
DbCheck

DbCheck is a software package that auto-generates test cases against a method’s
pre-conditions, and run the method under test to verify its post-conditions.
Tests are auto-generated according to a json file which specifies the pre- and
post-conditions in a type specific way, so that some simple bounds of parameters
could be made use of during the generation of argument lists.

Motivation

Test auto-generation has been a great tool in software industry for developers to
find bugs and verify software design goals. It largely help software developers
to automate the process of software contract verifications, where the pre- and
post-conditions of a software module is stated, tested and verified.

The problem with most such test auto-generation tools is that the parameter
space size grows exponentially with the size of the parameter lists, and also the
branching statements that depends on the parameter values. There has been
a lot of efforts put into the area of space reduction in literature, and another
usual approach is for the users to supply their own data generators equipped
with prior knowledge of the expected domain of parameters.

How it works

This tool works by reading a property file that specifies the argument name,
types and pre- and post-conditions for a method under test. Unlike many other
tools, the pre-conditions are parsed into AST and the tool tries to read and
deduce the possible sub-domain of parameters, so that the argument generation
can be more efficient. It can also be used to verify false negative cases for the
method under test.

As a feedback, the tool will also trace the statement and code lines under test
and determine the strength / quality of test data generated.

This tool uses python’s built-in libraries including ast and trace, and supports
common built-in types.

How to run

Call

python dbcheck.py choose_props.json

1



where the single argument is the json property file that defines the properties,
i.e. pre-conditions and post-conditions for a certain module and method.

Calling the program will also generate a trace file for that specific module in the
current directory, highlighting the test coverage of current run.

Related works

The work is inspired by Quickcheck, which was an automated testing framework
written in Haskell. The tool has inspired a couple dozens of other language ports
which all follow the similar idea of type-specific test generation.

Automated Whitebox Fuzz Testing by Godefroid et. al. is a related paper in 2008
that described how they start from a sample in the argument space and increase
the test coverage by systematically changing some part of the parameters in
order to hit different code logic branches, etc.

2

https://hackage.haskell.org/package/QuickCheck
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf

	DbCheck
	Motivation
	How it works
	How to run
	Related works


