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ETCS Control Verification

Problem

Hybrid System

Continuous evolutions
(differential equations)

Discrete jumps
(control decisions)
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European Train Control System

m.eST SBτ.p

Objectives

1 Collision free

2 Maximise throughput &
velocity (300 km/h)

3 2.1 ∗ 106 passengers/day

Overview
1 No static partitioning of track

2 Radio Block Controller (RBC)
manages movement authorities
dynamically

3 Moving block principle
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European Train Control System

m.eST SBτ.p

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

Parameters have nonlinear influence

Handle SB as free symbolic parameter?

Challenge: verification (falsifying is “easy”)

Which constraints for SB?

∀m.e ∃SB “train always safe”
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André Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 3 / 19



European Train Control System

m.eST SBτ.p

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

Parameters have nonlinear influence

Handle SB as free symbolic parameter?

Challenge: verification (falsifying is “easy”)

Which constraints for SB?

∀m.e ∃SB “train always safe”

MA
z

v

MA
z

v
t

m.e

τ.v

τ.p
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Differential Dynamic Logic (dL)

m.eτ.p

τ.v

Example

τ.v2 ≤ 2b(m.e − τ.p)

→ [

τ.a := ∗; ?τ.a ≤ −b;

τ.p′ = τ.v , τ.v ′ = τ.a

](

τ.p ≤ m.e

)

Precondition Operation model Property
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Differential Dynamic Logic (dL)

m.eτ.p

τ.v

Example

τ.v2 ≤ 2b(m.e − τ.p)→ [

τ.a := ∗; ?τ.a ≤ −b;

τ.p′ = τ.v , τ.v ′ = τ.a](τ.p ≤ m.e)

Precondition Operation model Property

Continuous evolution:
differential equation
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Differential Dynamic Logic (dL)

m.eτ.p

τ.v

Example

τ.v2 ≤ 2b(m.e − τ.p)→ [τ.a := ∗;

?τ.a ≤ −b;

τ.p′ = τ.v , τ.v ′ = τ.a](τ.p ≤ m.e)

Precondition Operation model Property

Random assignment
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Differential Dynamic Logic (dL)

m.eτ.p

τ.v

Example

τ.v2 ≤ 2b(m.e − τ.p)→ [τ.a := ∗; ?τ.a ≤ −b; τ.p′ = τ.v , τ.v ′ = τ.a](τ.p ≤ m.e)

Precondition Operation model Property

Test
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3D Movement Authorities

m.r

m1.e
m1.d m2.e

m2.d

m3.e

m3.d

τ.p

τ.v

Vectorial MA m = (d , e, r):

Beyond point m.e train not faster than m.d .

Train should try not to keep recommended speed m.r
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André Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19



3D Movement Authorities

m.r

m1.e
m1.d

m2.e

m2.d

m3.e

m3.d

τ.p

τ.v

Vectorial MA m = (d , e, r):

Beyond point m.e train not faster than m.d .

Train should try not to keep recommended speed m.r
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Separation Principle

Lemma (Principle of separation by movement authorities)

Each train respects its movement authority and
the RBC partitions into disjoint movement authorities
⇒ trains can never collide.

m.eST SBτ.p

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.
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Parametric Skeleton of ETCS
Read from the informal specification. . .
ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp : if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Task

Verify safety

Specification

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Issue

Lots of counterexamples!
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Parametric Skeleton of ETCS
As transition system. . .

?τ.v ≤ m.r

?τ.v ≥ m.r

τ.a := ∗

τ.a := ∗

?− b ≤ τ.a ≤ A

?0 > τ.a ≥ −b

?(m.e − τ.p ≤ SB∨
rbc.message = emergency)

?m.e − τ.p ≥ SB∧
rbc.message 6= emergency)

τ.a := −b

t := 0

τ.p′ = τ.v ,
τ.v ′ = τ.a, t ′ = 1
τ.v ≥ 0 ∧ t ≤ ε

m0 := m m := ∗

rbc.message := emergency

Task

Verify safety

Specification

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Issue

Lots of counterexamples!
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Iterative Control Refinement Process

m.d τ.p

τ.v

m.e

SB

�

SB SB

Reaction time ε

1 Controllability discovery

2 Control refinement

3 Repeat 2 until safety can be proven

4 Liveness check
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ETCS Controllability

m.d τ.p

τ.v

m.e

τ.v2 −m.d2 ≤ 2b(m.e − τ.p)

Proposition (Controllability)

[τ.p′ = τ.v , τ.v ′ = −b ∧ τ.v ≥ 0](τ.p ≥ m.e → τ.v ≤ m.d)

≡ τ.v2 −m.d2 ≤ 2b(m.e − τ.p) (C)
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ETCS RBC Controllability

EOANEW EOANEW EOA NEW EOA

X X

Proposition (RBC Controllability)

m.d ≥ 0 ∧ b > 0→ [m0 := m; rbc]
(

m0.d
2 −m.d2 ≤ 2b(m.e −m0.e) ∧m0.d ≥ 0 ∧m.d ≥ 0↔

∀τ
(
(〈m := m0〉C)→ C

))
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ETCS Reactivity

m.d τ.p

τ.v

m.eSB

Reaction time ε

Proposition (Reactivity)(
∀m.e ∀τ.p

(
m.e − τ.p ≥ SB ∧ C → [τ.a := A; drive] C

))
≡ SB ≥ τ.v2 −m.d2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + ε τ.v

)
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Refined ETCS Control

Necessary for safety

ETCSr: (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?0 > τ.a ≥ −b)

atp : SB := τ.v2−m.d2

2b +
(
A
b + 1

) (
A
2 ε

2 + ε τ.v
)
;

: if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency)

∪
(
m0 := m;m := ∗;

?m0.d
2 −m.d2 ≤ 2b(m.e −m0.e) ∧m.r ≥ 0 ∧m.d ≥ 0

)

Specification

τ.v2 −m.d2 ≤ 2b(m.e − τ.p)→ [ETCSr](τ.p ≥ m.e → τ.v ≤ m.d)
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ETCS Safety

EOA

Proposition (Safety)

C →
[ETCS](τ.p ≥ m.e → τ.v ≤ m.d)
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ETCS Liveness

EOA

NEW EOA

NEW EOA

Proposition (Liveness)

τ.v ≥ 0 ∧ ε > 0 → ∀P 〈ETCSr〉 τ.p ≥ P
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Safety Despite Disturbances

So far: no wind, friction, etc.
Direct control of the acceleration

Issue
This is unrealistic!

Solution Take disturbances into account.

Theorem

ETCS is controllable, reactive, and safe in the presence of disturbances.

Proof sketch

The system now contains τ.a− l ≤ τ.v ′ ≤ τ.a + u instead of τ.v ′ = τ.a.
; We cannot solve the differential equations anymore.

; Use differential invariants for approximation. For details see paper.

Platzer, A.:
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. (2008) DOI 10.1093/logcom/exn070.
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; We cannot solve the differential equations anymore.

; Use differential invariants for approximation. For details see paper.

Platzer, A.:
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. (2008) DOI 10.1093/logcom/exn070.
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Truncate

In

min

max

Out1

Step

SpeedPlant

1
s

PI Output

Controller

v0−v a

Acceleration
A

9
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Out1

Step
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1
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PI Output

Controller
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9
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a
1

[1.679 0.0008; 1 0]*u

K*u

[0.1995 0.000024; 1 0]*u

K*u
min

1
s

v0−v
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Differential equation system

τ.v ′ = min
(
A,max

(
−b, l(τ.v −m.r)− i s − cm.r

))
∧ s ′ = τ.v −m.r
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Realistic Speed Control

So far
Almost completely non-deterministic control.

Issue
This is unrealistic!

Solution Verify proportional-integral (PI) controllers used in trains.

Theorem

The ETCS system remains safe when speed is controlled by a PI controller.

Proof sketch

Cannot solve differential equations really. Differential invariants are to be used.

For details see paper.

Platzer, A.:
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. (2008) DOI 10.1093/logcom/exn070.
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Experimental Results (KeYmaera)

Case study Int Time(s) Steps Dim

Controllability 0 1.3 14 5
RBC Controllability 0 1.7 42 12
RBC Control (characterization) 0 2.2 42 12
Reactivity (existence) 8 133.4 229 13
Reactivity 0 86.8 52 14
Safety 0 249.9 153 14
Liveness 4 27.3 166 7

Inclusion (PI) 19 766.2 301 25
Safety (PI) 16 509.0 183 15

Controllability (disturbed) 0 5.6 37 7
Reactivity (disturbed) 2 34.6 78 15
Safety (disturbed) 5 389.9 88 16
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Summary

m.eST SBτ.p

Formally verified a major case study with KeYmaera:

discovered necessary
safety constraints

controllability, reactivity,
safety and liveness
properties

Extensions for ETCS
with disturbances and
for ETCS with PI control
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Syntax of Differential Dynamic Logic

dL Formulas

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Hybrid Program | Effect

α; β sequential composition
α ∪ β nondeterministic choice
α∗ nondeterministic repetition
x := θ discrete assignment (jump)
x := ∗ nondeterministic assignment(
x ′1 = θ1, . . . , x

′
n = θn,F

)
continuous evolution of xi

?F check if formula F holds

A. Platzer.
Differential Dynamic Logic for Hybrid Systems.
Journal of Automated Reasoning, 41(2), 2008.
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Proof Sketch

Init ` [ETCS∗]z ≤ m

Init ` Inv Inv ` [ETCS ]Inv

RBC

. . .

Train

Drive

v ≥ vdes

m − z ≤ SB m − z > SB

v ≤ vdes

m − z ≤ SB m − z > SB

Brake

Inv ` z ≤ m

Example

m − z ≥
(
A
b + 1

) (
εv + A

2 ε
2
)

+ v2−d2

2b ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes
∧v2 − d2 ≤ 2b(m − z) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0
`
∀t ≥ 0 ((∀0 ≤ t̃ ≤ t (at̃ + v ≥ 0 ∧ t̃ ≤ ε))
→ (at + v)2 − d2 ≤ 2b(m − ( 1

2at + tv + z)) ∧ at + v ≥ 0 ∧ d ≥ 0)
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Handling Differential Equations

Example

∀t ≥ 0 [x := y(t)]φ

[x ′ = f (x)]φ

v w

φ

x ′ = f (x)

x := y(t)

. . . ` ∀t ≥ 0 (−1
2bt

2 + tv + z ≤ m)

. . . ` ∀t ≥ 0 [z := −1
2bt

2 + tv + z ]z ≤ m

. . . ` [z ′ = v , v ′ = −b]z ≤ m
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Model/State Variables

Train τ ( )

τ.p Position

τ.v Speed

τ.a Acceleration

(t model time)

RBC + MA

m.e End of Authority

m.d Speed limit

m.r Recommended speed

rbc.message Channel

Parameters

SB Start Braking

b Braking power/deceleration

A Maximum acceleration

ε Maximum cycle time
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Separation Principle

Lemma (Principle of separation by movement authorities)

Each train respects its movement authority and
the RBC partitions into disjoint movement authorities
⇒ trains can never collide.

m.eST SBτ.p

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.
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André Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 19 / 19



Separation Principle

Lemma (Principle of separation by movement authorities)

Each train respects its movement authority and
the RBC partitions into disjoint movement authorities
⇒ trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.
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