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Problem

® Real arithmetic questions involving the 3 (exists) and V (for all)
quantifiers (ranging over the reals) are difficult for computers

® Quantifier elimination (QE): The process of transforming a quantified
statement into a logically equivalent quantifier-free statement



Examples

Example

VX.x2+1>0

§ e

True

Example*
Vavy. (2 + ay?® < 1) = (az? — a?zy +2 > 0))

3o

(a>0) and (a® — 8a — 16 < 0)

QE is identifying exactly what
conditions on a will make the
original formula true!

*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and
Semidefinite Optimization”). Accessible through his webpage: https://www.mit.edu/~parrilo/index.html




A Miraculous Result

® Algorithms for QE exist (Tarski, 1930)

® Algorithms for QE are complicated

Alfred Tarski



Terminology

e Formulas: Conjunctions and disjunctions of polynomial inequalities and
equations (with rational coefficients)

e [faformulainaQE problem involves only one variable, we call it a
univariate QE problem. Else it is a multivariate QE problem

e Decision problems are problems where all variables are quantified



Examples, Revisited

Example Example*
VX X2+1>0 VaVy. (22 +ay? < 1) = (ax? — a?zy +2 > 0))
[ 1o
True (a>0) and (a® — 8a — 16 < 0)
A univariate decision problem A multivariate QE question

Not a decision problem

*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and
Semidefinite Optimization”). Accessible through his webpage: https://www.mit.edu/~parrilo/index.html



Motivation

® (Quantified statements arise in a number of applications
o Geometry proofs
o Stability analysis
o Verification of cyber-physical systems (like robots!)

For more information, see:
Sturm, T. A Survey of Some Methods for Real Quantifier Elimination, Decision, and
Satisfiability and Their Applications. Math.Comput.Sci. 11, 483-502 (2017). 7



Motivation

® (Quantified statements arise in a number of applications
o Geometry proofs
o Stability analysis
o Verification of cyber-physical systems (like robots!)

® Two conclusions

o We want to know how to do QE
o Wewant to be sure that we know how to do QE correctly



Motivation

® What we want: Formally verified QE algorithms




Motivation

® What we want: Formally verified QE algorithms

® Problem: Dearth of efficient verified QE support
o CPStheorem prover KeYmaera X outsources
QE to unverified software
o This canintroduce bugs

e
 J

W

10
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Potential sweet spot!
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BKR and Renegar

e Originally BKR* was a decision procedure
e Renegar™™* extended BKR to a general-purpose QE algorithm

o Explains BKR in more detail
o Fixes an error in BKR’s multivariate complexity analysis

*Michael Ben-Or, Dexter Kozen, and John H. Reif. The complexity of elementary algebra and geometry. J.
Comput. Syst. Sci., 32(2):251-264, 1986.

**James Renegar. On the computational complexity and geometry of the first-order theory of the reals, part lII:
quantifier elimination. J. Symb. Comput., 13(3):329-352,1992. 13



We formally verify” the
univariate cases of BKR and
Renegar in Isabelle/HOL.

*Available on the Archive of Formal Proofs at:
https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
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High-level Context

e ~7000LOC
o Algorithm: ~110 LOC
o Matrix library extensions: ~1800 LOC

15



High-level Context

e ~7000LOC
o Algorithm: ~110 LOC
o Matrix library extensions: ~1800 LOC
e Why Isabelle/HOL?
o Well-suited to formalizing mathematics
o Strong math libraries
o Sledgehammer
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Univariate BKR: Bird's Eye View

e Transform the problem:
1. Decision problems to sign determination
2. Signdetermination to restricted sign determination
3. Tosolverestricted sign determination, set up a matrix equation.

The main
formalization
challenge
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Step 1: Decision to Sign Determination

e Solve decision problems by finding the consistent sign assignments
(CSAs) for a set of polynomials (sign determination)

Definition (sign assignment for {g., ..., g _}). Amapping o:{g,, ..., 9.} — {+, -, 0}
o is consistent if there is a real x where, for all i, the sign of g.(x) matches o(g,).

18



Step 1: Decision to Sign Determination

e Solve decision problems by finding the consistent sign assignments

(CSAs) for a set of polynomials (sign determination)

Ix. (x>+120 A 3x <

Decision Problem:

)

Find all consistent sign
assignments for x* + 1 and 3x

CSAs: (+, -), (+,0), (+, +)

CSA (+, -) indicates the
existence of a point k

with (k+1 =0 A 3k < 0)

19




Correctness Results for Step 1

theorem decision_procedure:
"(Vx::real. |fml_sem fml x) <—| decide_universal|fml"

"(dx::real- fml_seﬂ fml x) <—| decide_existential |fml"

Canonical semantics for formulas Our algorithms
(defines what it means for a formula
to hold at x in the standard way)



Step 2: Restricted Sign Determination

e Restrict sign determination to finding all CSAs for a set of polynomials
{a,,...,q_}at theroots of an auxiliary nonzero polynomial p

Technical detail: BKR
imposes some conditions on

{a,--.a bLp
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Step 2: Restricted Sign Determination

e Restrict sign determination to finding all CSAs for a set of polynomials

{a,,...,q_}at theroots of an auxiliary nonzero polynomial p

The roots of all the
g;’s; also roots of p

Some root of p is p has a root in Some root of p is
less than all the between any two greater than all the

roots of the g;'s roots of the g;'s roots of the qg;'s

22



¢ H

Correctness Results for Step 2 gﬁi’f'

definition roots :: "real poly = real set" where "roots p = {x. poly p x = 0}"

definition consistent_signs_at_roots :: "real poly = real poly list = rat list set"
where "consistent_signs_at_roots p qs = (sgn_vec gs) ¢ (roots p)"

Plug in the roots to the g_i’s, Solve for the roots of a
take the resulting signs polynomial
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Correctness Results for Step 2

definition roots :: "real poly = real set" where "roots p = {x. poly p x = 0}"

definition consistent_signs_at_roots :: "real poly = real poly list = rat list set"
where "consistent_signs_at_roots p gqs = (sgn_vec gs) ¢ (roots p)"

theorem find_consistent_signs_at_roots:
assumes "p # 0"

assumes "/\ . g € set gs — coprime p q"
shows "set (find_consistent_signs_at_roots p qsI) =|consistent_signs_at_roots p gs|"

our (constructive) algorithm the nonconstructive definition
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Step 3: The Matrix Equation

e Stores all relevant information for sign determination

e Ideadates back to Tarski; similarities to Cohen and Mahboubi’s
formalization*

e But BKR does it efficiently

*Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic
geometry: from ordered fields to quantifier elimination. Log. Methods
Comput. Sci., 8(1), 2012. doi:10.2168/ LMCS-8(1:2)2012. Alfred Tarski
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Step 3: The Matrix Equation

TQ stands for “Tarski

Find sign assignments toq,, ..., q_at the roots of p query”, refers to invoking

a )
#of (+,..., +,+)
#of (+,..,+,-)
#of (-,.., - -)

o _/

Tarski

— M_i*

Invertible matrix
Size 2"x 2"
Can be computed

the (computational)
Sturm-Tarski theorem

TQ subset 1
TQ subset 2

TQ subset 2"



Step 3: The Matrix Equation

Find sign assignments toq,, ..., q_at the roots of p
BKR builds its matrix equation (ME) inductively

MEforq1 MEforq2 oo MEforqn_1 MEforqn
REDUCE  MEforq,,q, REDUCE  MEforq_,,q,

N/

REDUCE ME forq,,...q.
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Step 3: The Matrix Equation

il

After each combination, remove all inconsistent sign assignments

(reduction step)

=

O Rk P

1 1
11
1 -1 -
1 -1

PR e

Signs: ++, + -, - +, --

=W

—

=
I

1 1 17
1 -1 1.
1 1 -1

Signs: ++, +-, - +

(B
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Reflections on Formalizing the Matrix Equation

e Inductive construction, inductive proof!
o |t took some work to identify the right inductive invariant
o Thereduction step poses the biggest challenge

e Thereduction step requires extra proofs

*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https:
/lisa-afp.org/entries/Sturm_Tarski.html, Formal proof development.
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Reflections on Formalizing the Matrix Equation

e |sabelle/HOL has well-developed libraries
o The Sturm-Tarski theorem is already formalized* (the key
computational tool for the matrix equation)
o A number of linear algebralibraries are available

*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https:
/lisa-afp.org/entries/Sturm_Tarski.html, Formal proof development.
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Extending the Matrix Libraries

e We build on a matrix library by Thiemann and Yamada*
e Our additions (~1800 LOC):
o A computational notion of the Kronecker product
o Analgorithm to extract a basis from the rows of a matrix
m Involved proving that row rank equals column rank

*Rene Theimann and Akihisa Yamada. Matrices, Jordan normal forms, and spectral radius theory. Archive of Formal Proofs, August 2015.
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Code Export and Experiments



Experiments with SML code

e We export our formally verified algorithm to SML for experimentation
e Compareto:

o A naive (unverified) version of Tarski’s algorithm

o Li, Passmore, and Paulson*

*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69-91, 2019.
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Experiments with SML code

e We export our formally verified algorithm to SML for experimentation
e Compareto:

o A naive (unverified) version of Tarski’s algorithm

o Li, Passmore, and Paulson*
e Liet. alisfaster:

o CAD is generally faster than BKR

o Their procedure is highly optimized
o Theyuse Mathematica as an untrusted oracle @

*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69-91, 2019.
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Experiments with SML code

Benchmarks
from [18]

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates

*Compiled with mlton
*Run on a laptop
*Dashes indicate timeout
*Times in seconds

#N(p,q) #N(p,q Time Time Time
Formua #Eoly (l\(Iaive)) (§3KR)) (Naive) (BKR) ([18])
ex1 4(12) 20 31 0.003 0.006 3.020
ex2 5 (6) 576 180 5780 0442 3.407
ex3 4(22) 112 120 1794.843 1865313 3.580
exd 5 (3) 112 95 0.461 0261 3.828
ex5 8 (3) 576 219  28.608 8.333 3.806
ex6 22 (9) 50331648 ; ; . 6.187
ex7 10 (12) 6144 ; ; ; ;
exl A2 9(12) 2816 298 317.432 3.027 3.033
exl A2A4 13(12) 28672 555 - 51347 3.848
exI A2A5 16(12) 131072 826 . 436575 3711

3s startup time for
Mathematica

in Isabelle/HOL. J. Autom. Reason., 62(1):69-91, 2019.
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Experiments with SML code

*Compiled with mlton
*Run on a laptop
*Dashes indicate timeout
*Times in seconds

#N(p,q) #N(p,q) Time Time Time
Formua #Poly " Naive) (§3KR) (Naive) (BKR) ([18])
ex1 4(12) 20 31 0.003 0.006 3.020
ex2 5 (6) 576 180 5780 0442 3.407
ex3 4(22) 112 120 1794.843 1865313 3.580
exd 5 (3) 112 95 0.461 0261 3.828
ex5 8 (3) 576 219 28.608 8.333 3.806
ex6 22 (9) 50331648 ; ; . 6.187
ex7 10 (12) 6144 ; ; ; ;
exl A2 9(12) 2816 298 | 317.432 3.027 3.033
exl A\2A4 13(12) 28672 555 - 51347 3.848
exI A2AS5 16(12) | 131072 826 . 436575 3711

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates

in Isabelle/HOL. J. Autom. Reason., 62(1):69-91, 2019.
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Experiments with SML code

*Compiled with mlton
*Run on a laptop

*Dashes indicate timeout

*Times in seconds

#N(p,q) #N(p,q) Time Time Time
Formua R0l (I\(Iaive) (§3KR) (Naive) (BKR) ([18])
ex1 4(12) 20 31 0.003 0.006| 3.020
ex2 5 (6) 576 180 5780 0.442| 3.407
ex3 4(22) 112 120 |1794.843 1865.313| 3.580
exd 5 (3) 112 95 0.461 0261 3.828
ex5 8 (3) 576 219 | 28.608 8.333| 3.806
ex6 22 (9) 50331648 ; ; .| 6.187
ex7 10 (12) 6144 ; ; ; ;
exl A2 9(12) 2816 298 | 317.432 3.027| 3.033
exl A\2A4 13(12) 28672 555 - 51347 3.848
exI A2A5 16(12) 131072 826 . 436575| 3.711

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates
in Isabelle/HOL. J. Autom. Reason., 62(1):69-91, 2019.
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Future Work and Conclusion



Future Work

e Optimizing univariate BKR

o Add parallelism

o Optimize Tarski queries
e Formally verified complexity analysis (ambitious!)
e Formalizing multivariate BKR
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Conclusion

e We have formally verified the univariate case of BKR’s QE algorithm

o BKR hits a potential sweet spot in between practicality and ease
of verification
o Contributes to Isabelle/HOLs matrix libraries

o Export code to SML for faster runtime
e Multivariate BKR is ongoing work

40



Conclusion

e We have formally verified the univariate case of BKR’s QE algorithm

o BKR hits a potential sweet spot in between practicality and ease
of verification
o Contributes to Isabelle/HOLs matrix libraries

o Export code to SML for faster runtime
e Multivariate BKR is ongoing work

3 Questions?
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