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Abstract. Safety-critical cyber-physical systems (CPS) should be an-
alyzed using formal verification techniques in order to gain insight into
and obtain rigorous safety guarantees about their behavior. For practical
purposes, methods are needed to split modeling and verification effort
into manageable pieces and link formal artifacts and techniques with
implementation. In this paper we present a tool chain that supports
component-based modeling and verification of CPS, generation of moni-
tors, and systematic (but unverified) translation of models and monitors
into executable code. A running example demonstrates how to model a
system in a component-based fashion in differential dynamic logic (dL),
how to represent and structure these models in the syntax of the hybrid
systems theorem prover KeYmaera X (which implements dL), and how
to prove properties in KeYmaera X. The verified components are the
source for translation into executable C code, which can be run on con-
trolled components (e. g., a robot). Additionally, we demonstrate how to
generate monitors that validate the behavior of uncontrolled components
(e. g., validate the assumptions made about obstacles).

1 Introduction

To ensure safe operation of cyber-physical systems (CPS), their behavior should
be analyzed in safety analysis using formal verification techniques. However,
monolithic models and their analysis become unnecessarily complex with in-
creasingly large systems. Hence, techniques are needed to split both modeling
and verification effort into more manageable pieces. At the same time, the cor-
rectness properties that are verified formally for a model also have to hold for
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the actual implementation. When translating a model into an implementation,
however, any gaps need to be overcome between modeling concepts beneficial
for verification (e. g., nondeterministic control and real numbers) and those ap-
propriate for implementation (e. g., deterministic control and machine floating
points) in a way that preserves correctness (assuming correct C compilation).

Formal verification has been used successfully for hybrid system models, both
using model checking [6] and theorem proving [17] techniques. For more com-
plex applications, monolithic hybrid systems models are impractical compared to
models that provide more structuring principles into smaller submodels. The real
gain of component-based hybrid systems modeling techniques is realized, how-
ever, when the division into smaller components of less responsibilities is not just
available when describing the models but also exploited during their formal veri-
fication by compositional proofs [14]. Finally, the full benefit of component-based
hybrid system modeling needs a way of correctly implementing the components
in a way that faithfully fits the intended interactions of the model.

Sound axiomatizations [15,16], verification tools [9], cross-verification in other
provers [3], and provably correct compilation tools to executables [4] are known
for hybrid systems themselves. While these are compositional in the program-
ming language operators of hybrid programs [15,16,17], extensions to component-
based hybrid system models remain an important challenge.

Thus, this paper takes a useful step toward these goals by developing a
component-based hybrid systems modeling and verification tool built into the
KeYmaera X prover for hybrid systems [9]. No soundness-critical extensions are
needed for the verification in KeYmaera X, because the implementation is in
tactics outside its soundness-critical kernel [8]. We take a pragmatic approach
for component-based implementation of hybrid systems by generating C code
that is informally inspected to be correct, but does not yet provide the degree
of rigor of generating implementations of hybrid systems correctly and bridging
floating point vs. real arithmetic using a chain of theorem provers [4]. Given the
added value of generating code in the well-known C language, we argue that
our pragmatic choice is useful in practice to enable an easy integration into an
existing infrastructure of embedded and cyber-physical systems. In addition to
the challenges of nondeterminism in the models, we tackle the challenges spe-
cific to component-based systems: generating code for ownsystem components
with sensing/actuation interfaces to external components (e. g., obstacles). As
in [4], our main ingredient to obtain correct integration with external control
components is the provably correct monitor synthesis from ModelPlex [13].

2 Preliminaries

Differential Dynamic Logic (dL). For specifying and verifying correctness state-
ments about hybrid systems, we use differential dynamic logic (dL) [15,17,16],
which is a real-valued first-order dynamic logic for hybrid systems and supports
hybrid programs as a program notation for hybrid systems.
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Table 1: Operators of differential dynamic logic (dL) formulas
dL Operator Meaning
θ1 ∼ θ2 comparison true iff θ1 ∼ θ2 with ∼ ∈ {>,≥,=, 6=,≤, <}
¬φ not true iff φ is false
φ ∧ ψ and true iff both φ and ψ are true
φ ∨ ψ or true iff φ is true or if ψ is true
φ→ ψ implies true iff φ is false or ψ is true
φ↔ ψ equivalent true iff φ and ψ are both true or both false
∀xφ universal quant. true iff φ is true for all values of variable x in R
∃xφ existential quant. true iff φ is true for some values of variable x in R
[α]φ [·] modality true iff φ is true after all runs of hybrid program α
〈α〉φ 〈·〉 modality true iff φ is true after at least one run of α

Table 2: Hybrid program statements (Q is a formula, α, β are hybrid programs)
Statement Effect

α; β sequential composition where β starts after α finishes
α ∪ β nondeterministic choice, following either alternative α or β
α∗ nondeterministic repetition, repeating α n times for any n ∈ N
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′1 = θ1, . . . , continuous evolution of xi along the differential eq. system
x′n = θn&Q

)
x′i = θi restricted to remain in evolution domain Q at all times

?Q test if formula Q holds at current state, otherwise abort

Operators of dL and their informal meaning, are summarized in Table 1, and
comprise the usual comparison operators, boolean operators and quantifiers.
Additionally, dL supports modalities to reason about the state after at least one,
respectively all runs of a hybrid program. The syntax and informal semantics of
hybrid programs are summarized in Table 2. For example, a hybrid program

α ≡ (y := ∗; ?y ≤ z; t := 0; {x′ = y, t′ = 1 & t ≤ 10})∗ (1)

picks any real value for y that does not exceed z, resets time t to zero, and then
in the ODE continuously evolves the value of x according to the fixed slope y
while simultaneously increasing the value of t with constant slope 1. The ODE
stops nondeterministically at any time, but before t ≤ 10 becomes false; then
the program repeats by the ∗ operator. A corresponding dL formula

x = 0 ∧ z < 0→ [α]x ≤ 0 (2)

states that starting in a state, where x is 0 and z is negative, each run of the
above program α leads to a state, where x is less or equal 0.

KeYmaera X. KeYmaera X [9] is an automated and interactive theorem prover
for dL and hybrid programs. KeYmaera X is implemented in Scala, expands upon
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functionality by introduction of tactics [8] and is based on a significantly smaller
soundness-critical core than other hybrid systems verification tools, which makes
it easier to ensure correct verification results. The valid example formula (2) can,
for instance, be verified in KeYmaera X. We will introduce the concrete ASCII
syntax of KeYmaera X later alongside our running example in Section 3.

3 Component-based Verification Tool

As the complexity of CPSs increases, monolithic models and analysis tech-
niques become unnecessarily challenging. As already established for discrete
software, decomposition into subsystems with contracts is essential in taming
the complexity of larger systems. Thus, we have explored compositional mod-
eling and verification techniques for hybrid systems [14] that conclude safety
of the entire system from separate isolated safety arguments about its com-
ponents and their interaction with the environment. The KeYmaera X hybrid
system theorem prover allows us to bundle and analyze the ingredients of our
component-based approach—component models, specifications, and lemmas of
satisfied proof obligations—in a single input format.

ASCII Syntax. Models and specifications are provided to KeYmaera X in the dL
ASCII syntax, which is a straightforward ASCII rendition of Tables 1 and 2, e. g.,
using A->B for A→ B and using A&B for A∧B. The ASCII notation alpha++beta
is used for alpha∪beta. For improved readability in longer examples, braces {...}
are used for grouping differential equation systems and other program operators.
Like in C programs, assignments etc. end with explicit semicolons.

The dL ASCII syntax is the basis for named entries in .kyx files, which consist
of an optional SharedDefinitions block, with global definitions for the entire
archive, and multiple named ArchiveEntry blocks, which themselves consist
of optional definitions (Definitions), system variables (ProgramVariables),
a (safety) specification in dL (Problem), and optional tactic scripts3 (Tactic).
Each of these blocks must be closed with an End statement.

ArchiveEntry "Example Formula (2)"
Definitions /∗ constants, functions, properties, programs ∗/
Real z;
HP a ::= { {y:=∗; ?y<=z; t:=0; {x’=y, t’=1 & t<=10} }∗ };

End.
ProgramVariables Real x, z; End. /∗ variables ∗/
Problem x=0 & z<0 −> [a;]x<=0 End. /∗ specification in dL ∗/
Tactic "Auto Proof" /∗ tactic script, produces proof/lemma ∗/
master

End.
End.

3 The tactics language Bellerophon [8] for verification of hybrid systems provides a
way to convey insights by programming hybrid systems proofs.
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The symbols defined in the Definitions and the variables defined in the
ProgramVariables can be used in the Problem block or in other definitions. The
named Tactic blocks, if provided, each list a Bellerophon [8] tactic to verify the
current Problem.

3.1 Running Example

To illustrate the concepts of our component-based verification approach and to
demonstrate the capabilities of our verification tool, we use a running example
of a robot that has to avoid collision with an obstacle, see Fig. 1.
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Fig. 1: Running Example: Robot collision avoidance

The speed of the obstacle is limited to at most S. The robot regularly receives
the obstacle’s position to ensure that it stays at a safe distance from the obstacle.
Additionally, the robot can receive desired speed suggestions (e. g., from a remote
control, or by a user, which will not be modeled as part of the example), which
guide the robot’s speed. In our example, the difference between updates of the
speed suggestion is limited to avoid sudden speed changes. The overall safety
property of the system is that robot and obstacle should never crash. If they
meet, the robot must be stopped.

Shared definitions. Shared definitions in the beginning of a .kyx file are used
to define global constants, facts, and programs, which can be accessed in all
archive entries. The components in the example share facts about constants,
such as the maximum difference D() between speed suggestions, the speed limit
S() of obstacles, each ≥ 0, and the maximum control cycle time ep()>0 that
limits the plant runtime (i. e., the time until the next controller run and sensor
update). They also define program skip as the trivial test that always passes.

SharedDefinitions
Real D(); /∗ maximum change in desired speed request ∗/
Real S(); /∗ speed limit ∗/
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Real ep(); /∗ maximum control cycle time ∗/
Bool globalFacts <−> ( D()>=0 & S()>=0 & ep()>0 ); /∗ facts ∗/
HP skip ::= { ?true; }; /∗ skip as trivial test ∗/

End.

3.2 Component-based Deductive Verification by Contracts

Our component-based deductive verification approach [14] bases on individual
components with interfaces and local contracts, which are composed in a compat-
ible fashion to create a safe model of the overall system and make hybrid system
theorem proving modular on a component level. Under certain precisely formal-
ized compatibility conditions on how components are connected, the components
and their contracts ensure that their compositions directly inherit safety from
the safety of the components. Users of our approach [14] provide the following
specifications and lemmas (circled numbering as in Fig. 1):

1. Component models ¬ [14, Def. 1], design parameters [14, Def. 3], interfaces
­ [14, Def. 4] and component contract compliance lemmas ® [14, Def. 5]
define what components guarantee about their behavior in isolation.

2. Connections and connection programs ¯ [14, Remark 1] define how the com-
ponents interact in the composed system.

3. Communication guarantee lemmas ° [14, Def. 7] and compatibility lemmas
± [14, Def. 8] ensure that the interaction in the system happens between
compatible components.

The component composition tactic in KeYmaera X then combines these individ-
ual lemmas into a safety proof of the overall composed system. In the following,
we briefly recap the necessary definitions of previous work [14] and apply our
component-based verification approach to the robot example.

Components, Interface and Contract Compliance

Components. As usual, each component combines a model of the dynamic be-
havior with an interface defining how the component receives inputs and provides
outputs through ports. The component behavior model consists of a control ctrl
(comprising exclusively discrete computations), a physical plant plant and inter-
nal communication cp between the sub-components of non-atomic components
(skip for atomic components). Components do not share any variables, except
for global constants accessed throughout the system.

The robot example consists of two components: Both measure time t in their
plant. The obstacle Co (3) nondeterministically chooses speed so in its controller
and moves its position po as defined in the plant. If safe according to formula (5)
(i. e., distance to measured obstacle position p̂o large enough), the robot Cr (4)
sets its speed sr to the received speed suggestion d̂ and moves its position pr
accordingly in the plant (i. e., position changes according to speed and time
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evolves linearly, for at most maximum control cycle time ε); otherwise it stops.
These components are atomic, so have trivial internal communication cp ≡ skip.

Co = (

ctrlo︷ ︸︸ ︷
so := ∗; ?

(
0 ≤ so ≤ S

)
,

planto︷ ︸︸ ︷
t′ = 1, p′o = so) (3)

Cr = (if (Drive) sr := d̂ else sr := 0︸ ︷︷ ︸
ctrlr

, t′ = 1, p′r = sr & t− t− ≤ ε︸ ︷︷ ︸
plantr

) (4)

Drive ≡ p̂o − pr > (d̂+ S) · ε (5)

Components in ASCII syntax. When specifying components in KeYmaera X, we
declare all component variables and define the hybrid programs for the compo-
nent controller, plant, and internal connections. For example, the obstacle Co (3)
has real-valued variables for its current position po (po), its previous position p−o
(po0), and its speed so (so), and it will keep track of time t (t) and plant start
time t− (t0) in the contracts that we develop subsequently.

Real po; /∗ current obstacle position ∗/
Real po0; /∗ previous obstacle position ∗/
Real so; /∗ speed of obstacle ∗/
Real t; /∗ time ∗/
Real t0; /∗ time before plant’s present control cycle ∗/

In ASCII syntax, the component programs are the controller ctrlo written as
ctrlobs, the plant planto as plantobs with ASCII evolution domain constraint
true (which can also be omitted in dL), and glue code cpo as cpobs.

HP ctrlobs ::= { so:=∗; ?(0<=so&so<=S()); }; /∗ obstacle control ∗/
HP plantobs ::= { {t’=1, po’=so & true} }; /∗ obstacle plant ∗/
HP cpobs ::= { skip; }; /∗ obstacle glue code ∗/

Interfaces. Possible interaction points of a component are described in its in-
terface, which defines input ports V in and output ports V out , together with
input assumptions πin and output guarantees πout that stipulate the expected
respectively guaranteed range of values on each port. We use 7→ to associate
assumptions and guarantees with ports.

In the robot example, the obstacle outputs its position po, whose change
is bounded by the maximum speed S and the time (t− t−) that has passed
since the last position information transmission (6). The robot comes with two
input ports (7) that take a speed suggestion d̂, which must not deviate from its
previous value d̂− by more than D (to avoid too sudden speed changes), and
an obstacle position p̂o, with an input assumption that, for simplicity, exactly
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matches the output guarantee of the obstacle’s single output port.

Io = (

V out
o︷︸︸︷
{po},

πout
o︷ ︸︸ ︷

po 7→
∣∣po − p−o ∣∣ ≤ S · (t− t−)) (6)

Ir =
(
{p̂o, d̂}︸ ︷︷ ︸
V in

r

,
(
p̂o 7→

∣∣p̂o − p̂−o ∣∣ ≤ S · (t− t−) , d̂ 7→ ∣∣∣d̂− d̂−∣∣∣ ≤ D)︸ ︷︷ ︸
πin

r

)
(7)

Interfaces in ASCII syntax. The variable and property declarations of interfaces
translate into hybrid programs and formulas [14, Def. 6]. The obstacle (6) has
a single output port for its position po, so we define a port memory program
deltaobs that stores the position in po0. The obstacle does not have input ports,
so inobs is skip. The obstacle output guarantee πout

o , which specifies that the
position change |po − p−o | over duration (t− t−) cannot exceed maximum speed
S (referred to with nullary constant function symbol S()), is defined in safeobs.
The boolean predicate safeobs takes real-valued position and time arguments.
Additionally, in initobs we define under which initial conditions obstacles will
meet their output guarantees, which will become important for verifying contract
compliance.

HP deltaobs ::= { po0:=po; }; /∗ port memory ∗/
HP inobs ::= { skip; }; /∗ read input ports ∗/
Bool safeobs(Real po, Real po0, Real t, Real t0) <−>
( abs(po−po0) <= S()∗(t−t0) ); /∗ safety property ∗/

Bool initobs(Real po, Real po0, Real so) <−> /∗ initial state ∗/
( po=po0 & so=0 );

Contract compliance. Contracts are dL formulas that tie together a component’s
behavior with its interface. The contract compliance proof obligations [14, Def. 5]
that users have to show follow the structure in the obstacle contract compliance
example below:

(
Ω︷ ︸︸ ︷

S ≥ 0 ∧D ≥ 0∧

φo︷ ︸︸ ︷
so = 0 ∧ po = p−o )→ [(

∆o︷ ︸︸ ︷
p−o := po;

ctrlo︷ ︸︸ ︷
so := ∗; ?

(
0 ≤ so ≤ S

)
;

t− := t; {t′ = 1, p′o = so︸ ︷︷ ︸
planto

}; skip︸ ︷︷ ︸
ino

; skip︸ ︷︷ ︸
cpo

)∗]
∣∣po − p−o ∣∣ ≤ S · (t− t−)︸ ︷︷ ︸

Πout
o

(8)

From global facts Ω about system parameters as well as initial conditions φ
(here: initially the obstacle is stopped so = 0 and the port memory bootstrapped
po = p−o ), users must prove that all runs of a component ensure the interface
output guaranteesΠout . The component behavior is stitched together as a hybrid
program from the component specification according to [14, Def. 5] as follows:

– ∆ updates the port memory (here: remember the position of the obstacle)
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– ctrl runs the component controller (here: choose a new obstacle speed so,
but at most maximum speed S

– t− := t; {t′ = 1, plant} measures time and describes the effect of the control
decision (here: the obstacle moves according to the chosen speed)

– in reads values from the component input ports (here: skip since obstacle
has no inputs)

– cp transfer values between the subcomponents of the current component
(here: skip since the obstacle is not built from smaller components)

The obstacle contract compliance proof obligation (8) follows in a straightfor-
ward way from the ASCII definitions.

Problem /∗ obstacle contract ∗/
t=t0 & globalFacts() & initobs(po,po0,so) −> [{
deltaobs; ctrlobs; t0:=t; plantobs; inobs; cpobs;
}∗]safeobs(po,po0,t,t0)

End.

Robot contract compliance (9) assumes that the robot is stopped initially.
It stores both initial port values (∆r) and nondeterministically chooses values
for its input ports (inr). The robot has no output ports, but guarantees that its
local safety property ψsafe

r holds, which ensures that the robot will never actively
crash into the obstacle.

(Ω ∧

φr︷ ︸︸ ︷
p̂o = p̂−o ∧ d̂ = d̂− ∧ sr = 0 ∧ ε > 0)→ [(

∆r︷ ︸︸ ︷
p̂−o := p̂o; d̂− := d̂; ctrlr ; t− := t;

{t′ = 1, plantr}; p̂o := ∗; ?πin
r (p̂o); d̂ := ∗; ?πin

r (d̂)︸ ︷︷ ︸
inr

; cpr)∗](sr > 0→ p̂o 6= pr︸ ︷︷ ︸
ψsafe

r

) (9)

Verifying contract compliance in KeYmaera X. In order to ensure contract com-
pliance, both contracts must be formally verified. The proof automation of KeY-
maera X can complete the component proofs of the running example fully au-
tomatically. But to illustrate our component-based approach we provide proof
scripts to store the lemmas that are required for deriving system safety upon
composition. Such proof scripts can be included as tactics in the archive entry, us-
ing the Bellerophon tactics language [8]. The KeYmaera X web user interface [12]
supports point-and-click creation of proof scripts (see Section 3.3). The tactics
language provides a number of predefined named tactics (e. g., andL – simplify
a conjunction on the left-hand side of the sequent). Most of these tactics must
be applied at certain positions of the sequent (e. g., andR(1) – apply the tactic
to the first formula on the right-hand side of the sequent) and some require
additional parameters (e. g., loop(invariant,1) – prove a non-deterministic
repetition at position 1 using loop induction with the provided invariant). A
semicolon concatenates tactics, i. e., t1;t2 executes tactic t2 after t1. If a proof
requires the verification of multiple proof goals (e. g., loop induction requires
the verification of three branches, i. e., invariant holds initially, invariant im-
plies target property, invariant is inductive) a less-than sign indicates that the
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following comma-separated tactics are applied to the respective branches (e. g.,
t1 <(t2,t3) – after t1, tactic t2 is applied to the first branch and t3 is applied
to the second branch).

The proof script to verify the obstacle contract is straightforward: First,
the implication is resolved (implyR(1)). Then, loop induction uses the safety
property as invariant, and the resulting branches (base case, use case and in-
duction step) are proved by general proof automation (master). The statement
done({‘message‘},{‘id‘}) creates lemmas to verify each branch (can be re-
ferred to with the provided ID). We will need these lemmas later, when we
apply our composition theorem.

Tactic "Proof Obstacle Contract Compliance (Create Lemmas)"
implyR(1);
loop({‘safeobs(po,po0,t,t0)‘},1); <(
master; done({‘Base case done‘}, {‘Obstacle Base Case Lemma‘}),
master; done({‘Use case done‘}, {‘Obstacle Use Case Lemma‘}),
master; done({‘Step done‘}, {‘Obstacle Step Lemma‘}) )

End.

Composition To safely compose individual components, [14, Def. 6] introduces
a quasi-parallel, associative and commutative composition operation (true paral-
lel plant composition and coarse-grained ctrl composition without interleaving)
to create systems from components. The composition operation is configurable
with a connection program to account for different options how to transfer values
between ports (e. g., lossless connection vs. estimation from sensors with some
uncertainty). A notion of compatibility ensures that connections are made only
between ports whose assumptions and guarantees fit.

Connection program. A user-defined connection program determines how values
are passed between ports. For example, lossless, instantaneous connection4 di-
rectly copies the value of an output port v to an input port v̂: conll(v) ≡ v̂ := v.
The corresponding HP con in ASCII syntax is listed below.

HP con ::= { por:=po; }; /∗ connection program ∗/

These user-defined connection programs must provably provide certain com-
munication guarantees [14, Def. 7]: a connection program con must be executable
(〈con〉true) and its effect must be expressible in a first-order logic formula ζ by
relating the connected ports without side effects ([con]ζ). The direct assignment
in a lossless, instantaneous connection is obviously executable and its effect is
trivial equality between the port values, i. e., ζll(v̂, v) ≡ v̂ = v. To ensure that
the communication guarantees hold, both properties are formally verified from
the ASCII syntax specifications below.
4 See [14] for further examples of connection programs.
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Problem
<con;>true /∗ connection program is executable ∗/

End.
Tactic "Proof Connection Program Executable"
master; done({‘Executable‘},{‘Connection Executable Lemma‘})

End.

The effect of a lossless, instantaneous connection is summarized with the for-
mula Bool zeta(Real por, Real po) <−> ( po=por ); and used in the com-
munication guarantee effect proof below.

Problem
[con;]zeta(por,po) /∗ communication effect ∗/

End.
Tactic "Proof Communication Effect"
master; done({‘Effect‘}, {‘Communication Effect Lemma‘})

End.

Compatibility. When connecting ports, users must prove that the connections
between the components are compatible, so that an output port exclusively
supplies values that are accepted by the connected input port, so formally:
ζ(v−, v̂−) ∧ Ω → [con(v)]

(
πout
j (v̂) → πin

i (v)
)
. In our robot example, the sole

connection transfers the obstacle position to the robot (the desired speed sug-
gestion port remains unconnected), so we get one compatibility proof obligation:

(
(

ζll(p−
o ,p̂

−
o )︷ ︸︸ ︷

p−o = p̂−o ) ∧ (
Ω︷ ︸︸ ︷

S ≥ 0 ∧D ≥ 0)
)
→

[p̂o := po︸ ︷︷ ︸
conll(po)

]
( ∣∣po − p−o ∣∣ ≤ S · (t− t−)︸ ︷︷ ︸

πout
o (po), see (6)

→
∣∣p̂o − p̂−o ∣∣ ≤ S · (t− t−)︸ ︷︷ ︸

πin
r (p̂o), see (7)

)
. (10)

The compatibility proof obligation (10) includes the input assumption (7) and
output guarantee (6) for the connected port, and the communication guarantee ζ
about the connection program con. The compatibility proof obligation is verified
automatically in KeYmaera X and the resulting lemma is again stored.

Definitions
Bool zeta(Real por, Real po) <−> /∗ communication guarantee ∗/

( po=por );
Bool ObsPosOut(Real po, Real po0, Real t, Real t0) <−>

( abs(po−po0) <= S()∗(t−t0) ); /∗ output guarantee ∗/
Bool ObsPosIn(Real por, Real por0, Real t, Real t0) <−>

( abs(por−por0) <= S()∗(t−t0) ); /∗ input assumption ∗/
End.
Problem /∗ compatibility proof obligation ∗/
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zeta(por0,po0) & globalFacts() −>
[por:=po;](ObsPosOut(po,po0,t,t0) −> ObsPosIn(por,por0,t,t0))

End.

After composing the components from the running example using lossless,
instantaneous communication, we get a composite system component and inter-
face. The system component (11) sequentially composes individual controllers
and executes plants in parallel. Internally the obstacle position is transmitted
using the connection program. The system component’s interface (12) contains
the remaining input port of the robot and indicates that previous values must
be stored for connected and unconnected ports alike.

Csys =
( ctrlsys︷ ︸︸ ︷
(ctrlrc; ctrlr ; ctrlo),

plantsys︷ ︸︸ ︷
(plantr , planto),

cpsys︷ ︸︸ ︷
(conll(p̂o))

)
(11)

Isys =
(
{d̂}︸︷︷︸
V in

, (d̂ 7→
∣∣∣d̂− d̂−∣∣∣ ≤ D)︸ ︷︷ ︸

πin

, {}︸︷︷︸
V out

, ()︸︷︷︸
πout

, {p−o , d−, p̂−o , d̂−}︸ ︷︷ ︸
V −

)
(12)

Composition retains safety After verifying local contracts (8) and (9), com-
patibility among connected ports (10) and the communication guarantee for the
applied connection program, the remaining question is whether the safety prop-
erty holds for the composed system. [14, Thm. 1] ensures that, starting from an
initial state where both initial conditions hold, all runs of the composed system
satisfy the safety properties, here:

� (t = t− ∧Ω ∧ φ1 ∧ φ2 ∧ ζ)→

[(∆; ctrl; t− := t; {t′ = 1, plant} ; in; cp)∗]
(
ψsafe

1 ∧Πout
1 ∧ ψsafe

2 ∧Πout
2

)
(13)

The proof of this theorem is implemented constructively in KeYmaera X to
automatically derive a proof tactic that will verify that the system contract (13)
holds from component proofs. This proof tactic takes the lemmas of component
contract compliance, communication guarantees, and compatibility as input.

Summary The user specifies and verifies contract compliance (based on com-
ponent behavior and interface) for each component according to [14, Def. 5],
defines a connection program with verified communication guarantees according
to [14, Def. 7], and discharges the compatibility proof obligation for connected
ports according to [14, Def. 8]. The results of verified contract compliance, com-
munication guarantees, and compatibility are stored as named lemmas and fed
to our tool to retrieve a tactic for proving safety of the composed system.

3.3 Web User Interface
KeYmaera X5 comes with a web-based user interface (UI) [12] that supports
the verification of dL formulas. If a .kyx file is loaded, the UI creates a proof
5 http://www.keymaeraX.org

http://www.keymaeraX.org
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attempt for each contained archive entry. If an archive entry includes a tactic,
the UI calls the underlying KeYmaera X proof engine and attempts to prove
the problem formula. Otherwise, the user can start a manual proof attempt and
choose which sequence of tactics to apply. KeYmaera X automatically records
the selected proof steps and exports the resulting proof script. Additionally, the
UI allows textual input of proof steps. The proof scripts presented in this paper
can be constructed with the UI, exported, and then fed into the component-based
verification tool.

4 Code Generation

For model debugging and testing purposes, KeYmaera X provides (unverified)
code generation from the dL data structures. The code generation tools trans-
late hybrid programs, which are often nondeterministic (nondeterministic as-
signments, choices, and repetitions), into deterministic C code. This translation
requires to mimic nondeterminism with the deterministic language features of
C. We aim for a translation that preserves safety, which means that we want
the behavior of the resulting C program be one of the behaviors of the hybrid
program, but need not necessarily preserve all possible behaviors of the hybrid
program (such refinements are verifiable for hybrid programs with differential
refinement logic [11], but here we bridge different languages). The translation
is systematic but not verified; especially the translation of real arithmetic into
floating point arithmetic does not preserve the semantics: verified compilation
to machine code and interval arithmetic computations is supported through the
VeriPhy pipeline [4].

Component-based hybrid systems typically model the interaction of con-
trollers with their environment, and therefore combine ownsystem components
(e. g., the robot) with environment components (e. g., obstacles). These compo-
nents are fundamentally different in nature, which is reflected in their implemen-
tation: We generate control code from the controller models of the ownsystem
components, and monitoring code to monitor whether or not the actual physical
environment behaves according to the assumptions made in the model. Moni-
toring code can also be generated from the controller models of the ownsystem
components, which is useful to sandbox untrusted control code (e. g., highly
optimized controllers, or controllers that use learning).

4.1 Control Code

Static semantics. In order to declare C data structures to represent constant sys-
tem parameters and state variables, we analyze the static semantics of hybrid
programs via their free and bound variables [16]. Uninterpreted function symbols
and variables that are free but not bound in the program (and thus only read)
become declared as system parameters. Bound variables that are chosen nonde-
terministically are interpreted as system inputs and must be provided, e. g., by
the user, sensors, or through optimization procedures. All other bound variables
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are state variables and computed by the generated control code. Interpreted
function symbols min, max, and abs are translated to library function calls.

typedef struct { /∗ constant parameters that never change ∗/
long double ep; /∗ reaction time bound ∗/
long double S; /∗ obstacle maximum speed ∗/
long double D; /∗ remote control maximum speed ∗/

} parameters;

typedef struct { /∗ component input variables ∗/
long double po; /∗ obstacle position ∗/
long double dr; /∗ desired speed (advisory) ∗/

} inputs;

typedef struct { /∗ state variables of controller and plant ∗/
long double pr; /∗ robot position ∗/
long double sr; /∗ robot speed ∗/
long double t; /∗ time ∗/
long double por0; /∗ previous obstacle position (port memory) ∗/
long double dr0; /∗ previous desired speed (port memory) ∗/
long double t0; /∗ plant start time ∗/

} state;

The sensors and actuators are accessed from the generated control code
through callback functions. Sensors provide the latest sensor values for each
of the input variables, whereas actuators take as input the current and unmod-
ifiable state including the control decisions of the controller.

typedef inputs (∗Sensors)(void);
typedef void (∗Actuators)(state const∗ const);

These data structures are used as arguments in the generated control code
with signature

state ctrl(state const∗ const current,
parameters const∗ const params,
Sensors sense,
Actuators actuate )

The implementation of the control code is derived using the translation rules
discussed next.

Overview. In order to resolve nondeterminism in the execution paths of hybrid
programs, the generated code uses backtracking and therefore operates on a copy
of the state and tracks the success of statements in the following data structure:

struct { state state; bool success; } result = {
.state = current, .success = false }
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The effects (collected in result.state) of unsuccessful statements are reverted
before attempting alternative executions with backtracking (e. g., the second
branch of a nondeterministic choice). We use the notation C(·) to denote com-
pilation of a dL formula, term, or hybrid program into C.

Terms and formulas. The translation of terms and formulas from dL to C rests
on an appropriate representation of real arithmetic in machine-executable float-
ing point arithmetic. Even though unsound, here we opt for code readability
and translate variables, number literals, and terms into double-precision floating
point representations. Provable safety needs a sound translation of real arith-
metic to floating/fixed point interval arithmetic as in VeriPhy [4].

Real-valued number literals n are compiled to double-precision floating point
literals C(n) nL, read-only constant variables c are compiled to system param-
eters C(c)  params−>c, nondeterministically chosen variables x are compiled
to the corresponding field in the inputs data structure C(x) sense()−>x, and
deterministically computed state variables x are compiled to the correspond-
ing field in the result state data structure C(x)  result.state.x. Terms are
straightforward translations of the basic arithmetic operators, with exponentials
and interpreted functions abs, min, and max translated to C math library calls.
Formulas are straightforward translations of the boolean operators.

Deterministic statements. Assignments x := e are translated directly to C:
result.state.x = C(e); result.success = true; where the success variable
indicates that the assignment succeeded. Tests ?F are straightforward assign-
ments to the program success flag: result.success = C(F); leaves the state
unchanged. Conditionals if (F ) a else b, which are syntactic sugar for (?F ; a) ∪
(?¬F ; b), are straightforward C conditionals: if (C(F)) C(a) else C(b). Se-
quential composition a; b executes hybrid program b after successful execution
of HP a, which is translated to C(a); if (result.success) { C(b); }.

Nondeterministic statements. Nondeterministic assignments in hybrid programs
are often used to model inputs to the controller, such as sensor values or opti-
mization procedures when the controller has a variety of different options that
are considered similar in terms of safety (e. g., controller is free to choose any
acceleration if speeding up is safe). We therefore interpret nondeterministic as-
signments x := ∗ as control inputs to the generated controller by reading from
the sensor input callback function: result.state.x = sense()−>x;.

Nondeterministic choice. Nondeterministic choices are resolved eagerly by ex-
ecuting the first successful branch, regardless of whether later branches would
also be executable at the current state. This means, that source hybrid programs
should be structured such that functionality that is important to achieve desired
goals occur on the left-hand side branches of nonderministic choices (e. g., robot
favors following remote control input over emergency stopping).

An integral feature of KeYmaera X is that tactics and proofs operate symbol-
ically on terms, formulas, and programs and can therefore be used to transform
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their shape in a provably correct way. Here, we prepare the code transformation
with a tactic that proves that executing eagerly is a safe implementation of a non-
deterministic choice as follows: [α ∪ β]P → [(α; s := 1 ∪ s := 0); if (¬(s = 1)) β]P .
The success indicator s is a fresh variable mentioned neither in programs α, β
nor the condition P . Note that the semantics of dL “discards” unsuccessful exe-
cutions (e. g., if a test fails), which we implement by remembering the starting
state, tracking the success of statements within programs, and resetting the state
upon unsuccessful execution in the following translation template for the hybrid
program (α; s := 1 ∪ s := 0); if (¬(s = 1)) β.

{ state reset = result.state;
C(a);
if (!result.success) result.state = reset;

}
if (!result.success) {
state reset = result.state;
C(b);
if (!result.success) result.state = reset;

}

Nondeterministic repetition. Similar to nondeterministic choice, we execute a
nondeterministic repetition a∗ until the first time the loop body program a is
executed successfully: while (!result.success) { C(a) }.

Differential equations. Differential equations are implemented by handing the
current state to actuators, so just actuate(result); result.success = true;.
In doing so, we exploit the structure of component contract compliance [14],
which allows a single differential equation at a specific position in the component
contract and hence guarantees that backtracking occurs only locally in control
code and in the communication between sub-components, but never undoes the
effect of differential equations.

4.2 Monitoring

In a readily composed system, only a subset of the components may describe
system functionality and can be implemented by generating control code from
the component model with above methods. Other components may describe
environment behavior or agents (e. g., obstacles) that we cannot control. Never-
theless, the composed system makes crucial safety-relevant assumptions about
the behavior of such environment components. Safety is provably guaranteed
through ModelPlex [13] when we monitor the environment behavior for compli-
ance with their model. The necessary monitoring conditions in dL are generated
by proof [13]. The methods introduce above are applicable to generate exe-
cutable monitor code. Here, we briefly discuss the nature of monitor conditions
in C for debugging purposes and readability. The generated monitor conditions
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test for compliance between component environment model and true environ-
ment. Provably correct monitoring is available in our VeriPhy pipeline, which
generates provably correct machine code [4] that witnesses compliance between
a model and reality.

The monitor conditions generated by ModelPlex are formulas that describe
how a current state of the program is related to the next state through the pro-
gram statements. A monitor condition P (x, x+) compares two states for compli-
ance with the program statements: variables in the previous state are identified
by the program variable name x, whereas those in the next state are marked x+.
For example, the robot controller ctrlr (if (Drive) sr := d̂ else sr := 0) is trans-
formed by proof into a monitor condition (Drive∧s+

r = d̂)∨(¬Drive∧s+
r = 0) and

represents assignments, tests, and nondeterministic choices as described below.

Assignments and tests. Some of the statements are unambiguous computations
that represent points in the state space: for example, assignment sr := 0 only
admits a specific new speed (0), and therefore the monitor condition will test
speed with the formula s+

r = 0. Others represent regions in the state space and
may refer to both states (e. g., testing whether stopping is necessary with Drive).

Nondeterministic choices. Execution in a hybrid program splits into several
paths at each nondeterministic choice, which result in disjunctions in the gener-
ated monitoring conditions (e. g., one disjunct describing how the robot chooses
speed when following the remote control command, another disjunct for stop-
ping). For example, the robot controller ctrlr results in the disjunction (Drive∧
s+
r = d̂) ∨ (¬Drive ∧ s+

r = 0), which means that the monitor is satisfied either
when the robot chooses a new speed s+

r = d̂ when also the condition Drive was
satisfied, or else chooses a new speed s+

r = 0. For provable runtime safety, the
main result of ModelPlex [13] guarantees that the system at runtime enjoys the
guarantees of the offline proof when the monitor conditions evaluate to true at
runtime. The ModelPlex monitor conditions can be translated into C code using
the control code transformations introduced above.

4.3 Using the Generated Code

The generated control code implements a control step that reads from sensors
and writes to actuators, which are attached through hooks (signature repeated
here for easy reference):

state ctrl(state const∗ const current,
parameters const∗ const params,
Sensors sense,
Actuators actuate)

In the following code snippet, we implement the Sensors and Actuators
callback functions to read from and modify the state of the system components
according to a manually implemented simple simulator of the obstacle and robot
motion, and a random desired speed suggestion of the remote control.
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parameters sysParams = { .ep = 0.5L, .S=3.0L, .D=5.0L };
rcState rc = { .dr = 0.0L };
obsState obs = { .po = 10.0L, .so = 0.0L };
state robot = {
.pr = 0.0L, .sr = 0.0L, .t = 0.0L,
.por0 = 10.0L, .dr0 = 0.0L, .t0 = 0.0L

};

inputs readRobotInputs() {
return ((inputs){ .po = obs.po, .dr = rc.dr });

}

void actuateRobotOutputs(state const∗ const out) {
/∗ random time st in [0..ep] ∗/
long double st = randomDouble(0.0L, sysParams.ep);
/∗ simulate robot ∗/
robot.sr = out−>sr;
robot.t = st;
robot.pr = robot.pr + robot.sr∗st;
/∗ simulate obstacle: random so in [0..S] ∗/
obs.so = randomDouble(0.0L, sysParams.S);
obs.po = obs.po + obs.so∗st;
/∗ simulate remote control: random dr in [0..D] ∗/
rc.dr = randomDouble(0.0L, sysParams.D);

}

In a real system, the sensor and actuator callback functions are used to
interact with the system hardware through sensor and actuator drivers.

5 Related Work

Formal verification tools based on hybrid-automata, like SpaceEx [6], allow veri-
fication of parallel composed hybrid I/O automata, but either rely on soundness-
critical extensions to support compositional reasoning or analyze a readily com-
posed system in a monolithic fashion, which may lead to state space explosion.
Modeling and simulation tools, such as Ptolemy [5] and Modelica [7], support
component-based modeling of hybrid systems, but do not support verification
or exploit the modular structure of the system for simulation. The model-driven
development tool Simulink/Stateflow comes with a design verifier that allows
a model analysis, but does not create proofs like KeYmaera X. Additional ap-
proaches allow formal verification of Simulink/Stateflow by translation into a
other formalisms (e. g., timed automata [18], hybrid automata [1]), but thus rely
on soundness-critical extensions. Conversely, [2] allow transformation of formally
verified hybrid automata to Simulink/Stateflow, with follow-up code generation
through (unverified) syntactic transformations. The CyPhyML paradigm [10],



A Component-Based Hybrid Systems Tool 109

developed as part of the OpenMETA tool chain, supports component-based mod-
eling of CPS. However, for analysis purposes (e. g., simulation, verification), the
models must be translated to other formalisms, like Modelica.

In summary, the component-based verification and code-generation function-
ality of related tools extend the soundness-critical core of those tools. We, in con-
trast, analyze components separately and prove system safety from component
safety in tactics [8] outside the soundness-critical core. For code generation, we
follow a pragmatic approach similar to existing tools and use systematic trans-
formations, but we strive for performing program transformations with proofs
when possible: we exploit tactics to adapt the shape of hybrid programs from
their nondeterministic nature to a deterministic implementation with proofs to
prepare for emitting C code. The imperative nature of hybrid programs then
makes inspecting the remaining syntactic transformations straightforward.

6 Conclusion

This paper demonstrates a tool chain that exploits the strict separation of tactics
from the soundness-critical core in KeYmaera X in order to build component-
based verification techniques. The input language, definitions, and lemma mech-
anism of KeYmaera X are a useful basis when structuring models into separate
components and to combine separate component safety and connection compat-
ibility proofs into a safety proof of a readily composed system.

For implementation of components and easy integration with embedded and
cyber-physical systems, we take a pragmatic approach by generating C code
with informally inspected program transformations. These transformations are
designed to emit control code for components that describe implementable sys-
tem functionality, and monitor code to monitor for violation of the assumptions
that models make about environment behavior or agents outside the control of
our own system. The transformations also address the gap between the nonde-
terministic operators of hybrid programs and the deterministic implementations
in a way that preserves safety. We demonstrate how tactics can help implement
these transformations by proof on the level of hybrid programs to prepare for
emitting C code, so that only the final transformation step from hybrid programs
into C is unverified. Fully verified machine code with a chain of theorem provers
is available in KeYmaera X with VeriPhy [4].
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