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ABSTRACT

Programmable Logic Controllers (PLCs) provide a prominent choice
of implementation platform for safety-critical industrial control sys-
tems. Formal verification provides ways of establishing correctness
guarantees, which can be quite important for such safety-critical
applications. But since PLC code does not include an analytic model
of the system plant, their verification is limited to discrete proper-
ties. In this paper, we, thus, start the other way around with hybrid
programs that include continuous plant models in addition to dis-
crete control algorithms. Correctness properties of hybrid programs
can be formally verified in the theorem prover KeYmaera X that
implements differential dynamic logic, dL, for hybrid programs.
After verifying the hybrid program, we now present an approach
for translating hybrid programs into PLC code. The new HYPLC
tool implements this translation of discrete control code of verified
hybrid program models to PLC controller code and, vice versa, the
translation of existing PLC code into the discrete control actions
for a hybrid program given an additional input of the continuous
dynamics of the system to be verified. This approach allows for the
generation of real controller code while preserving, by compila-
tion, the correctness of a valid and verified hybrid program. PLCs
are common cyber-physical interfaces for safety-critical industrial
control applications, and HYPLC serves as a pragmatic tool for
bridging formal verification of complex cyber-physical systems at
the algorithmic level of hybrid programs with the execution layer
of concrete PLC implementations.
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1 INTRODUCTION

There has been an increased emphasis on the verification and vali-
dation of software used in embedded systems in the context of in-
dustrial control systems (ICS). ICS represent a class of cyber-physical
systems (CPS) that provide monitoring and networked process con-
trol for safety-critical industrial environments, e.g., the electric
power grid [1], railway safety [2], nuclear reactors [3], and water
treatment plants [4]. A prominent choice of implementation plat-
form for many ICS applications are programmable logic controllers
(PLCs) that act as interfaces between the cyber world-i.e., the mon-
itoring entities and process control-and the physical world-i.e., the
underlying physical system that the ICS is sensing and actuating.
Efforts to verify the correctness of PLC applications focus on the
code that is loaded onto these controllers [5-8]. Existing methods
are based on model checking of safety properties specified in modal
temporal logics, e.g., Linear Temporal Logic (LTL) [9] and Compu-
tation Tree Logic (CTL) [10]. However, since PLC code does not
include a model of the system plant, such analyses are limited to
more superficial, discrete properties of the code instead of analyzing
safety properties of the resulting physical behavior.

In this paper, we thus start from hybrid systems models of ICS,
in which the discrete computations of controllers run together with
the continuous evolution of the underlying physical system. That
way, correctness properties that consider both control decisions
and physical evolution can be verified in the theorem prover KeY-
maera X [11]. The verified hybrid programs can then be compiled
to PLC code and executed as controllers. The reverse compilation
from PLC code to hybrid programs facilitates verifying existing
PLC code with respect to pre-defined models of the continuous
plant dynamics.

In this paper, we present HYPLC, a tool that compiles verified hy-
brid systems models into PLC code and vice versa. Figure 1 depicts a
high-level overview of the bidirectional compilation provided by Hy-
PLC. The hybrid models are specified in differential dynamic logic,
dL [12-14], which is a dynamic logic for hybrid systems expressed
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Figure 1: HYPLC provides a bidirectional translation of the
discrete control of a verifiable hybrid program expressed
in dL and the control logic code that runs on a PLC in the
context of a cyber-physical industrial control system

as hybrid programs. Compiling hybrid programs to PLC code gen-
erates deterministic implementations of the controller abstractions
typically found in hybrid programs, which focus on capturing the
safety-relevant decisions for verification purposes concisely with
nondeterministic modeling concepts. Nondeterminism in hybrid
programs can be beneficial for verification since nondeterministic
models address a family of (control) programs with a single proof
at once, but is detrimental to implementation with Structured Text
(ST) programs on PLCs. Therefore, in this paper we focus on hybrid
programs in scan cycle form. The compilation adopts the IEC 61131-
3 standards for PLCs [15]. Compiling PLC code to dL and hybrid
programs, implemented using the ANTLR parser generator [16],
provides a means of analyzing PLC code on pre-defined models of
continuous evolution with the deductive verification techniques of
KeYmaera X. The core contributions of this paper lie in our correct-
ness proofs for the bidirectional compilation, so that both directions
of compilation yield a way of obtaining code with safety guaran-
tees (assuming no floating-point arithmetic errors arise). Finally, we
evaluated our tool on a water treatment testbed [17] that consists
of a distributed network of PLCs.

The rest of the paper is organized as follows. Section 2 provides
background information. Section 3 introduces compilation rules
for terms in both languages and describes how the semantics is
preserved. Section 4 and Section 5 describe the compilation of
formulas and programs, respectively, and include formal proofs of
correctness and preservation of safety across compilation. Section 6
presents our evaluation of HYPLC on a water treatment case study.
We discuss the limitations of HYPLC and conclude in Section 7.

2 PRELIMINARIES

This section explains the preliminaries necessary to understand the
underlying concepts of HYPLC. We first provide a brief overview
of PLCs, including how they are integrated into ICS as well as the
associated programming languages and software model as defined
by the IEC 61131-3 standard for PLCs [15]. We then discuss previ-
ous works in formal verification of PLC programs, followed by an
overview of the dynamic logic and hybrid program notation used
by HYPLC.
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Figure 2: The PLC scan cycle in the context of ICS

2.1 Programmable Logic Controllers

Part 3 of the IEC 61131 standards [15] for PLCs specifies both the
software architecture as well as the programming languages for the
control programs that run on PLCs. We will provide the requisite
knowledge for understanding the assumptions made by HYPLC.
PLCs in the context of ICS. Figure 2 shows how PLCs are inte-
grated into ICS as well as a schematic overview of the PLC scan
cycle. Scan cycles are typical control-loop mechanisms for embed-
ded systems. The PLC “scans” the input values coming from the
physical world and processes this system state through the control
logic of the PLC, which is essentially a reprogrammable digital logic
circuit. The outputs of the control logic are then forwarded through
the output modules of the PLC to the physical world. HYPLC fo-
cuses on hybrid programs of a shape that fits to this scan cycle
control principle using time-triggered models.

Programming languages and software execution model. Hy-
PLC focuses on bidirectional compilation of the Structured Text (ST)
language, which is a textual language similar to Pascal that, for
formal verification purposes [18], can be augmented to subsume
all other languages! defined by the IEC 61131-3 standard. For the
software execution model, we refer to the literature [15]. We only
consider a single-resource configuration of a PLC that has a single
task associated with a particular program that executes for a par-
ticular interval, ¢. Because, it is a single task configuration, we do
not consider priority scheduling.

2.2 PLC Programming Language Verification

Due to their wide use, there have been numerous works regarding
the verification of safety properties of PLC programming languages.
Rausch et al. [19] modeled PLC programs consisting only of Boolean
variables, static single assignment of variables, no special functions
or function blocks, and no jumps except subroutines without re-
cursion. Such an approach was an initial attempt to provide formal
verification of discrete properties of the system, i.e., properties that
can be derived and verified purely from the software, ignoring the
physical behavior of its plant. Similarly, other approaches have
been presented whose safety properties are specified and modeled
using linear temporal logic [20, 21] or by representing the system as

!ladder diagrams (LD), function block diagrams (FBD), sequential function charts
(SFC), and instruction list (IL)
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a finite automaton [22, 23] or real-time automata [24] . The formal
verification of such systems is limited by state-space exploration
techniques, e.g., there will be an uncountable number of states
for continuous systems because time is a variable. As such, these
techniques will only be able to explore a subset of the states.

Conversely, there have been several works regarding the gener-
ation of PLC code based on the formal models of PLC code. PLC-
Specif [6] is a framework for generating PLC code based on finite
automata representations of the PLC. Although this framework pro-
vides a means of generating PLC code based on formally verified
models, the formal verification has the aforementioned limitations
of providing correctness guarantees for discrete properties of the
PLC code that can be verified for a finite time horizon. The approach
presented by Sacha [25] has similar limitations since it uses state
machines to represent finite-state models of PLC code. Darvas et al.
also used PLCSpecif for conformance checking of PLC code against
temporal properties [26]. Flordal et al. automatically generated PLC-
code for robotic arms based on generated zone models to ensure the
arms do not collide with each other as well as to prevent deadlock
situations [27]. The approach generates a finite-state model of the
robot CPS environment that is then used to generate supervisory
code within the PLC that controls its arm. The approach abstracts
the PLC’s discrete properties and does not incorporate the PLC’s
timing properties into the physical plant model. Furthermore, this is
a domain-specific approach for robot simulation environments and
does not provide generalizability nor a means of formal verification
of the initially generated finite-state models.

VeriPhy [28] compiles CPS models specified in dL to verified
executables that sandbox controllers with safe fallback control and
monitor for expected plant behavior. The VeriPhy pipeline com-
bines multiple tools to bridge implementation and arithmetic gaps
and provide proofs that safety is preserved when compiling to a
controller executable. HYPLC provides bi-directional compilation
in the particular context of PLC scan cycles but ignores arithmetic
rounding and is not formally verified. Majumdar et al. also ex-
plored equivalence checking of C code and an associated SIMULINK
model [29]. Although such an approach is useful for modelling the
behavior of C code in a control system model, additional efforts are
needed to interface such a model with verification tools such as
KeYmaera X as well as to model the behavior of PLCs.

2.3 Differential Dynamic Logic and Hybrid
Programs

HYPLC works on models that have been specified in differential
dynamic logic (dL) [12-14], a logic that models hybrid systems and
can be formally verified with a sound proof calculus. The formalized
models that use dL are referred to as hybrid programs. As with ST,
we will recall the syntax and semantics of dL and hybrid programs
as needed throughout the course of this paper.

The modal operators [a] and (&) are used to formally describe
the behavioral properties the system has to satisfy. If « denotes a
hybrid program, and ¢ and ¢ are formulas, then the dL formula

¢ = [aly

means “if @ is initially satisfied, then 1 holds true for all the states
after executing the hybrid program a”. This way, safety properties
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Figure 3: The first process control components for a water
treatment testbed [17].

can be encoded for a model a. We use the modeling pattern
A — [{ctrl; plant}*]S,

where A represents assumptions on the initial state of the system,
ctrl describes the discrete control transitions of the system, plant
defines the continuous physical behavior of the system, and S is
the safety property we want to prove. In this pattern, control and
plant are repeated any number of times, as indicated with the
nondeterministic repetition operator *.

FV(¢) refers to the free variables and BV(¢) refers to the bound
variables of formula ¢ (accordingly for terms and programs) [13].

2.4 Use Case: Water Treatment Testbed

As a running example, we will use a simple water tank component
taken from the first of six control processes of a water treatment
testbed [17], depicted in Figure 3. This process is responsible for
taking in water from a raw water source and feeding it into a tank.
This water will then be pumped out into a second tank to be treated
with chemicals. For this first process, the PLC is responsible for
controlling the inflow of water for both tanks by opening or closing
valves, Vi and V3, as well as the outflow of water to the second
tank by running the pump, P. The PLC monitors the water level of
both water tanks, x; and x, to ensure that V; and V3, respectively,
are closed before each respective tank overflows beyond an upper
bound, H. The PLC is additionally responsible for protecting the
outflow pump, P, by ensuring that the pump is off if the water level
of x; is below a lower threshold, L, or if the flow rate of the pump,
f2, is below a certain lower threshold, Fj (not shown in Figure 3).
Figure 4 shows a simplified representation of the actual ST code that
is loaded onto the PLC for a particular sample rate of ¢ for all the
associated sensors. In this model, the flow rate for the incoming raw
water, f, is not incorporated into the process control. The real sys-
tem simply monitors the value of this flow rate without establishing
a physical dependency. The upper limits of the water tank level, H;
and Hy, and the lower limits, L1 and Ly, represent trigger levels that
are below and above, respectively, the actual safety thresholds, Hy
and Ly . The trigger values were determined empirically [17]; our
proofs will find and verify symbolic characterizations of the trigger
values. This model will be used throughout the paper to illustrate
how an existing ST program can be systematically compiled to the
discrete control of a hybrid program and updated if necessary to
ensure safe operation of the ICS.
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PROGRAM prog0
/+ data declaration =/

VAR_INPUT x1, x2, f1, f2 : REAL; END_VAR
VAR OUTPUT V1, V2, P : BOOL; END_VAR
structured text program statements «/

IF (x1 >= H1) THEN V1:=0; ELSE
IF(x1 <= L1) THEN Vi:=1; END_IF;

END_IF;
IF(x2 <= L2) THEN P:=1; V2:=1; END_IF;
IF(x1 <= LL OR f2 <= FL OR x2 >= H2) THEN
P:=0; V2:=0; END_IF;
END_PROGRAM
» PLC config and computing task assignment «/
CONFIGURATION Config0
RESOURCE Res0 ON PLC
TASK Main (INTERVAL:=T#1s, PRIORITY:=0);
PROGRAM Inst0 WITH Main : prog0;
END_RESOURCE
END_CONFIGURATION

Figure 4: ST program for simplified PLC process control of
the system in Figure 3

3 COMPILATION OF TERMS

Compilation approach overview. Compilation between ST and
hybrid programs bases on two main ingredients: the syntax of the
languages, given in grammars, define their notation; the language
semantics give meaning to the syntactic constructs. Compilation
translates from one syntax to another, but it must be done in a way
that preserves the semantics of the compiled programs.

With compilation rules, we define how to compile a term, for-
mula, or program in the source syntax into a corresponding term,
formula, or program of the target syntax. Each rule will compile
a certain program operator, and often invoke compilation on the
operands. For example, ST(¢ A ¢) » ST(¢) AND ST(i) compiles con-
junction A in hybrid program formulas into conjunction AND in ST
of the recursively compiled sub-formulas ¢ and . Here, ST(¢ A )
means that we compile hybrid program formula ¢ A ¢ into an ST
formula; the operator > describes how the compilation is done.

With proofs of compilation correctness we then show that the
compilation rules preserve the semantics in a way that will allow us
to conclude safety of an ST program from a safety proof of a hybrid
program. The proofs exploit the recursive nature of the compilation
rules and apply structural induction on the program syntax con-
structs, where we inductively justify each compilation rule from
its easier pieces, assuming absence of arithmetic inaccuracies and
basing on the hypothesis that the easier pieces are correctly built
from the base constructs (e.g. complicated terms built from numbers
and variables).

For terms and propositional formulas, the compilation rules are
straightforward. The main syntactic difference is between nonde-
terministic choices in hybrid programs and if-then-else constructs
in ST. Aligning the semantics in the compilation correctness proofs,
however, requires more work: the semantics of ST is given as an
operational semantics [18], which describes the effects of taking
a step in a program, whereas the semantics of hybrid programs is
denotational, which describes the reachability relation of a program.
Term compilation overview. In this section, we will define birec-
tional compilation rules of the arithmetic terms in both hybrid
programs and ST for PLCs. The terms of ST are the leaf elements
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of ST expressions that represent the values stored in the PLC’s
memory and directly affect the sensing and actuation of the cyber-
physical system for a particular context. As such, these values will
need to be abstracted to represent the terms of an equivalent hybrid
program. We will first discuss syntax of the terms in both languages
and then define the semantics-preserving compilation.

Notation. We write ST(0) for the result of compiling a hybrid pro-
gram term, 6, to an ST term, and we write HP(6) to represent com-
piling an ST term to a hybrid program term. We write ST(6)>s when
s is the result of compiling 6 to an ST term, and HP(s) >  when 0
is the result of compiling s to a dL term. This notation will also be
used for the bidirectional compilation of formulas and programs.

3.1 Grammar Definitions

In order to compile terms between both languages while preserving
the respective semantics, we first define the grammar for both
languages.

Grammar of ST terms. The terms of ST considered in this paper
are defined by the grammar:

w, [, %k}

and where a is a number literal, x € V is an ST variable, and V is the
subset of all ST variables, and both number literals and variables are
restricted to LReal? of the numeric elementary data types defined
by the IEC 61131-3 standard.

Grammar of dL terms. The translatable terms of dL and hybrid
programs [12, 13] are defined by the grammar:

O,p:=al|x| —6]|6~nwhere ~€ {+, -,

0,n:=x|n|6~nwhere ~€ {+-,-,/,"}

and where x € V is a variable and V is the set of all variables. The
grammar allows the use of number literals n as functions without
arguments that are to be interpreted as the value they represent.

Next, we provide the bidirectional compilation rules of terms
and prove term compilation correctness.

3.2 Compilation Rules

We will first define compilation rules for the terminal expressions,
referred to as atomic terms, and compose the other expressions
following the recursive nature of the grammars.
Atomic terms. Atomic terms in hybrid programs include vari-
ables and number literals. For the sake of simplicity, we do not
consider functions within hybrid programs as we want to focus on
the core elements of discrete control, and we assume that the data
type LReal of the IEC 61131-3 standard coincides with mathematical
reals. In practice, when a PLC implements LReal with floating point
numbers, this assumption can be met with an appropriate sound
encoding using, for example, interval arithmetic as verified in [28].
HYPLC compiles number literals and variables of hybrid pro-
grams, which evaluate to mathematical reals, to numbers and vari-
ables of data type LReal of the IEC 61131-3 standard as follows:
Number literals n and variables x then do not need conversion, so
ST(n) » nand HP(n) > n, as well as ST(x) > x and HP(x) > x.
Next, we inductively define the compilation rules for arithmetic
operations.

?LReal variables are 64-bit values represented as floating points from the IEC 60559
standard.



HyPLC: Hybrid PLC Translation for Verification

Arithmetic operations. Arithmetic operations are similarly de-
fined in an inductive fashion in similar syntax in both languages,
which makes translation of terms 6 and 7 straightforward as follows,
where ~ € {+,—, /}:

ST(=(x)) > =(ST(x))

ST(0 ~ n)»ST(0) ~ ST(n)
ST(O - n) > ST(O) * ST(n)
ST(0 " 17) > ST(@)**ST(I])

HP(—(x)) > —(HP(x))

HP(0 ~ ) > HP(O) ~ HP()
HP(0 * n) > HP() - HP(n)
HP(0**n) > HP(0) " HP(n)

We now provide the Lemmas for correctness of the translation of
terms in both directions. As in [18], we write (6, v) —4 ¢ to express
that in ST a term 6 evaluates to ¢ in context v. We write v[[0]] = ¢ to
express that in dL a term 0 evaluates to c at state v [13]. Details on
the dL semantics and ST semantics used in the proof can be found
in the associated appendices of the full report [30].

LEMMA 3.1 (CORRECTNESS OF TERM COMPILATION). Assuming
absence of arithmetic inaccuracies in LReal: if (6,v) —4 c then
vI[HA(O)]] = c; conversely, if v[[0]] = ¢ then (ST(0),v) —4 c.

Proor. By structural induction on term operators, see the asso-
ciated appendix in the full report [30]. O

We next define how the compilation of terms is leveraged to
compile the formulas of both languages in both directions.

4 COMPILATION OF FORMULAS

In this section, we compile modality- and quantifier-free formulas
used in tests in hybrid programs and conditional expressions of ST
statements. As was done with the terms of each language, we first
discuss the syntax of the formulas for both languages.

4.1 Grammar Definitions

Grammar of ST formulas. ST formulas are used in conditional
expressions defined by the IEC 61131-3 standard as follows.

$.1 == TRUE | FALSE | 0 ss7 77 | NOT(9) | ¢ ~s1 ¥
where g7 € {<, >, >=,<=,<>,=}

and ~s7 € {AND, OR, XOR}

The values TRUE and FALSE represent the two Boolean values a
conditional expression can take upon evaluation, 8 and 5 are ST
terms, operator »<sT ranges over relational operators used in ST,
operator —~st ranges over logical operators between two formulas,
and NOT(¢) is the logical negation of a formula ¢.

Grammar of dL formulas. The truncated grammar for modality-
and quantifier-free formulas in dL that we consider in this paper is
built using propositional connectives =, A, V, —, & [12] as follows:

¢, = true | false | 0 op 1 | = | ¢ ~up ¥

where »app € {<,>,2>,<,=,#2}and —~pp € {A,V, >, &}

and where 0 and 7 are dL terms. Wwe present the compilation rules
and the formula compilation correctness proof for these grammars.
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4.2 Compilation Rules
Atomic formulas. Atomic formulas in both languages comprise
the literals true and false and comparisons of terms and are compiled
in a straightforward way:
ST(true) > TRUE
ST(false) » FALSE

HP(TRUE) » true
HP(FALSE) > false

Comparisons are directly compiled as follows:

ST(O = n) > ST(0) = ST(n)
ST(6 # n) > ST(P) <> ST(n)
ST(0 > 1) » ST(6) > ST(n)
ST(6 > n) > ST(0) >= ST(n)
ST(6 < n) > ST(9) < ST(n)
ST(6 < n)» ST(9) <= ST(n)

HP(0 = n) > HP(8) = HP())

HP(8 <> 1) > HP(0) # HP()
HP(6 > 1) > HP(6) > HP(y)

HP(6 >=n)»> HP(0) > HP(n)
HP(0 < 1) » HP(A) < HP(n)

HP(0 <= 1) » HP(0) < HP()

The compilation rules for the atomic formulas are the basis for

compiling compound formulas.

Logical formulas. Logical connectives —, A, V are straightforward,
whereas —, <> are rewritten for compilation (similar for XOR):

ST(=(#)) > NOT(ST(¢))
HP(NOT(¢)) » —~(HP(¢#))

ST(p A Y) > ST(¢) AND ST(¢/)
HP(¢ AND ¢/) » HP(¢h) A HP(¥)

ST(p V ¢) > ST(4) OR ST(y)

HP(¢ OR /) > HP(¢h) V HP(y)

ST(p —> ¢) > ST(= VY)

ST(p < ) > NOT(ST(¢) XOR ST(¥))

HP(¢ XOR /) > =(HP($) <> HP(})))

We now prove correctness of the compilation of formulas in both
directions. In ST, we write (¢, v) =4 T asin [18] andindL v |= ¢
to say that formula ¢ is true at state v as in [13].

LEMMA 4.1 (CORRECTNESS OF FORMULA COMPILATION). Formulas
evaluate equivalently: v |= ¢ iff (ST(¢),v) —4 T and, conversely,

(@,v) =a T iff v = HA(S).

Proor. By structural induction on formula operators, see the
associated appendix in the full report [30]. O

5 COMPILATION OF PROGRAMS

Now that we know how to correctly compile terms and formulas
in both languages, we turn to compiling program constructs. Since
these programs, when executed on a PLC, interact with the physical
world, our overall goal is to provably establish safety properties of
the physical behavior of an ICS. To this end, we again show compi-
lation correctness with respect to the semantics of the languages,
which will serve as a stepping stone to describe the program effect
in the larger context of the PLC scan cycle.

We first provide an overview of our hybrid system model of a
PLC scan cycle, before we introduce the grammars and compilation
rules for both languages and prove compilation correctness.
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Hybrid Program Scan Cycle: A —> [(i := %; u€ctrl(x,i); t := 0; {x’=f(x,u); t =1 & t< &})"]S
(Normal Form)
execulinr; time=¢

I 1

PLC Scan Cycle: | Input Scan | Control Logic Output Scan

—

non-deterministic input plant

x'=f(x,u)

Figure 5: Hybrid system model of a PLC scan cycle

5.1 Scan Cycle Hybrid System Model

We model the PLC scan cycle as a hybrid program of a particular
shape—referred to as a hybrid program in scan cycle normal form—
in order for safety properties verified about a hybrid program to
directly transfer to its implementation in ST.

Figure 5 provides an overview of the components of a hybrid
program in scan cycle normal form and how they relate to a PLC
scan cycle. A PLC scan cycle is a periodic process that, on each
iteration, scans the inputs, then executes the control logic to set
outputs, and finally forwards outputs to the actuators. The total
scan cycle duration in this abstracted model is ¢.

Our hybrid program model of such a scan cycle uses nonde-
terministic assignments i := * to model arbitrary external input
to the PLC system, such as sensor values whose state cannot be
estimated or user input from a user interface. Based on the current
state x and inputs i, the controller u :€ ctrl(x, i) then chooses con-
trol actions u from a set of possible choices. The plant modeled by
t:=0;{x" = f(x,u),t’ = 1 & t<e} continuously evolves the sys-
tem state x according to the control action u along the differential
equations x” = f(x, u) and keeps track of the scan cycle duration
bound ¢ with a clock t to evolve for at most duration e.

Definition 5.1 (Scan cycle normal form). We call a hybrid program
with shape i := x;u:€ctrl(x, i);t := 0; {x’ = f(x,u),t’ =1 & t<e}
a program in scan cycle normal form. It is safe, if formula A —
[(i == uzectrl(x,i); t:=0;{x" = f(x,u),t’ =1& t<e})*]|Sisvalid.

In the following subsections, we describe how a controller
u :€ ctrl(x, i) is translated into an ST program and its associated con-
figuration. We leave code generation for nondeterministic inputs
and physical plant components (e.g., monitors that check model
and true system execution for compliance) as future work.

We will use the operational semantics of ST and dynamic seman-
tics of hybrid programs to ensure that the compilation preserves
meaning. Additionally, we will use the static semantics of hybrid
programs in terms of their bound and free variables to derive con-
figuration information for the PLC code (e.g., distinguish between
input and output variables).

5.2 Grammar Definitions

We present the respective grammars for programs in each language.
Grammar of ST programs. ST programs refer to the sequence of
statements defined by the IEC 61131-3 standard that form entire
ST programs. We consider ST statements s; and s as follows:

51,82 == x := 0 | if (¢) then s1 else sp |
if (@) then sq | s1;s2
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Where x := 0 is assignment of an ST term 6 to variable x,
if (§) then s1 else sz is a conditional statement where s; is exe-
cuted if ¢ is true and s; is executed otherwise, and s;;s; is the
sequential composition of ST programs where s; executes after
s1 has finished its execution. While Structured Text supports sev-
eral other control structures such as finitely bounded loops and
case-statements, these can be represented as a series of if-then-else
statements. The dL grammar is composed in a similar fashion.
Grammar of dL programs. The grammar for PLC-translatable
dL hybrid programs is defined as follows.

a.f u= x:=0]Cpa)Up| (i) U(?-¢; f) |
o) U= | a;

Where x := 0 are assignments of the value of a term 6 to the variable
x and (?¢; @) U f is a guarded execution of « (possible if ¢ is true)
and default f§ (can be executed nondeterministically regardless of ¢
being true or false), (?¢; @) U (?=¢; f) is an if-then-else conditional
statement, (?¢; ) U?=¢ is an if-then conditional statement without
else, and a; f§ is a sequential composition [12, 13]. Given these base
grammars for the programs, we now present the compilation rules
and the associated correctness proofs that will allow us to conclude
safety of ST programs from safety proofs of hybrid programs. Pre-
serving safety will allow us to compile existing ST programs into
hybrid programs and analyze their interaction with the physical
plant for safety, and conversely compile the controllers of hybrid
programs into ST programs for execution on a PLC.

5.3 Compilation Rules

Deterministic assignment. Assignments of terms to variables in
hybrid programs represent the core of discrete state transitions in
a hybrid system.

The syntax and operational effect of a discrete assignment is the
same in both languages, so compilation is straightforward:

ST(x := 0) » ST(x) := ST(0)
HP(x := ) > HP(x) := HP(6)

The static semantics of discrete assignments in hybrid programs

provides information about input and output variables of the gen-
erated ST code: an assignment contributes BV(x := 0) = {x} to the
set of output variables, and FV(x := 0) = FV(0) to the set of input
variables [13].
Sequential composition programs. The sequential composition
of two hybrid programs « and f executes the hybrid program
after o has finished, meaning that § never starts if the program
a does not terminate. Sequential composition of ST statements
has identical meaning, and so compilation between ST and hybrid
programs is straightforward as follows:

ST(a; f) » ST(a); ST(B) HP(a; B) » HP(a); HP(p)

A sequential composition contributes the input and output vari-
ables of both its sub-programs: it has output variables BV(«; f) =
BV(a) U BV(f) and input variables FV(a; ) = FV(a) U (FV(f) \
MBV(a)). Note that the input variables are not simply the union of
both sub-programs, since some of the free variables of § might be
must-bound, so bound on all paths in a—in MBV(«)—and therefore
no longer be free in the sequential composition [13].
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REMARK 1 (ST Task ExEcuTION TIMING). The execution of a series
of statements with respect to sequential composition assumes that
the statements execute atomically, which is defined in the transition
semantics of hybrid programs. We do not model the preemption of
higher priority tasks as the modeling of the PLC’s task scheduling is
beyond the scope of this paper and left for future research.

HYPLC assumes that the developer designs a system with multiple
tasks such that (1) the execution time of a highest priority task is less
than its period and that (2) the total execution of all tasks is less than
the period of the lowest priority tasks [31].

Conditional programs. In the translatable fragment of hybrid
programs we allow tests to occur only as the first statement of the
branches in nondeterministic choices, and we allow only nondeter-
ministic choices that are guarded with tests. A nondeterministic
choice between hybrid programs ?¢; a and f executes either hybrid
program and is resolved on a PLC by favoring execution of ?¢;
over f in an if-then-else statement. The compilation is defined as
follows.

ST((?¢; @) U B) » if (ST(¢h)) then ST(«x) else ST()
ST((?¢; a) U (?=¢; B)) » if (ST(¢)) then ST(«) else ST(B)
ST((?¢; a) U ?2=¢p) » if (ST(¢)) then ST(a)

The static semantics combines the input and output variables
of both programs: output variables BV((?¢; @) U ) = BV((?¢; a) U
(?=¢; f)) = BV(ar) U BV(p) and input variables FV((?¢; ) U f) =
FV((%¢; @) U (23 ) = FV($) U FV(a) UFV(B).

Because we only consider loop-free semantics and our fragment
only has tests at decision points, we avoid backtracking for tests
that would otherwise exist deeper in the programs. Instead, the
tests will simply be compiled as nested conditional programs.

ST conditional programs compile to guarded nondeterministic
choices in hybrid programs as follows:

HP(if (§) then « else f) »

(?HP($); HP(a)) U (?=HP(); HP())
HP(if (¢) then @) > (PHP($); HP(ar)) U 2=HP(¢)

Next, we prove compilation correctness that will allow us to
transfer safety proofs of hybrid programs to ST programs. We
write (s1, V) = (s2, w) to say that program s; executed in context v
transitions to a new context w with remaining program s; [18]. We
write (v, w) € [[a]] to say that the final state w is reachable from
the initial state v by running the hybrid program « [13].

LEMMA 5.2 (CORRECTNESS OF ST To HP compILATION). All states
reachable with the ST control program are also reachable by the re-
sulting hybrid program: If (s1, v) — (skip, w) then (v, w) € [[HP(s1)]]

for all v, w, where skip denotes the end of code for a scan cycle.

ProoF. By structural induction on ST programs from the base
case (skip, v), so (v, v) € [[?true]], and induction hypothesis (s1, v) —
(skip, w) then (v, w) € [[HP(s1)]], see the associated appendix of the
full report [30]. O

LEMMA 5.3 (CORRECTNESS OF HP To ST cOMPILATION). All states
reachable with the resulting ST control program are also reachable
by the source hybrid program: If (ST(a), v) — (skip, w) then (v, ) €
[e]] for all v, w.
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ProoF. By structural induction over hybrid programs from the
base case (skip, v) so (v,v) € [?true]], and induction hypothesis
(ST(ax), v) — (skip, w) then (v, ) € [[«]], see the associated appen-
dix of the full report [30]. O

5.4 Preserving Safety Guarantees Across
Compilation

Correct compilation guarantees that safety properties verified for

hybrid programs in scan cycle normal form shape are preserved

for the runs of translated ST programs. Def. 5.4 expresses how a

loop-free ST program is executed repeatedly in the scan cycle of a

PLC, connected to inputs, and drives the plant through its results.

Definition 5.4 (Run of ST program). A sequence of states

00,01, 02, . . .,0n is a run of ST program s; with input (variable
vector) i and plant ¢ := 0; {x" = f(x,u),t’ = 1 & t<¢} with scan
cycle duration ¢ iff for all i<n the program executes to completion
(s1, pti) — (skip, v;) for some program start state y; obtained from
the previous state o; in the run by reading input s.t. (oj, i) €
[[i := ]| and some program result state v; driving the plant to the
next state oj4+1 in a continuous transition of duration at most ¢ s.t.
(vi,oi+1) € [£:=0;{x" = f(x,u), ' =1 & t<e}].

Def. 5.4 defines how an ST program interacts with the physical
world; Def.5.1 says that a hybrid program in scan cycle normal
form, i := s;u:ectrl(x,i);t == 0;{x" = f(x,u),t’ = 1 & t<e}, is
safe if it reaches only safe states in which S is true when started
in states where A is true. We now translate safety to the compiled
ST program. Intuitively, a hybrid program is compiled safely to
ST when any ST program run that starts in a state matching the
assumptions (A) reaches only states where running the plant is safe
(S), as expressed in Theorem 5.5.

THEOREM 5.5 (COMPILATION SAFETY). If the dL formula
A= [(i:=%uectrl(x,i);t =0;{x" = f(x,u),t’ =1&t<e})"]S

is valid, and a run oy, 01, 02, . . ., o 0f ST(u :€ ctrl(x, i)) with input
i and plant t == 0;{x" = f(x,u),t’ = 1 & t<e} starts with satisfied
assumptions oo |= A, then o; |= S for all i.

Proor. By Lemma 5.3: if (ST(u :€ ctrl(x, i)), p;) — (skip, v) then
(ui, v) € [[u:€ctrl(x, i)]). Since 0y, . . . , oy isarun of ST(u :€ ctrl(x, 7))
in input i and plant ¢ := 0; {x” = f(x,u),t’ = 1 & t<e}, we have for
all i<n that (o, pi) € [[i:= =], (i, vi) € [[u:€ ctrl(x, )], and

(v,0i41) € [t:=0;{x" = f(x,u),t' =1 &t<e}] .

Thus, by the semantics of sequential composition [13],

(01, 0i11) €
[[i:=*u:€ctrl(x, i)t :=0; {x" = f(x,u),t' =1 &t<e}]|
for all i<n. Hence, we conclude o; |= S for all i by the validity of

A= [(i:=*uectld(x,i);t:=0;{x" = flx,u),t’ =1 &t<e})"]S
o

By Theorem 5.5, an ST program enjoys the safety proof of a
hybrid program if our compilation was used in the process (either
the hybrid program used in the proof was compiled from the ST
program, or the hybrid program was the source for compiling the
ST program). Next, we analyze the shape and static semantics of a
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hybrid program in scan-cycle normal form to extract configuration
information.

5.5 Cyclic Control Configuration

ST programs are complemented with a configuration that structures
the programs into tasks, assigns priorities and execution intervals
to these tasks, and allocates computation resources for the tasks.
For a hybrid program in scan-cycle normal form per Def. 5.1

(i:=%u:cctrl(y, i)t :=0;{x" = f(x,u),t' =1&t<e})"

do its shape and static semantics provide essential insight into
the required configuration information. The modeling pattern in
the scan-cycle normal form is that of a time-triggered repetition,
achieved by a clock variable ¢ that is reset to 0 before the continuous
dynamics, evolves with constant slope 1, and allows following the
continuous dynamics for up to ¢ time. The combined effect is that
the input i := * and control u :€ ctrl(x, i) are executed at least once
every ¢ time. In the compilation setup, a value for ¢ must be provided
(e.g., with a formula ¢ = n as part of the assumptions A in the safety
proof) and is taken as the scan cycle configuration of a PLC.

For a single task, we define the compilation of a safety property
of a hybrid program in scan-cycle normal form to a task as:

ST(A — [(i := *; u:€ ctrl(x, i); plant)“]S) »
Task(ST(u :€ ctrl(x, i)), ),
where plant = t := 0; {x’ = f(x,u),t’ =1 & t<e}

and Task(a,€) is a shorthand defining a task® that executes a (here
the discrete control u :€ ctrl(x, i) translated to ST), cyclically with
an interval ¢. Similarly, we define the converse compilation of a task
with an ST program a—whose variables i are of type VAR_INPUT
from the configuration-and execution time of ¢ as

HP(Task(a, ¢)) »
A — [(i:=*; HP(@); plant)*]S
given plant = t := 0; {x’ = f(x,u), t'=1&t<e}

Since the ST program does not include an analytic plant model, the
compiled controller is augmented with the differential equations
from a plant given as extra input. The sets of input and output
variables determined by analyzing the static semantics of the hybrid
program inform the program configuration variable declaration
blocks VAR_INPUT and VAR_OUTPUT, as seen in Figure 4.
Extension to multiple tasks. A future extension to multiple tasks
would consider a single configuration of a PLC with a single re-
source that has a one-to-one mapping of task configurations to
ST programs. A designated clock t, per task keeps track of the
associated task’s execution interval &;. The task execution interval
is checked periodically every e times, which represents the scan
cycle timing of the PLC. Any task with elapsed clock t,, > &, is run
(which means that tasks are executed with at most ¢ delay).

3 A task is being used here to abstract the other configuration components of an ST
program, i.e., Configurations and Resources. We assume only one configuration and
one resource at a time in this paper for a single PLC.
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A - [{in;ctrl; # := 0; {plant & Q} }*]S
A=Li <x1Ax1 <H{ ALy <x3 ANxy < Hp
AVIi=0AV,=0AP=0
ANe>20ANFL >0ALp <Ly ALy <Ly
ALy < HHANL, < HANH;y < Hy AN Hy, < Hy
in=fi:=x% f=x
ctrl= { ? (x; > Hy); V1:=0
U?=(xp 2 Hy)s { 2 (a0 < L)y Vi=1
U?=(x1 < Ly)}
b
{ ?2 (x22L2); P:=1; V=1
U?=(x; <L)}

{ ?2x1 <LpVfa <FLVxy>H); P:=0; V:=0
U?=(x1 < Lp Vfa <FLVxy>H)}
plant=x; =V, - fi-V,-P-fo, x3 =V, -P-fo, ' =1
Q=t<eAx120Ax220Af1 20Af2 20
S=Lp <x1Axy <HgALp <x3ANxy < Hpg

Figure 6: Hybrid program generated by HYPLC. This is a
compilation of the PLC code from Figure 4

6 EVALUATION

Now that we have provided the compilation rules used by HYPLC,
we evaluate the tool on a real system. HYPLC was implemented
as two module extensions for the KeYmaera X tool: one for each
compilation direction®. For the compilation of hybrid programs to
ST, the compilation rules were implemented on top of the existing
KeYmaera X parser written in Scala. Given the abstract syntax tree
of a hybrid program, HYPLC generates the associated ST code based
on the compilation rules. Any ST code generated by HYPLC was
validated using the MATIEC 61131-3 open source compiler [32].

The module for the compilation of an ST program to a hybrid
program was implemented as a parser written in Python that was
in part generated by the ANTLR v4 parser generator [16].

We next present how HYPLC was evaluated against the water
treatment testbed [17].

6.1 Use Case: Water Treatment Testbed

In the case study, we first compiled the PLC code from the water
treatment testbed shown in Figure 4 into a hybrid program. For-
mal verification in KeYmaera X showed that this implementation
is unsafe. We then updated the generated hybrid program with
the necessary assumptions to guarantee the safety of the ICS. Fi-
nally, we compiled the fixed hybrid program into PLC code that,
by Theorem 5.5, enjoys the safety proof of the hybrid program.

6.1.1 Counterexamples in Existing PLC Code. In order to com-
pile the ST controller into a hybrid program of the water treatment
testbed, we provide the continuous plant of the ICS in terms of dif-
ferential equations, as well as the initial state constraints A. These
are combined with the compiled ctrl of the ICS that provides the

“The source code for HYPLC is available at http://HyPLC.keymaeraX.org/
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A — [{in;ctrl; ¢ := 0; {plant & Q}}*]S
crl= { ? (fi>Hg-x1)/¢); V1:=0

U?=(fi > (Hg —x1)/e); {?(x1 < L1);V1:=1U?=(x1 < L)} }

{?2x2 < Ly); P:=1; V:=1U?=(x; < Lg) }

{?VW-A-Va-P-fo<(Lp—x1)/eV fo <FLVVa-P- fo > (Hyg —x2)/¢); P:=0; V2:=0
U?-Wi-fi-V2-P-fo<(Lp—x1)/eV fo <FLVVa-P- fo > (Hy —x2)/¢) }

Figure 7: Safe controller with mixed decision conditions for valve and pump actuation based on flow rate and empirical thresh-
olds (replaces the controller of Figure 6, only the control decisions that exposed counterexamples in KeYmaera X are changed;

changes are highlighted in boldface)

discrete-state transitions of the system. Finally, we define the safety
requirement, S, that ensures that the water tank levels always re-
main within their upper (Hg) and lower (L) thresholds.

Figure 6 shows the full hybrid program generated by HYPLC that
incorporates both the compiled ST code as well as the continuous
dynamics of the water treatment testbed. Intuitively, this model
cannot be proven as there are no constraints on the flow rates f;
and f3, nor do the guards on actuation enforce such constraints. We
use KeYmaera X and the dL proof calculus to find counterexamples
for the faulty combinations of operating the valves V; and V5, both
for concrete threshold values [33] and the generalized threshold
conditions Ly < L1 < H; < Hg ALp < Ly < Hy < Hy of Figure 6.
Some representative counterexamples are listed below:

e If x;y > Hy (so Vi = 0)and x; < Hs (so V, = 1): without
time and flow rate bounds, the pump may drain the first tank
when it attempts to protect underflow in the second tank; it
may also cause overflow of the second tank.

e If only V; = 1 is open, the first tank may overflow.

o Ifboth valves are open, either tank may overflow, or the first
tank may underflow, depending on the ratio of flow rates.

KeYmaera X finds such counterexamples by unrolling the loop and
analyzing paths through the loop body to (i) collect assumptions
(e.g., conditions in tests x; > Hj, and effects of assignments V; =1
from V; := 1) and (ii) propagate program effects into proof obliga-
tions (e.g., the effect of the flow rate and valves on the water level
x; =Vi-fi = Va-P- f,is propagated into S). A counterexample
consists of sample values for the variables such that the collected
assumptions are satisfied but the proof obligations are not. Analyz-
ing these sample values point to potential fixes (e.g., no flow into
the first tank f; = 0 with simultaneous large out flow f indicates
that the valve V, must be turned off before the first tank drains
entirely).

6.1.2  Generating Safe PLC Code. The hybrid program was up-
dated to reflect a safe system that restricts the flow rates by modi-
fying the guard values on the discrete control. Figure 7 shows the
updated hybrid program that was proved safe with KeYmaera X.
Once verified, HYPLC generates the associated PLC code, listed in
Figure 8.

Comparison on real-world data. To illustrate the safety guaran-
tees of our system, we developed a Python script to analyze the
sensor and actuation values of 4 days worth of sensor data [33].

IF (f1 > (HH-x1)/¢) THEN V1:=0;
ELSE

IF (x1 <= L1) THEN V1:=1; END_IF;
END_IF;

IF (x2 <= L2) THEN P:=1; V2:=1; END_IF;

IF (VI*xf1-V2*%P*xf2 < (LL-x1)/e OR f2<=FL OR
V2xP%xf2 > (HH-x2)/¢) THEN
P:=0; V2:=0;
END_IF;

Figure 8: ST code fragment compiled from safe ctrl (see Fig-
ure 7). The variable ¢ is a placeholder for the concrete task
interval time

We check the values of the sensor data relevant to the process de-
scribed by our model and instantiate the parameters in the model
with the values provided in the dataset. At each time sample, the
script checks that the collective system state complies® with the
expected test-actuation sequences enumerated in our model: the
recorded actuator commands for the valves and pump must match
the expected command from our model, which is determined by
matching the recorded sensor values with the test conditions in the
model. For instance, the script records a violation if the condition in
IF (f1 > (HH-x1)/¢) THEN V1:=0; from Figure 8 is met but the
recorded actuation differs from closing the valve. We compared the
violations with the original ST program in Figure 4 where, e.g., the
corresponding condition reads IF (x1 >= H1)THEN V1:=0;. For
an illustrative example on a snippet of the real data, please refer to
the full report [30].

Our results revealed that the recorded data did not comply with
Figure 8 for 238 instances® for the verified code in Figure 8 and
439 instances for the original code in Figure 4 out of 40K possible
instances’. Note that the verified code allows the system to operate
closer to its limits for reasons detailed below, providing a more

5The relevant conditions to check and expected control choices can be extracted by
proof from a hybrid program using ModelPlex [34].

® An instance of a model compliance violation is a range of uninterrupted scan cycles
where the recorded data deviates from the expected model.

7For 403K samples, the duration of each instance was on average 10 scan cycles.




ICCPS ’19, April 16-18, 2019, Montreal, QC, Canada

efficient system operation while enjoying the safety guarantees of
the proofs in KeYmaera X.

Upon inspection, most of the violations observed occur during
initialization and at the thresholds in oscillating normal system
operation [33]. For example, during initialization, the data shows
a period where valve V; is closed and the tank is drained despite
not having reached the lower threshold L1, see [33, Fig. 4b]. During
normal operation, the system slightly overshoots or undershoots
the intended limits for discrete switching states, e.g., if the system
was supposed to close V; when x; < Li, the system may undershoot
L;. These slight overshoots or undershoots are not allowed in the
original ST code, but can be tolerated in the verified model that
takes into account flow rates for making decisions.

This study allowed us to not only generate safe PLC code, but to
also reveal missing conditions in PLC code that has been evaluated
empirically to be safe. We further showed that HYPLC may provide
a means of operating a system closer to safety limits while at the
same time provably maintaining crucial safety guarantees.

7 CONCLUSION AND FUTURE WORK

In this paper, we formalize compilation between safety-critical code
utilized in industrial control systems (ICS) and the discrete control
of hybrid programs specified in differential dynamic logic (dL).
We present HYPLC, a tool for bi-directional compilation of code
loaded onto programmable logic controllers (PLCs) to and from
hybrid programs specified in dL to provide safety guarantees for
hybrid correctness properties of the PLC code in the context of the
cyber-physical ICS. We evaluated HYPLC on a real water treatment
testbed, demonstrating how HYPLC can be utilized to both verify
the safety of existing PLC code as well as generate correct PLC code
given a verified hybrid program. Future work will focus on lifting
assumptions for PLC arithmetic, support for multiple tasks, as well
as support for security analysis. This work serves as a foundation
for pragmatic verification of PLC code as well as to understand the
safety implications of a particular implementation given complex
cyber-physical interdependencies.
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