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Safely Pushed Swing

L

g

ω

p

θ

Unsafe

Discrete controlled pushes p
Continuous ODEs:

θ′ = ω, ω′ = −g

L
sin(θ)− kω

Safety:
Swing stays below horizontal

Challenges:

Hybrid system model + specification

Proving safety & correctness

User-defined functions

︸ ︷︷ ︸
Domain-specific support for hybrid systems

e.g., sin(θ) solves s ′ = c , c ′ = −s
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XDifferential Dynamic Logic (dL)
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User-defined functions

Need extensible support for new defs.

sin(θ) = θ −
θ3

3!
+
θ5

5!
− . . .

Series defs. in foundational provers
×Lose hybrid system support & autom.
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Safely Pushed Swing
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θ′ = ω, ω′ = −g

L
sin(θ)− kω

Safety:
Swing stays below horizontal

Challenges:

Hybrid system model + specification

XDifferential Dynamic Logic (dL)

Proving safety & correctness

XKeYmaera X theorem prover

User-defined functions

XThis Work:
Definitions package for user-defined
functions in dL and KeYmaera X︸ ︷︷ ︸

Domain-specific support for hybrid systems
e.g., sin(θ) solves s ′ = c , c ′ = −s
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KeYmaera X Package for Implicit Definitions

Modeling Interface: Proof Interface:
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Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

α, β ::= x ′ = f (x) &Q | x := e | ?Q | α;β | α ∪ β | α∗

ODE Assign Test Compose Choice Loop
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φ, ψ ::= e ∼ ẽ | φ ∧ ψ | · · · | ∀x φ | ∃x φ | [α]φ | 〈α〉φ

Compare
≥, >,=

And,
Or, etc.

For all,
Exists

φ true after
all α runs

φ true after
some α run

This Work: Expand term language with implicitly defined functions

f�φ�(t) = x ↔ φ(x , t)

Function f�φ� is interpreted using its graph characterized by φ.

n.b. Not all dL formulas character-
ize graphs of (suitable) functions

(see paper for restrictions).
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Differentially-Defined Functions

Example: Implicitly defined trigonometric sine function sin(t) = s

φ(s, t) ≡

∃c
〈

s′ = −c, c ′ = s, t′ = −1 ∪
s′ = c, c ′ = −s, t′ = 1

〉
︸ ︷︷ ︸

ODE

s = 0 ∧
c = 1 ∧
t = 0


︸ ︷︷ ︸

Init.

t

φ(s, t)

∃c
φ(s, t)

∃c

Intuition: Initial point is reachable by following ODE forward or backward.
⇒ φ(s, t) characterizes graph of sin(t); similar characterization for cos(t).

General Case: Any projection of an ODE system solution is implicitly
characterizable in dL (soundness proof in paper).

Thm. [JACM’20]: dL extended with Noetherian functions (incl. solutions
of polynomial ODEs) has sound and complete ODE invariance reasoning.
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KeYmaera X Package for Implicit Definitions

Modeling Interface: Proof Interface:
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Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs.
Follows KeYmaera X’s small trusted kernel design, ≈170 lines extension

Non-critical (core-adjacent): Syntactic sugar for parsing and UI pretty-
printing of user-defined functions

Non-critical (user automation):

Auto. derive base properties of functions from underlying ODEs:

Initial value: sin(0) = 0

Derivative: sin(e)′ = cos(e)(e)′
t

φ(s, t)

∃c
φ(s, t)

∃c

Prove additional arithmetic properties with ODE analysis (next slide)

12 / 16



Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs.
Follows KeYmaera X’s small trusted kernel design, ≈170 lines extension

Non-critical (core-adjacent): Syntactic sugar for parsing and UI pretty-
printing of user-defined functions

Non-critical (user automation):

Auto. derive base properties of functions from underlying ODEs:

Initial value: sin(0) = 0

Derivative: sin(e)′ = cos(e)(e)′
t

φ(s, t)

∃c
φ(s, t)

∃c

Prove additional arithmetic properties with ODE analysis (next slide)

12 / 16



Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs.
Follows KeYmaera X’s small trusted kernel design, ≈170 lines extension

Non-critical (core-adjacent): Syntactic sugar for parsing and UI pretty-
printing of user-defined functions

Non-critical (user automation):

Auto. derive base properties of functions from underlying ODEs:

Initial value: sin(0) = 0

Derivative: sin(e)′ = cos(e)(e)′
t

φ(s, t)

∃c
φ(s, t)

∃c

Prove additional arithmetic properties with ODE analysis (next slide)

12 / 16



Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis
+ arithmetic export to external real arithmetic solvers

ODE analysis

tanh(λx)2 < 1 ∧ tanh(λy)2 < 1→

x(tanh(λx)− tanh(λy)) + y(tanh(λx) + tanh(λy)) ≤ 2
√
x2 + y2
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tanh(λx)2 < 1 ∧ tanh(λy)2 < 1→

x(tanh(λx)− tanh(λy)) + y(tanh(λx) + tanh(λy)) ≤ 2
√
x2 + y2

Claim: tanh(t)2 < 1 for all t.

Intuition: Property is always
preserved along ODE, forward
and backward from initial point.

t

x

(0, 0)

x2 < 1

x2 < 1
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x(tanh(λx)− tanh(λy)) + y(tanh(λx) + tanh(λy)) ≤ 2
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⇓

Abstraction (replace tanh with fresh variables):

tx
2 < 1 ∧ ty

2 < 1→ x(tx − ty ) + y(tx + ty ) ≤ 2
√

x2 + y2

⇓

Provable by solvers without
native support for tanh
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Examples (see paper [IJCAR’22])

x(t)

y(t)

t

Exponential bound

2 neuron interaction,

asymptotic norm bound

Invariants of longitudinal

flight dynamics

rr

Robot

collision avoid., trajectory

& vision limits

Takeaway: Package enables succinct models and powerful reasoning
support for user-defined functions in KeYmaera X.
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Summary

Theory: Implicit defs. in dL

f�φ�(t) = x ↔ φ(x , t)

t

φ(s, t)

∃c
φ(s, t)

∃c

Practice: KeYmaera X package

x(t)

y(t)

t

Exponential bound

rr

Check it out: http://keymaerax.org/keymaeraXfunc/
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Exponential bound

rr

Check it out: http://keymaerax.org/keymaeraXfunc/

Future Work: Defining and
reasoning about multivariate

& non-smooth functions in dL
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