

● We have formally verified the univariate case of BKR’s QE algorithm

○ BKR hits a potential sweet spot in between practicality and ease 
of verification

○ Contributes to Isabelle/HOL’s matrix libraries

○ Export code to SML for faster runtime

● Multivariate BKR is ongoing work
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