Implicit Definitions with Differential Equations
for KeYmaera X (System Description)

James Gallicchio Yong Kiam Tan Stefan Mitsch André Platzer

Computer Science Department, Carnegie Mellon University

IJCAR, 10 Aug 2022

1/16

Outline

@ Hybrid System Verification
© Implicit Definitions in Differential Dynamic Logic
e Implementation in KeYmaera X

@ Conclusion

/16

@ Hybrid System Verification
© Implicit Definitions in Differential Dynamic Logic
© Implementation in KeYmaera X

@ Conclusion

3/16

Motivation: Cyber-Physical Systems (CPSs)

Challenge: How can we formally ensure correctness for cyber-physical
systems that feature interacting discrete and continuous dynamics?

4/16

Motivation: Cyber-Physical Systems (CPSs)

Model as hybrid system & specify correctness

Proof BAuo #Normalize 'O Stepback

Propositional - Hybrid Programs - Differential Equations -

SBasecased SUsecase’ & induction step 6
TR0 R et R0 e o e
* w0
D020+ [rexed; v X=v))]xe0

Hybrid system verification tool

Challenge: How can we formally ensure correctness for cyber-physical
systems that feature interacting discrete and continuous dynamics?

4/16

Motivation: Cyber-Physical Systems (CPSs)

. »

Propositional - Hybrid Programs - Differential Equations -

S Basecase 4 SUsecases Induction step 6
TRkt et v sVl xe0

= V20

1] [avbJPsfalPAbIP

D000 F o [fexes v {K=v))]xe0

Hybrid system verification tool Toy Example: safely pushed swing

Challenge: How can we formally ensure correctness for cyber-physical
systems that feature interacting discrete and continuous dynamics?

Safely Pushed Swing

Unsafe

Discrete controlled pushes p

Continuous ODEs:
0 =w,w = —%sin(@) — kw

Safety:
Swing stays below horizontal

5/16

Safely Pushed Swing

Unsafe

Discrete controlled pushes p

Continuous ODEs:
0 =w,w = —%sin(@) — kw

Safety:
Swing stays below horizontal

Challenges:
@ Hybrid system model + specification

Need adequate modeling of interacting
discrete & continuous dynamics

5/16

Safely Pushed Swing

Unsafe Challenges:

@ Hybrid system model + specification

o \L v Differential Dynamic Logic (dL)

Discrete controlled pushes p

Continuous ODEs:
0 =w,w = —%sin(@) — kw

Safety:
Swing stays below horizontal

5/16

Safely Pushed Swing

Unsafe

Discrete controlled pushes p

Continuous ODEs:
0 =w,w = —%sin(@) — kw

Safety:
Swing stays below horizontal

Challenges:

@ Hybrid system model + specification
v Differential Dynamic Logic (dL)
@ Proving safety & correctness

Need sound + (semi-)automated
reasoning for hybrid dynamics

5/16

Safely Pushed Swing

Unsafe

Discrete controlled pushes p

Continuous ODEs:
0 =w,w = —%sin(@) — kw

Safety:
Swing stays below horizontal

Challenges:

@ Hybrid system model + specification
v Differential Dynamic Logic (dL)

@ Proving safety & correctness

v'KeYmaera X theorem prover

5/16

Safely Pushed Swing

Unsafe

Discrete controlled pushes p

Continuous ODEs:
0 =w,w = —% sin(f) — kw
Safety:

Swing stays below horizontal

Challenges:

@ Hybrid system model + specification
v Differential Dynamic Logic (dL)

@ Proving safety & correctness
v'KeYmaera X theorem prover

@ User-defined functions

Need extensible support for new defs.

5/16

Safely Pushed Swing

Unsafe

Discrete controlled pushes p

Continuous ODEs:
0 =w,w = —% sin(f) — kw
Safety:

Swing stays below horizontal

Challenges:

@ Hybrid system model + specification
v Differential Dynamic Logic (dL)

@ Proving safety & correctness
v'KeYmaera X theorem prover

@ User-defined functions

Need extensible support for new defs.

Series defs. in foundational provers
X Lose hybrid system support & autom.

5/16

Safely Pushed Swing

Unsafe Challenges:
@ Hybrid system model + specification

o \L v Differential Dynamic Logic (dL)
@ Proving safety & correctness

g v'KeYmaera X theorem prover

@ User-defined functions

Discrete controlled pushes p

Continuous ODEs:
g v This Work:

0 =w,w = 7 sin(f) — kw Definitions package for user-defined
functions in dL and KeYmaera X

Safety:

Swing stays below horizontal = Domain-specific support for hybrid systems
e.g., sin(f) solves s’ = ¢,c’ = —s

5/16

KeYmaera X Package for

Modeling Interface:

Definitions
implicit Real sin(Real t), cos(Real t) =
{{sin:=0;cos:=1;}; {sin'=cos,cos'=sin}};

ush :=*;
if (1/2*(w-push)”~2 < g/L *cos(theta))
{ w := w-push; }
}

{ theta' -g/L * sin(theta) - k*w }
*]

(-p;l()/Z < theté & theta‘k< pi();i]
End.

s 3 >rQ

Implicit Definitions

Proof Interface:

Provide tactic input g/| *(1-cos(theta))+ ... < ... x
loop
r=dJ.A JEP J[a]J
r=[@P,a

Select formula (hover and click to select typical formulas, press
PSR key and click to select any term or formula).

@
= [(

{
eta = 0 push :=*;

?21/2*(w-push)"2<g/L*
cos(theta) ; w:=w - push ;

u
®1 ?271/2*(w-push)*2<g/L"*

cos(theta) ;

}
{theta'=w, w'=-g / L * sin(theta) - k

16

KeYmaera X Package for Implicit Definitions

Users define their desired functions

using sugared syntax in KeYmaera X.

Proof Interface:

Definitions
im;f:}i;i\l‘._l:(.eal Si:]“}ea} ;):_cos(Rea'!._t! T Provide tactic input g/ *(1-cos(theta))+ ... < ... x
Definitions P JEfalJ
implicit Real sin(Real t), cos(Real t) = 1P &
{{sin:=0;cos:=1;}; {sin'=cos,cos'=sin}};
Real g; oty s rcs
Real L;
Real k;
End. .
- 'l'TI Qi ST IV () A VA S R LS D) ?21/2*(w-push)"2<cg/L*
{ w := w-push; } cos(theta) ; w:=w - push ;
} u
}*j[theta' = w, w' = -g/L * sin(theta) - k*w } !

cos(theta)
}
(-pi()/2 < theta & theta < pi()/2)
End.

{theta'=w, w=-g

L * sin(theta) - k

6

?271/2*(w-push)*2<g/L"*

16

KeYmaera X Package for Implicit Definitions

Users define their desired functions

Seamlessly use functions throughout
using sugared syntax in KeYmaera X.

existing specifications and proof methods.
Definitions
implicit Real sin(Real t), cos(Rea'l. t) = Provide tactic input g/| *(1-cos(theta))+ ... < . b%3
{{sin:=0;cos:=1;}; {sg -
Real g;
Real L; . s
Real k: Provide tactic input g/ *(1-cos(theta))+ ... < ... x
e loop
Problev(v;“ b e ka0 r=dJd.A JEP J[a]lJd
g > > > *
theta = 0 & w = 0 MN=[ajp, A
->
-
- f ! .
9:5h = e Select formula (hover and click to select typical formulas, press
G e IR key and click to select any term or formula).
} -
. ®1 ?271/2*(w-push)*2<g/L
{ theta' = w, w' = -g/L * sin(theta) - k*w } cos(theta)
*]

(-pi()/2 < theta & theta < pi()/2)
End.

{theta'=w, W=-g / L * sin(theta) - k

6/16

KeYmaera X Package for Implicit Definitions

Users define their desired functions

using sugared syntax in KeYmaera X.

Seamlessly use functions throughout

existing specifications and proof methods.

Definitions
implicit Real sin(Real t), cos(Real t) =
{{sin:=0;cos:=1;}; {sin'=cos,cos'=sin}};
Real g; Gra
Real L;
Real k;
Endl.

I;roblem

v
=)
-2
or

theta =

ush :=*;
if (1/2*(w-push)”~2 < g/L *cos(theta))
{ w := w-push; }
}

{ t‘héta';“w; w =-g/L * sin(theta) - k*w }
*]
(-pi()/z <rtaeta & t’;éta‘; pi()/é]
End.
Proof: « All goals closed

Provable(==>

& Export proof

g()>0&L () >0&k () >0&theta=0&w=0->...

Provide tactic input g/| *(1-cos(theta))+ ... < ... x
loop

r=dJ.A JEP

J[a]J
r=[alP,a

Select formula (hover and click to select typical formulas, press
o] i3 key and click to select any term or formula).

eta = 0 {push =t
=0 {
?21/2*(w-push)"2<g/L*
cos(theta) ; w:=w - push ;
u

®1 ?271/2*(w-push)*2<g/L"*
cos(theta) ;

{theta'=w, W'=-g / L * sin(theta) - k

@ Browse proof 'O Redo proof

proved)

@ Hybrid System Verification
© Implicit Definitions in Differential Dynamic Logic
© Implementation in KeYmaera X

@ Conclusion

7/16

Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

&Q|X—e|7Qlaﬁ|aUﬁ|a

8/16

Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

&Q|X—e|7Qlaﬁ|aUB|a

Propertles of hybr|d program « are speC|f|ed in dL’s formula Ianguage.

pp=e~E9AY] - |Vxo|Ixd] [ald] ()¢
/
{(;5 true after} {gb true after}

all & runs some « run

And,
Or, etc.

Compare
>,>,=

For all,
Exists

8/16

Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

&Q|X—e|7Qlaﬁ|aUB|a

Propertles of hybr|d program « are speC|f|ed indL's formula language.

ppi=e~E| AP] - | Vx| Ixo | [ald | {a)s

¢ true after | | ¢ true after
all o« runs some « run

This Work: Expand term language with implicitly defined functions

For all,

Compare
>, > = Exists

Or etc

fep>(t) = x < (x, t)

Function f4 is interpreted using its graph characterized by ¢.

8/16

Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

)& Q| x:=e|?Q [;8 Iauﬁla

Propertles of hybr|d program « are speC|f|ed in dL’s formula Ianguage.

ppi=e~E| AP] - | Vx| Ixo | [ald | {a)s

For all,

Compare
>, > = Exists

¢ true after | | ¢ true after
Or etc

all & runs some « run

n.b. Not all dL formulas character-
ize graphs of (suitable) functions
feps(t) = (see paper for restrictions).

This Work: Expand term language

-
Function f4 is interpreted using its graph characterized by ¢.

8/16

Differentially-Defined Functions

Example: Implicitly defined trigonometric sine function sin(t) = s

, , s=0A
—c,c’ =5,/ =-1U
e ¢l =—s,t' =1 > c=1A

(s, t) =

S/
dc < o

t=20

ODE Init.

Intuition: Initial point is reachable by following ODE forward or backward.
= ¢(s, t) characterizes graph of sin(t); similar characterization for cos(t). J

9/16

Differentially-Defined Functions

Example: Implicitly defined trigonometric sine function sin(t) = s

, , s=0A
—c,c’ =5,/ =-1U
e, ¢l = —s,t' =1 > c=1A

t=20

(s, t) =

5/
dc < o

ODE Init.

Intuition: Initial point is reachable by following ODE forward or backward.
= ¢(s, t) characterizes graph of sin(t); similar characterization for cos(t). J

General Case: Any projection of an ODE system solution is implicitly
characterizable in dL (soundness proof in paper).

Thm. [JACM’20]: dL extended with Noetherian functions (incl. solutions
of polynomial ODEs) has sound and complete ODE invariance reasoning.

9/16

@ Hybrid System Verification
© Implicit Definitions in Differential Dynamic Logic
© Implementation in KeYmaera X

@ Conclusion

10/16

KeYmaera X Package for

Modeling Interface:

Definitions
implicit Real sin(Real t), cos(Real t) =
{{sin:=0;cos:=1;}; {sin'=cos,cos'=sin}};

ush :=*;
if (1/2*(w-push)”~2 < g/L *cos(theta))
{ w := w-push; }
}

{ theta' -g/L * sin(theta) - k*w }
*]

(-p;l()/Z < theté & theta‘k< pi();i]
End.

Implicit Definitions

Proof Interface:

Provide tactic input g/| *(1-cos(theta))+ ... < ... x
loop
r=dJ.A JEP J[a]J
r=[@P,a

Select formula (hover and click to select typical formulas, press
PSR key and click to select any term or formula).

@
= [(

{
eta = 0 push :=*;

s 3 >rQ

?21/2*(w-push)"2<g/L*

cos(theta) ; w:=w - push ;

u
®1 ?271/2*(w-push)*2<g/L"*

cos(theta) ;

}
{theta'=w, w'=-g / L * sin(theta) - k

11/16

Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs.
Follows KeYmaera X's small trusted kernel design, ~170 lines extension

12 /16

Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs.
Follows KeYmaera X's small trusted kernel design, ~170 lines extension

Non-critical (core-adjacent): Syntactic sugar for parsing and Ul pretty-
printing of user-defined functions

12 /16

Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs.
Follows KeYmaera X's small trusted kernel design, ~170 lines extension

Non-critical (core-adjacent): Syntactic sugar for parsing and Ul pretty-
printing of user-defined functions

Non-critical (user automation):

@ Auto. derive base properties of functions from underlying ODEs:
Initial value: sin(0) = 0

Provable(==> sin<< ... >>(0)=0 proved)

Derivative: sin(e)’ = cos(e)(e)’
Provable(==>

@ Prove additional arithmetic properties with ODE analysis (next slide)

Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis
+ arithmetic export to external real arithmetic solvers

x(tanh(Ax) — tanh(Ay)) + y(tanh(Ax) + tanh(A\y)) < 2y/x2 + y?

13 /16

Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis
+ arithmetic export to external real arithmetic solvers

ODE analysis
tanh(Ax)? < 1 Atanh(\y)?> <1 —

x(tanh(Ax) — tanh(Ay)) + y(tanh(Ax) + tanh(A\y)) < 2y/x2 + y?

Claim: tanh(t)? < 1 for all t.

Intuition: Property is always
preserved along ODE, forward
and backward from initial point.

13 /16

Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis
+ arithmetic export to external real arithmetic solvers

ODE analysis

tanh(Ax)? < 1 Atanh(\y)?> <1 —

x(tanh(Ax) — tanh(\y)) + y(tanh(Ax) + tanh(\y)) < 2
I

Abstraction (replace tanh with fresh variables):

X2+y2

t2<IAt?2 <1 = x(te—t,) +y(te+ 1) <2v/x2+y2

13 /16

Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis
+ arithmetic export to external real arithmetic solvers

ODE analysis

tanh(Ax)? < 1 Atanh(\y)?> <1 —

x(tanh(Ax) — tanh(\y)) + y(tanh(Ax) + tanh(\y)) < 2
I

Abstraction (replace tanh with fresh variables):

X2+y2

t2<IAt?2 <1 = x(te—t,) +y(te+ 1) <2v/x2+y2
)

Proof: «# All goals closed
Provable by solvers without crcvaric(—

native support for tanh (Bl oo

>>(lambda () *x) -tanh<< .
y* (tanh<< ..

.. >>(lambda () *y)) +

. >>(lambda () *x) +tanh<< ... >>(lambda()*y)) <=

2% (x"2+y”2)~ (1/2) proved)

Examples (see paper [[JCAR'22])

2 neuron interaction,

asymptotic norm bound

Problem
tau > 0 -> \forall eps(eps > 0 ->
<{
x' = -x/tau + tanh(lambda*x)
- tanh(lambda*y),
y' = -y/tau + tanh(lambda*x)
+ tanh(lambda*y)

3>
[{
x' = -x/tau + tanh(lambda*x)
- tanh(lambda*y),
y' = -y/tau + tanh(lambda*x)

+ tanh(lambda*y)
3
(X"2 + y"2)~(1/2) <= (2*tau + eps)

End.

Invariants of longitudinal
flight dynamics

Definitions

Real invl(Real z, Real u, Real w,
Real theta, Real q) =
M*z/Iyy + g*theta
+ (X/m-g*w)*cos(theta)
+ (Z/m+q*u)*sin(theta);

End.
ﬁ;&blem
assmpts() & inv(x,z,u,w,theta,q)

-> [motion;]inv(x,z,u,w,theta,q)
End.

Robot
collision avoid., trajectory
& vision limits

Takeaway: Package enables succinct models and powerful reasoning

support for user-defined functions in KeYmaera X.

Té—+0

@ Hybrid System Verification
© Implicit Definitions in Differential Dynamic Logic
© Implementation in KeYmaera X

@ Conclusion

15/16

Summary
Theory: Implicit defs. in dL
feps(t) = x < o(x, t)

(s 1)

Practice: KeYmaera X package

Definitions
implicit Real sin(Real t), cos(Real t) =
{{sin:=0;cos:=1;}; {sin'=cos,cos'=sin}};
Real g; Gra
Real L; Leng 0
Real k; Coeffici

End.
o

cos(6)4

— sin(]

cos(6)

http://keymaerax.org/keymaeraXfunc/

Summary

Theory: Implicit defs. in dL
fegs(t) = x < o(x t)

P(s, t)

Practice: KeYmaera X package

Definitions
implicit Real sin(Real t), cos(Real t) =
{{sin:=0;cos:=1;}; {sin'=cos,cos'=sin}};
Real g; 5
Real L;
Real k;
Endl.

Future Work: Defining and
reasoning about multivariate
& non-smooth functions in dL

Check it out: http://keymaerax.org/keymaeraXfunc/

16

16

http://keymaerax.org/keymaeraXfunc/

References |

[1] Gallicchio, J., Tan, Y. K., Mitsch, S., and Platzer, A. (2022). Implicit
definitions with differential equations for KeYmaera X (system
description). In Blanchette, J., Kovacs, L., and Pattinson, D., editors,
[JCAR, volume 13385 of LNCS, pages 723-733. Springer.

[2] Platzer, A. and Tan, Y. K. (2020). Differential equation invariance
axiomatization. J. ACM, 67(1):6:1-6:66.

	Hybrid System Verification
	Implicit Definitions in Differential Dynamic Logic
	Implementation in KeYmaera X
	Conclusion
	Appendix

