An Instantiation-Based Theorem Prover for First-Order
Programming

Erik P. Zawadzki
Computer Science Department
Carnegie Mellon University
Pittsburgh,PA
epz@cs.cmu.edu

Abstract

First-order programming (FOP) is a new
representation language that combines the
strengths of mixed-integer linear program-
ming (MILP) and first-order logic (FOL).
In this paper we describe a novel feasibil-
ity proving system for FOP formulas that
combines MILP solving with instance-based
methods from theorem proving. This prover
allows us to perform lifted inference by re-
peatedly refining a propositional MILP. We
prove that this procedure is sound and refu-
tationally complete: if a formula is infeasible
our solver will demonstrate this fact in finite
time. We conclude by demonstrating an im-
plementation of our decision procedure on a
simple first-order planning problem.

1 INTRODUCTION

Mixed integer linear programming (MILP) is a ubiqg-
uitous framework for specifying optimization and de-
cision problems. For example, MILPs are frequently
used to solve problems in operations research and ar-
tificial intelligence. MILPs are reasonably expressive
and can represent any N P-complete problem. They
admit natural formulations of many scheduling, re-
source allocation, VLSI, and planning problems (see,
for example, Nemhauser and Wolsey [1988]).

While MILPs are excellent for dealing with problems of
a propositional nature, they lack the machinery neces-
sary for handling information about first-order classes
and relations. One cannot claim in a MILP that “All
cars follow the speed limit” without explicitly enumer-
ating every car and separately claiming that every par-

Appearing in Proceedings of the 14" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

Geoffrey J. Gordon
Machine Department
Carnegie Mellon University
Pittsburgh,PA
ggordon@cs.cmu.edu

André Platzer
Computer Science Department
Carnegie Mellon University
Pittsburgh,PA
aplatzer@cs.cmu.edu

ticular car follows the speed limit.

While macro-languages like AMPL [Fourer et al., 2002]
can automate the tedious task of “unrolling” formulas
for a given finite number of objects, they still cannot
accommodate truly first-order statements. These rep-
resentations are first-order but the reasoning is not.
This is unfortunate for several reasons. First, even if
a problem can be specified as a propositional program
there may be a computational benefit with first-order
reasoning. As an example, to verify the tautology:

All humans are mortal A All students are human (1)

— All students are mortal

we do not want to enumerate every student (or worse,
all 6.9 billion humans known at the time of writing) to
look for a counterexample.

Second, there are problems that cannot be expressed
by any finite set of propositional statements. For
example, in a planning problem, both time and re-
source limits are potentially unbounded quantities.
Planners often side-step this question by insisting on
upper bounds on time and resources, but failing to
solve a bounded-horizon or bounded-resource trunca-
tion proves nothing about the actual unbounded prob-
lem. It is always possible that with one more time step,
or one additional vehicle, every goal in the plan can be
satisfied. Along with demonstrating good plans, being
able to prove nonexistence of suitable plans in deci-
sion problems is one of the high-level goals of artifi-
cial intelligence—this is something that purely propo-
sitional models cannot always capture.

These limitations in MILP can be addressed by switch-
ing to a more expressive language like first-order logic
(FOL). FOL lets us specify a problem in terms of
classes and relations, and reason about these classes
and relations directly—we can do lifted reasoning.
Lifted reasoning lets us work with statements about in-
finite or unknown numbers of objects (e.g., entity res-
olution problems), and may also have computational
benefits. For example, we can prove the validity of (1)

An Instantiation-Based Theorem Prover for First-Order Programming

in a small number of steps, independent of the number
of students or humans. Unlike MILP, however, FOL
itself is strictly boolean and has no built-in arithmetic.

First-order programming is a new representation sug-
gested in Gordon et al. [2009] that combines the ex-
pressive power of FOL with MILP’s ability to represent
linear functions of real and integer-valued predicates.
These real and integer-valued predicates allow some
statements to be more compactly represented in FOP
than in FOL.

For example, if one had n atoms and wanted at least
k of them to be true (i.e., have value 1), then this
can be stated in a FOP formula of length O(n). An
equivalent formula in FOL would require a disjunction
of (2) conjunctions of length k. This is exponentially
longer in FOL than FOP, yet no properties have a
shorter representation in FOL than FOP since there
are straightforward translations from FOL into FOP
that do not increase formula length [Gordon et al.,
2009].

However, a language like FOP has no use if we can-
not perform inference in it. Up until now there was
no implemented lifted reasoning procedure for FOP.
(One was proposed, but not implemented, in the orig-
inal FOP paper). So, we suggest a new simple way to
do lifted inference in the integer fragment of FOP.

Our new approach is radically different than the one
previously suggested. The previous approach uses
lifted Gomory cuts, a technique that generalizes reso-
lution in FOL. Our approach, on the other hand, never
recombines clauses to form either a Gomory cut or re-
solvent. We therefore expect our procedure to yield
smaller proofs than methods based on lifted Gomory
cuts as it will not duplicate clause instances (see, for
example, Lee and Plaisted [1992]). Our algorithm is
also easier to implement than methods based on lifted
Gomory cuts. (Our current solver, however, is not au-
tomated and requires a human to control search.)

Our inference procedure for FOP draws on ideas
from instantiation-based methods in theorem prov-
ing [Ganzinger and Korovin, 2003, Korovin, 2009] and
MILP. It aggressively propositionalizes a FOP formula,
solves the resulting propositional formula, attempts to
lift a model of the propositional formula, and instan-
tiates clauses of the FOP formula to refine the propo-
sitional formula. We use a MILP solver to find propo-
sitional models and check termination conditions.

In this paper we make the following contributions:
first, we suggest a new algorithm for performing lifted
inference in the integer fragment of FOP; second, we
implement this solver and demonstrate its behavior
on an example problem; third, we prove the soundness
and completeness of our approach. More generally,
our work connects theorem proving principles for FOL

with modern optimization techniques—we are revisit-
ing some traditional artificial intelligence goals armed
with more recent tools and results.

We describe our inference procedure as follows. First
we look at related work that inspired our approach.
Next, we briefly discuss the syntax and semantics of
an important normal form of FOP. Then we state the
FOP inference problem that we are interested in—
checking whether a formula is feasible or not. After
this background material, we present our main result:
the algorithm and proof that our algorithm is both
sound and refutationally complete. After giving these
results we demonstrate an inference problem that can
be solved with our solver. We finish by indicating
promising directions for future work.

2 RELATED WORK

We are not the first to describe an instantiation-based
theorem prover for lifted reasoning. Indeed our ap-
plication of instantiation-based methods in FOP is in-
spired by work on instantiation-based provers in FOL
and its fragments. Such solvers take advantage of Her-
brand’s theorem: a conjoined set of first-order formu-
las is unsatisfiable iff there exists a finite set of ground
instances of these formulas that is also unsatisfiable.

The naive procedure of sweeping through all possible
finite ground sets is sound and refutationally complete,
but impractical. In particular the naive procedure ig-
nores the interesting class and relational structure of
the original formula. Most automated instantiation-
based solvers use features of the instantiated sets of
clauses and their propositional models to guide which
additional instantiations should be generated. These
solvers combine effective instance generation heuristics
with redundancy criteria to efficiently reason about
how to instantiate the formula.

There are two broad families of lifted instantiation-
based solvers. The first class tightly integrates propo-
sitional reasoning with instance generation in a single
solver. Examples of these tightly-integrated solvers
include model evolution calculus [Baumgartner and
Tinelli, 2003, 2008], its precursor first-order DPLL
[Baumgartner, 2000], and disconnection tableaux [Letz
and Stenz, 2001, 2007].

The second class—to which the solver described in
this paper is most closely related—treats a proposi-
tional SAT solver as a black-box oracle for determin-
ing the satisfiability of a propositional formula, and
perhaps also for providing a propositional model to se-
mantically guide further instantiation. An advantage
of this class of solvers is that the latest and fastest
propositional solver can always be plugged into the
solver—implementations of this second class of solver
get faster every year without even touching them be-

Erik P. Zawadzki, Geoffrey J. Gordon, André Platzer

cause SAT solvers are improving. Additionally, solvers
in this second category tend to be simple and flexible
since they delegate all propositional issues to the black-
box solver. However, these solvers are—by design—
uninterested in applying fine-grained control to propo-
sitional model finding. As a result they do not have
the same level of information or design freedom as the
first class of solvers.

Examples of this second class of solver include
Jeroslow’s algorithm [Jeroslow, 1988], Hooker’s im-
provement of it [Hooker et al., 2002], and the related
Inst-Gen line of work [Ganzinger and Korovin, 2003,
Korovin, 2009]. Our algorithm adapts Inst-Gen-style
reasoning to FOP. However, unlike algorithms for
FOL, the black-box oracle that we use is an ILP solver
and not a SAT solver.

FOP is tailored for first-order optimization and plan-
ning problems, but it has deep connections to theory
reasoning in FOL—a first-order variant of satisfiability
modulo theories (e.g., Nieuwenhuis et al. [2006]). In
these languages FOL is enriched by (e.g., arithmetical)
background decision procedures. Of particular interest
is FOL augmented by the theory of linear integer arith-
metic and uninterpreted functions—FOL(UFLIA). We
hope that our approach will help theory reasoning in
FOL, and we expect to draw inspiration from their re-
search (e.g., Ganzinger and Korovin [2006], Korovin
and Voronkov [2007], and Baumgartner et al. [2008]).

For example, model evolution (ME) calculus was ex-
tended to reason about a fragment of the theory of lin-
ear arithmetic, forming the ME(LIA) calculus [Baum-
gartner et al., 2008]. ME(LIA) is especially relevant
to us since FOP also integrates linear arithmetic.

The most important difference between ME(LIA) and
FOP is that predicates in the ME(LIA) fragment
are binary valued while predicates in FOP can take
any value in a bounded continuous or discrete inter-
val. While both logics do linear arithmetic, they oc-
cur in entirely different places: integers are objects in
ME(LIA), and walues in FOP. Indeed, one could
imagine FOP modulo LIA, where linear arithmetic
could occur at both the value (predicate) level and
the object (function) level.

Researchers have also investigated SAT modulo LIA
(e.g., Faure et al. [2008]). The discussion above about
ME(LIA) applies to SAT modulo LIA as well: linear
arithmetic occurs at the object level and not the value
level. However, unlike ME(LIA), SAT modulo LIA is
purely propositional and unable to do lifted reasoning.

3 FIRST-ORDER PROGRAMMING

In this paper we will assume that the FOP formula
that we wish to reason about is given in a special for-
mat known as A-normal form (ANF). This is not a

restriction, since every FOP formula has an equivalent
ANF representation, but focusing on ANF formulas
simplifies our analysis and the description of FOP.

We describe FOP briefly in this section; see Gordon
et al. [2009] for a complete description.

3.1 Syntax

Just as in FOL, FOP has terms that represent objects
and formulas that represent values. Each FOP pred-
icate can take values in some compact interval of the
reals or integers. This interval is called the range of
the predicate and is denoted Rangep. We restrict to
integer FOP, so Rangep C Z. A predicate applied to
zero or more objects is an atom. Like in FOL, there
are n-ary functions that map objects to objects. In
FOP, scalars are literals with a predefined value and,
just as in FOL, O-arity functions are called constants.
To avoid technicalities, we assume there is at least one
constant symbol.

There are four binary operators and one quantifier in a
ANF formula. The binary operators are scalar multi-
plication (denoted -), addition (+), maximization (V),
and minimization (A), and the quantifier is minimiza-
tion over variables (/).

A generic ANF formula looks like:
F=/\(Cin...ACp)
Var

Ci:Eilv“-VEim

Yij = Kij1 - Piji + ...+ Kiji - Piji
The top level formula is called a A-clause, the second-
level formulas are V-clauses, then we have Y-clauses
which are linear combinations of literals. Here s, €
Q is an optional scalar, P;;; is an atomic proposi-
tion, and Var is the set of free variables in the V-
clauses C1,...C,. We call any formula without vari-
ables ground.

Because Vv, A, and + commute and associate with
themselves, we use notation for the clauses as if they
were sets. So C; NC; will denote all the Y-clauses that
are in both V-clauses C; and Cj.

3.2 Semantics

A model is a triple M = (O, F, V'), where O is a non-
empty list of objects, F' is a list of function tables, and
V is list of tables of predicate values. Here V' assigns
a total map Vp : O™ — Rangep to each predicate
symbol P with arity n. F' defines a similar assignment
of total maps to every function symbol.

A model for a formula maps every ground atom to a
value in its range, and the values of compound for-
mulas are built from these values. In every model of
a ground A-clause it has the value of the least-valued
V-clause; each ground V-clause takes the value of the
greatest-valued Y-clause; and each ground Y-clause is
just a linear combination of the values of its atoms.

An Instantiation-Based Theorem Prover for First-Order Programming

A formula that is A-quantified for some variable z
takes the minimum value over all substitutions of an
object in the domain O for x. This means that in
every model a ANF formula takes the value of its
least-valuable grounding. We call this grounding the
minimal instance of a formula for a particular model.
This minimal instance might not exist when predicates
can take on real values—there might be no minimum,
only a convergent sequence. However, this minimal
instance always exists in FOP’s integer fragment.

We denote the value of a formula F in a model
M by value(F,M). We will denote the quantity
supy; value(F, M) as value(F).

As an example of a FOP formula in ANF, consider
the following definition of the equivalence predicate
‘=" with range {0,1}. We can do this by construct-
ing a formula that is non-negative iff the predicate is
reflexive, symmetric, and transitive. Indeed, the idea
of non-negativity is important to our notion of infer-
ence and we will introduce some shorthand notion to
express it. By P(z) > ¢ we will mean P(z) — ¢ (the
latter FOP formula is non-negative iff the former con-
dition is met) and by P(z) < ¢ we will mean ¢ — P(x).

Therefore, we can insist that ‘=’ is an equivalence re-
lation with following subformula:
(i=1i)>1 (2)
((=j+0=0)<0V(i=j)+0G=9)=22 (3
(=j)+0U=k+(=k<1 (4)

V(i=j)+(=k+(@=k) =3
Here, each labeled line is a V-clause; we join them
implicitly by A to form a ANF formula.

Since (i = i) € {0,1}, the first V-clause asserts that
(1 = ¢) must be 1 if the formula as a whole is to be
non-negative. The second asserts that it is symmetric
since either both (¢ = j) and (j = ¢) must have value 1,
or neither can. The final clause asserts transitivity—
either they are all equal or at most one is.

Since a V-clause is a maximum over ¥-clauses, in every
model there is at least one Y-clause that has the same
value as the V-clause. Covering sets—sets that con-
tain at least one Y-clauses for every V-clauses—play
an important role in how we think about the value of
the formula. As a result we define some special termi-
nology for them.

Definition 1 (Covering sets, active atoms, and tight-
ness). Let C be a set of V-clauses. If S is a set of
Y-clauses such that for every C € C it is the case that
SNC # (), then S is a covering set. A covering set
for a ground formula is tight with respect to a model
M if the value (in M) of each X-clause is equal to the
value of the V-clause that contains it.

The set of all atomic propositions in a formula or set
of formulas F is denoted by A(F). For a covering set S
we will refer to all atoms in A(S) as the active atoms.

4 INFERENCE

Given a formula F in ANF, there are a number of
questions that can be asked about its value. One of
the most basic is whether the formula has a model
with a non-negative value. We call any such formula
feasible or satisfiable, and this notion generalizes the
FOL notion of satisfiability. Using feasibility testing
as a primitive, we can define FOP notions of entail-
ment (see Gordon et al. [2009]). We can also check
if a formula F has a particular value V by checking if
F -V AV —F is feasible.

For any finite ground FOP formula F, we can find its
value by encoding it as a MILP—e.g. the following
formulation—and giving it to a MILP solver.

max V
s.t. Z Kijk * Dijk +U(1 — dw) >V
ke]lzij
> diy=1
Jj€le;
pijk € Range,
dij S {0, 1}

The MILP, denoted MILP(F), for finding the value of
a ground formula F. The MILP variable V € R repre-
sents value(F). The first type of constraint represents
each ¥;;. The I, are sets that index the elements z
contains so Iy, indexes all of its constituent literals
Kijk - Pijk- The K, are scalars, and so are coefficients
of the predicate variables (the p;;x), which can be as-
signed any value in their range. The constant U is
some sufficiently large number such that the binary
fresh MILP variable d;; can be set to 0 and make the
bound on V for any particular ¥;; trivial regardless of
the (bounded!) values of the other variables. The d;;
indicate a covering set for the maximal model.

While we cannot determine the value of a non-ground
FOP formula F directly by submitting it to an ILP
solver, we can show that the value for any instantiation
of F—and in particular any ground instance—is an
upper-bound on the value of the original formula.

Definition 2 (Instantiation, renaming). A formula F
instantiates another formula F', written F' = F, if
F = F'0 for some substitution 6. We also say F’
generalizes F. We write F' = F' if F = F' but F' ¥ F
(strict instantiation). Non-strict instantiation is also
called renaming.

If F is a set of formulas then a most specific general-
ization (MSG) of F in F, denoted msg(F, F), is a set
G of all elements G € F such that G = F and there
is no more specific element G' € F such that G' = F
and G = G'. MSGs are unique up to renaming.

Proposition 1 (Instance upper-bounding). For

all formulas F, instantiations FO and models M,
value(F, M) < value(F6, M).

Erik P. Zawadzki, Geoffrey J. Gordon, André Platzer

Proof. All free variables of F are \-quantified. Instan-
tiation can only restrict which objects the variables can
refer to, so by definition of A, instantiation can only
increase the value of F. O

It is also easy to show that adding more clauses to the
top-level A-clause can only drive down its value.

Proposition 2 (Subproblem upper-bounding). For
all formulas F, C, value(F, M) > value(F A C, M).

Proof. Since the model M is fixed, adding an addi-
tional clause to the top-level minimization (A) cannot
increase the value of the formula. O

While every instance is an upper-bound, we will fre-
quently consider a particular grounding instantiation,
b, where b is overloaded to mean both some fresh con-
stant not in F' and the substitution where all variables
are replaced with b. A corollary of Proposition 1 is
that the value of the special ground instance Fb is an
upper bound on the value of value(F).

Corollary 1. For all formula F,
value(Fb).

The corollary shows us that we can bound the value
of the first-order formula by the value of its instances
and, in particular, the instance generated by the sub-
stitution b. An arbitrary model that maximizes the
value of Fb will be frequently used in the following
sections, and we will denote this special model M,; we
can find it using a MILP encoding.

value(F) <

The reason Fb is interesting is that it provides a tem-
plate for constructing a first-order model of F. We
do this by employing a lifting procedure: in a lifted
model M we assign, to each of the (infinitely many)
ground atoms, the value that its most specific general-
ization in F takes in M,. So if we consider the ground
atom P, it takes value I(P) = value(Qb, M,) where
Q = msg(P, A(F)).

As an example, suppose F = P(z) > 1 A P(z) < 1.
The maximal ground model P(h) = 1 suggests that we
set P(x) = 1, and this is also the maximal model for
F. Indeed we will show in Lemma 1 that under certain
conditions the lifted model M has the same value as
the M,. This is an attractive observation since we can

find M, efficiently.

In general, the b-grounding lacks some of the con-
straints that the minimal instance has. This
is because, unlike in Fb, a formula’s minimizing
ground instances may force unifiable—but syntacti-
cally distinct—terms to take the same value. For ex-
ample, consider the formula F = P(a) > 1A P(z) <0,
where P’s range is {0, 1}. The maximizing model for
Fb sets P(a) = 1 and P(b) = 0, but there is no way to
lift this model to a non-negative model of F because
under the substitution [x — a] we seem to want both
P(a) =0 and P(a) = 1.

Whenever M, assigns unifiable atoms different values,
one has to be careful about the value of these atoms in
any instantiation that does unify them. Such unifiable
pairs of atoms play an important role in both the above
example and our actual inference procedure. We call
these pairs discordant.

Definition 3 (Discordant pairs, witnesses). Let F be
a formula and S be a tight covering set w.r.t. a model
M, of Fb. A discordant pair in F is a pair of propo-
sitions P,Q € A(F) such that Pb,Qb € A(S), P and
Q unify, but value(Ph, M) # value(Qb, M,).

The most general unifier 0 of P and Q is the witness
of this pair.

The basic intuition of our approach is as follows.
Whenever we have a discordant pair (P, Q) inspired
by M, then the grounding Fb must have missed the
fact that P and @ can be forced to assume the same
value in some instantiations. We remedy this problem
by ensuring that F mentions their unification P8 ex-
plicitly: then when we try to lift M, any atom that
unifies with both P and) will take its value from the
more specific PAh instead of from Pb or Qb. To take
advantage of this intuition, we present the semantic
instance generation rule, which generates additional
clauses to eliminate the connection of a discord.

4.1 Semantic instance generation

We can resolve discordant pairs by generating addi-
tional clauses that ensure that any instance that unifies
the discordant atoms assigns them consistent values in
the b-model. For example, consider

F=Q(b) = 0A[Qr) = 0V Q) = 1V Q) = 2],

where @’s range is {0,1,2}. Suppose that
value(Q (1), M,) = 2 and value(Q(b), M,) = 0; then
if we take Q(z)’s value to be the same as Q(b)’s
we can no longer guarantee that we have a maxi-
mal value for F since the special case when [z +— b
may not be properly handled. However, we can be
completely confident after generating a new instance
Q) =0VvQ(b) =1V Q() =2 that forces the propo-
sitional solver to consider the special case explicitly.
Semantic instance generation is an inference rule that
accomplishes this.

Definition 4 (Semantic instance generation rule).
The semantic instance generation rule (SIG) is
(CiVvE;)0 (C; Vv E).

The clauses on the top are the premises of this infer-
ence rule, and the clauses on the bottom are the con-
clusions. Both premises must be V-clauses in F', where
C; and C; are the (possibly empty) sets containing
the remaining Y-clauses in their respective V-clauses.
Yb and X;b must be members of a covering set S
that is tight with respect to a maximal model M, =

An Instantiation-Based Theorem Prover for First-Order Programming

arg maxyg value(Fb, M). Additionally, there must ex-
ist propositions in the intersection of each of these -
clauses and the covering set, say P € A(X;)NA(S) and
P e A(X;) N A(S), that are discordant in M, with 6
as their witness—i.e. value(Pb, M) # value(P’b, M,)
and P = P’0.

For any two premises Q@ and R, we will denote their
set of conclusions as SIG(Q, R).

A simple consequence of this definition is that at least
one of the conclusions must say something new (the
conclusion is not just a renaming of its premise).

Proposition 3. At least one of the conclusions must
strictly instantiate its premise and cannot just be a
TENAMING.

Proof. If not then the mgu of P and P’ is a renaming,
and so Pb = P’h. Therefore they have the same value

in the maximal model and cannot be discordant. [
The conclusions say something new, but they are still

a consequence of the respective premises. Adding the
conclusions of SIG to the original formula never alters
the formulas value, so it is safe to apply. Intuitively
this is because SIG is merely explicitly stating a prop-
erty that was already implied by the original formula.
Proposition 4 (SIG preserves value). Let C and DO
be the conclusions of an application of SIG to the FOP
formula F. Then value(F) = value(F A CO A DO).
Proof. Let F' be F ACOA D@. The value of F/ cannot
be greater than that of F by Proposition 2.

The value for F’ cannot be less, since C0 (or D) is just
an instantiation of some V-clause C' of F: suppose the
value of F/ in model M attains its minimal value in C'6
after applying some grounding substitution . Then
there is a model for F with the same value obtained
after applying grounding substitution fo. O
Note while the value of F is unchanged, the value of
Fb can drop, but does not have to.

4.2 FOP Feasibility Algorithm

With SIG, our results about the ground instance Fb,
and our ILP for finding the maximal value of any
ground formula we can construct an algorithm for de-
termining the feasibility of a FOP formula. It is de-
scribed in Algorithm 1.

We require that our instance selection policy is fair—it
cannot ignore a potential instance in I forever. This
restriction is required for the completeness results that
we present in the next section.

Definition 5 (Fairness). A selection rule is fair if no
application of SIG is possible infinitely often.

Fairness is not a particularly onerous requirement and
there are simple policies that are fair. An example
of a fair policy is the chronological selection policy
where we select the oldest available option. (The age
of an option is the first time-step that it occurs as an
option).

Algorithm 1 Feasibility algorithm

1: while true do

2: M, = solution of MILP(Fb)

3: {Hence M}, = arg maxpg value(Fb, M)}
4: if value(Fb,M,) < 0 then

5: return value(F) <0 ;

6: end if

7 Using M, obtain a covering set S

8 and list of discordant atoms A;

9: if A=(then
10: return value(F) >0 ;
11: end if
122 I=0;
13: for (P,Q) € Ado
14: Gather new instances I = I U SIG(P, Q);

15: end for

16: Select a non-empty subset I’ of T
17: using a fair selection rule;

18: F=FAI

19: end while

We will now show that Algorithm 1 is both sound and
refutationally complete.

Definition 6 (Soundness and refutational complete-
ness). A feasibility procedure for FOP is sound if it
never reports the wrong sign for a formula.

A procedure is refutationally complete if it eventually
declares that a formula with negative values is negative.

4.3 Soundness

We will first prove that our algorithm is sound. This
theorem relies on two properties: the first is that the
value for Fb is always an upper-bound on the value of
F, and the second is that if M, is free of discord then
it can be used as a template for constructing a lifted
model of F—in this case it is lower-bound and so the
bounds are tight. We already proved the first property
in Corollary 1. We will now prove the second property.

Lemma 1 (Lifting). If there are no new discordant
atoms in some tight covering set S, then value(Fb) =
value(F).

The above lemma is proved in our supplemental mate-
rial. With this result we can finish the proof that our
algorithm is sound.

Theorem 1 (Soundness of inference). Algorithm 1
never reports an incorrect sign for the value for a for-
mula.

Proof. By Proposition 4, every application of SIG pre-
serves the value of the formula, and this is the only way
that we modify the original formula. By Proposition 1
we can safely conclude that the value of a formula is
negative if the value for Fb is ever negative. Since
line 5 is the only time that we declare the value of a
formula to be negative, the inference procedure never
declares a non-negative formula to be negative.

Erik P. Zawadzki, Geoffrey J. Gordon, André Platzer

We only declare a formula to be non-negative when
there is a non-negative model for Fb and there are no
new discordant atoms. By Lemma 1, when there are
no novel discordant atoms the value of Fb is a lower
bound. Since line 10 is the only time that we declare
our formula to be non-negative, our algorithm never
declares a negative formula to be non-negative. O

4.4 Completeness

In this section we will demonstrate that our solver is
refutationally complete. The key property that we use
is this: if value(F) < 0 and yet value(Fb) > 0, then
there is some discordant pair that has not yet been
used to generate an instance. As long as we have a fair
way of selecting these discordant pairs, we will show
that the procedure only needs a finite number of SIG
inferences to find a refutation—our algorithm eventu-
ally finds an application of SIG that drives value(Fb)
below zero.

Lemma 2 (Locality of subproblem discord). If S is
a ground subproblem of F such that value(S) < 0,
and if value(Fb) > 0, then the MSG of S in F, S’ =
msg (S, F), has a novel discordant pair (P, Q).

Additionally, the conclusions (CT0,C%0) of SIG on
this pair are members of S” = msg(S,FACTONCRH),
the MSG of S in the augmented formula.

A proof of this lemma, is in our supplemental material.

This proves that there is always a discordant pair that
we can try. We now show that there is a finite sequence
of these discordant pairs that eventually drive down
the value of Fb below zero.

Lemma 3. If S is a finite and ground subproblem of
F that has negative value, then there exists a finite
sequence of MSG (Sp,...,S,) obtained by SIG such
that S; is the MSG of S in F after i rounds of SIG
and value(S,bh) < 0.

A proof of this lemma is in our supplemental material.

Putting these two lemmas together proves that our
algorithm is complete.

Theorem 2 (Refutational completeness of inference).
If value(F) < 0, the inference procedure will report
that after finite fair applications of SIG.

Proof. Suppose that a formula F has negative value.
Then, by the completeness of the naive algorithm for
FOP [Gordon et al., 2009] there is a finite subset of
ground instances, namely S, that exhibits this negative
value. Since they are ground instances S = Sb so
value(Sh) < 0.

By Lemma 3 there exists a finite sequence of SIG ap-
plications that eventually generates a subproblem S’
such that value(S’h) < 0. Therefore, if the policy for
applying SIG is fair our inference procedure will even-
tually report that value(F) < 0. O

5 EXAMPLES OF REASONING

In this section we present a sample of reasoning in our
system given a simple vehicle planning problem!. In a
vehicle planning problem there are three major compo-
nents. The first description of the world (e.g. obstacles
and physical dynamics), the second is a list of N ve-
hicles with different characteristics (e.g. acceleration
and turn radius), and the final is a description of the
goals. The goals could be a number of waypoints with
logical, vehicle and temporal constraints over them.
For example, waypoint w; could be only satisfied by a
subset of vehicles (say ones equipped with a winch),
and it must be visited before w;.

We present a simplified version of this general vehi-
cle planning problem. In our specific instance we have
a single vehicle and an uncertain description of the
world, due to (say) extremely noisy satellite informa-
tion. We are able to determine that there are at least
eight equivalence classes. Again, because of noisy in-
formation we do not know which locations are accessi-
ble from other locations, but we do have some concrete
information about which nodes are not accessible. We
have a single goal: to go from one location to another.

This is not just propositional connectivity problem on
eight nodes since the FOP formula given actually de-
scribes non-empty equivalence classes and some rela-
tionships between them. In the special case of a finite
model with only eight objects it is easy to show that
this formula is negative using a standard connectivity
algorithm. However, we prove something more sophis-
ticated: that there cannot exist any model—even of
infinite size—that makes the formula non-negative.

There are eight representative objects denoted by con-
stants a,b,c,d,e,f, g, and h. Each constant is dis-
tinct (e.g. —(a = b)). We refer to the equivalence
class of h—the set of all objects equivalent to h—as
[h]. There are additional clauses in the formula that
ensures that all relations have consistent value modulo
equivalence, so Link(7, b) must have the same value as
Link(a,b) if (¢ = a). The domain is not exhaustively
partitioned into these eight classes and objects are not
compelled to be a member of them.

After these preliminary clauses, we give two more in-
teresting predicates. Link is a binary predicate be-
tween objects in the classes, and Path is a 3-ary pred-
icate built on top of Link that describes the length
shortest path between two classes.

Link is underspecified in our problem. The only thing
that we know about it is that all links to objects in [g]
and [h] must have come from [g] or [h]:

!For a more extensive example, see our supplemental
material.

An Instantiation-Based Theorem Prover for First-Order Programming

—Link(j,g)V(i=g)—1V(i=h)-1 (5)
—Link(i,h)V(i=g)—1Vv(i=h) -1 (6)
If there is a shortest path between two classes, they
either must be in the same class (and takes no links
to get there) or there must be a decomposition of that
path that involving one of these links:
—Path(i, j, 1) (7)
Vit=2z)+(i=7)—2
V Path (iva(.j’ t)va(t)) + Link (pN(j’ t)vj) -2
Here, pn(i,t) and pp(t) are Skolem functions. So
pn (i, t) is allowed to be any object that is linked to the
destination and has a shortest path itself. The tem-
poral Skolem function pr(t) refers to the time object
before—e.g. time step t — 1. z is the ‘zero’ time con-
stant that represents needing no links. We establish
binary relation ‘>’ that represents a standard partial
ordering over z and pp(¢).

Finally, we need to eliminate the possibility of a node
giving a circular explanation of its position—we bar
infinite cycles. We do this by insisting that all shortest
paths between two objects must have the same length.

(E=)+t > 1) -2 (9)
V 1 — Path(4, j,t) — Path(i, 4, t').
Now we add the contradictory ground fact: we can
connect a to h in T time.
Path(a,h,T) —1 (10)
A sketch of our human-guided proof:

1. Instantiate line 7 to insist that if we are in h, we
came from somewhere, namely py (h, T)

2. From line 6 we force py(h, T) to be g or h

3. From line 9 show that h’s shortest path cannot be
both T and py(T). This forces py(h, T) =g

4. From line 7 we insist that g has a predecessor
pn (g, pr(T)).

5. From line 5 we force py(g,pr(T)) =
px(g pr(T)) = h

6. From line 9 we exclude py(g,pr(T)) = g as a
possibility since pr(T) > pr(pr(T)).

g or

—

7. From line 9 we exclude py(g,pr(T)) = h as a
possibility since T > pr(pr(T)). Therefore there
are no consistent values for py (g, pr(T)) and we

are done.

There are additional clauses and proof steps omitted
for brevity.

This proves that there are no non-negative models of
this formula. Notice that our proof applies for any
predicates that satisfy the given properties, not just
ones that the representation has explicitly declared to
be nodes and edges. This is powerful, because the
human encoder might not realize that their problem is
reducible to showing that a graph is partitioned.

This simple planning example shows that our method
of reasoning works in FOP. This is important, be-
cause infeasibility (negativity) may manifest in non-
obvious ways that may be difficult to detect with a
purely propositional planner. For example, if a plan-
ning problem had been a more complicated planning
problem with multiple vehicles, many constrained way-
points and links that were transient (rather than miss-
ing), it is difficult or impossible to prove that a solution
does not exist using a propositional planner.

This approach can even be useful in problems that
have reasonable bounds on its domains—we may only
want to consider plans with fewer than V' vehicles and
T time-steps. However if there are enough of these di-
mensions, and they each have a large enough reason-
able bound, then the problem may still be too large to
be solved by blindly propositionalizing. Our method
may find a proof of infeasibility that ignores much of
the problem and therefore scales better.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we developed a new instantiation-based
inference method for determining whether a FOP for-
mula is feasible. We proved that this procedure is both
sound and refutationally complete. Future directions
for work on this reasoning system include improving
heuristics for instance selections, investigating redun-
dancy criteria for added clauses, and seeing if we can
‘warm-start’ propositional ILP solving based on the
work done in previous iterations. Other promising di-
rections include supporting object theories (such as
equality, time, and fragments of arithmetic).

One major goal for us is to fully automate our infer-
ence procedure—our algorithm is currently an open-
loop system that requires a human to select SIG ap-
plications. These selection decisions are critical be-
cause in the worst case, every two V-clauses could be
the premises for a SIG application. Adding all possi-
ble applications (O(n?) if there are n clauses) would
create a formula that has length O(22") after i itera-
tions. Good selection heuristics are therefore essential
for tractable inference. We intend to start our search
for heuristics by adapting, evaluating and modifying
both heuristics and restriction criteria from FOL reso-
lution and instantiation-based theorem provers. Initial
experiments also indicate that the policy of randomly
selecting a single application induces a heavy-tailed
runtime distribution, and this indicates that restart-
ing policies will be a fruitful direction for research.

Erik P. Zawadzki, Geoffrey J. Gordon, André Platzer

References

P. Baumgartner. FDPLL-a first-order Davis-Putnam-
Logeman-Loveland procedure. CADE, 2000.

P. Baumgartner and C. Tinelli. The model evolution
calculus. CADE, pages 350-364, 2003.

P. Baumgartner and C. Tinelli. The model evolution
calculus as a first-order DPLL method. Artificial In-
telligence, 172(4-5):591-632, 2008. ISSN 0004-3702.

P. Baumgartner, A. Fuchs, and C. Tinelli. ME (LIA)-
Model Evolution With Linear Integer Arithmetic
Constraints. In LPAR, page 258. Springer, 2008.

G. Faure, R. Nieuwenhuis, A. Oliveras, and
E. Rodriguez-Carbonell. SAT modulo the theory
of linear arithmetic: Exact, inexact and commercial
solvers. In H. Kleine Biining and X. Zhao, editors,
SAT, volume 4996 of LNCS. Springer, 2008.

R. Fourer, D. Gay, and B.W. Kernighan. The AMPL
book. Duxbury Press, Pacific Grove, 2002.

H. Ganzinger and K. Korovin. New directions in
instantiation-based theorem proving. In LICS, 2003.

H. Ganzinger and K. Korovin. Theory instantiation. In
Logic for Programming, Artificial Intelligence, and
Reasoning, pages 497-511. Springer, 2006.

G.J. Gordon, S.A. Hong, and M. Dudik. First-order
mixed integer linear programming. In Proceedings of
the 25 Conference on Uncertainty in Artificial Intel-
ligence, pages 213-222. AUAI Press, 2009.

J.N. Hooker, G. Rago, V. Chandru, and A. Shrivas-
tava. Partial instantiation methods for inference in
first-order logic. J. Autom. Reas., 28(4), 2002.

R.G. Jeroslow. Computation-oriented reductions of
predicate to propositional logic. Decision Support
Systems, 4(2):183-197, 1988. ISSN 0167-9236.

K. Korovin. An invitation to instantiation-based rea-
soning: From theory to practice. Volume in memo-
riam of Harald Ganzinger, LNCS. Springer, 2009.

K. Korovin and A. Voronkov. Integrating linear arith-
metic into superposition calculus. In Computer Sci-
ence Logic, pages 223-237. Springer, 2007.

S.J. Lee and D.A. Plaisted. Eliminating duplication
with the hyper-linking strategy. Journal of Auto-
mated Reasoning, 9(1):25-42, 1992. ISSN 0168-7433.

R. Letz and G. Stenz. Proof and model generation
with disconnection tableaux. In LPAR, pages 142—
156. Springer, 2001.

R. Letz and G. Stenz. The disconnection tableau cal-
culus. J. Autom. Reason., 38(1-3):79-126, 2007.

G.L. Nemhauser and L.A. Wolsey. Integer and combi-
natorial optimization. Wiley New York, 1988.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solv-
ing SAT and SAT Modulo Theories: From an

abstract Davis—Putnam—Logemann—Loveland pro-
cedure to DPLL (T). Journal of the ACM (JACM),
53(6):937-977, 2006. ISSN 0004-5411.

