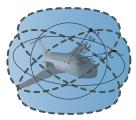
15-819/18-879: Logical Analysis of Hybrid Systems28: Complete Axiomatization of Differential Dynamic Logic

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA



1) Verification Calculus for Differential Dynamic Logic d ${\cal L}$

Compositionality Motives

2 Soundness

3 Completeness

- Incompleteness
- Completeness
- Expressibility and Rendition of Hybrid Programs
- Relative Completeness of First-Order Assertions
- Relative Completeness of Differential Logic Calculus

1) Verification Calculus for Differential Dynamic Logic d ${\cal L}$

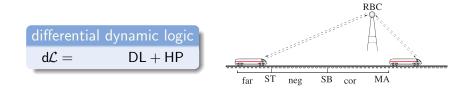
Compositionality Motives

2 Soundness

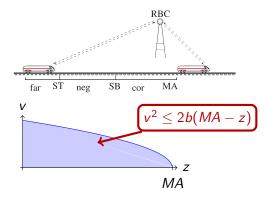
3 Completeness

- Incompleteness
- Completeness
- Expressibility and Rendition of Hybrid Programs
- Relative Completeness of First-Order Assertions
- Relative Completeness of Differential Logic Calculus

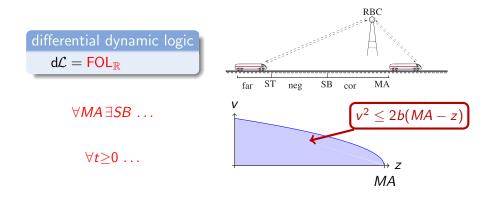
${\mathcal R}$ d ${\mathcal L}$ Motives: The Logic of Hybrid Systems



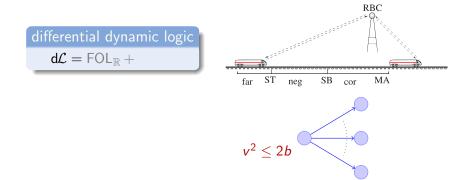
\mathcal{R} d \mathcal{L} Motives: Regions in First-order Logic



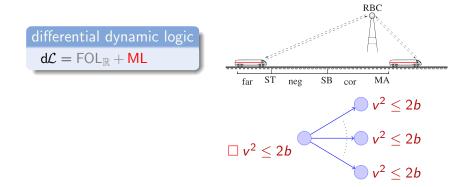
\mathcal{R} d \mathcal{L} Motives: Regions in First-order Logic



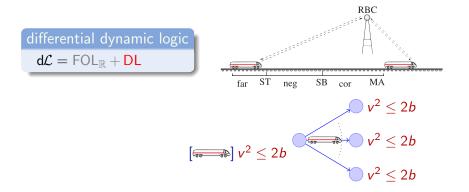
\mathcal{R} d \mathcal{L} Motives: State Transitions in Dynamic Logic



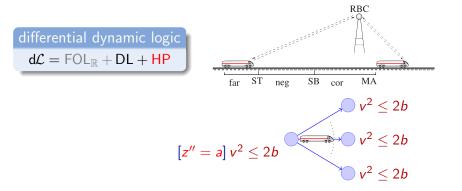
$\cancel{\mathcal{R}}$ d \mathcal{L} Motives: State Transitions in Dynamic Logic



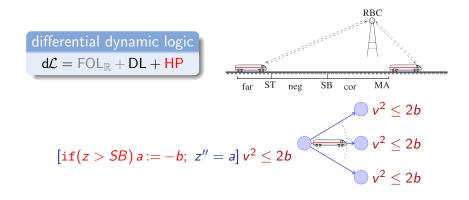
$\cancel{\mathcal{R}}$ d \mathcal{L} Motives: State Transitions in Dynamic Logic



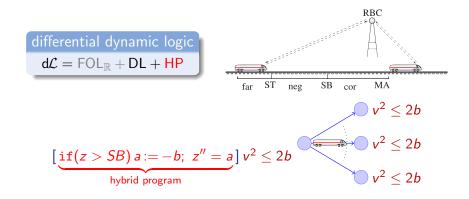
\mathcal{R} d \mathcal{L} Motives: Hybrid Programs as Uniform Model



\mathcal{R} d \mathcal{L} Motives: Hybrid Programs as Uniform Model



\mathcal{R} d \mathcal{L} Motives: Hybrid Programs as Uniform Model



ℜ Verification Calculus for Differential Dynamic Logic Propositional Rules

10 propositional rules

$\frac{\vdash \phi}{\neg \phi \vdash}$	$\frac{\phi,\psi\vdash}{\phi\wedge\psi\vdash}$	$\frac{\phi \vdash \psi \vdash}{\phi \lor \psi \vdash}$	$\frac{\vdash \phi \ \phi \vdash}{\vdash}$
$\frac{\phi \vdash}{\vdash \neg \phi}$	$\frac{\vdash \phi \vdash \psi}{\vdash \phi \land \psi}$	$\frac{\vdash \phi, \psi}{\vdash \phi \lor \psi}$	
$\frac{\phi \vdash \psi}{\vdash \phi \rightarrow \psi}$	$\frac{\vdash \phi \psi \vdash}{\phi \rightarrow \psi \vdash}$	$\overline{\phi\vdash\phi}$	

ℜ Verification Calculus for Differential Dynamic Logic Dynamic Rules

$$\frac{\langle \alpha \rangle \langle \beta \rangle \phi}{\langle \alpha; \beta \rangle \phi} \qquad \qquad \frac{\phi \lor \langle \alpha \rangle \langle \alpha^* \rangle \phi}{\langle \alpha^* \rangle \phi} \qquad \frac{\phi_{x_1}^{\theta_1} \dots \theta_n}{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}$$

$$\frac{[\alpha][\beta]\phi}{[\alpha;\beta]\phi} \qquad \qquad \frac{\phi \wedge [\alpha][\alpha^*]\phi}{[\alpha^*]\phi} \qquad \frac{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}{[x_1 := \theta_1, \dots, x_n := \theta_n]\phi}$$

$$\frac{\langle \alpha \rangle \phi \lor \langle \beta \rangle \phi}{\langle \alpha \cup \beta \rangle \phi} \quad \frac{\chi \land \psi}{\langle ?\chi \rangle \psi} \quad \frac{\exists t \ge 0 \left((\forall 0 \le \tilde{t} \le t \langle \mathcal{S}(\tilde{t}) \rangle \chi) \land \langle \mathcal{S}(t) \rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi}$$

$$\frac{[\alpha]\phi \wedge [\beta]\phi}{[\alpha \cup \beta]\phi} \qquad \frac{\chi \to \psi}{[?\chi]\psi} \qquad \qquad \frac{\forall t \ge 0 \left((\forall 0 \le \tilde{t} \le t \langle \mathcal{S}(\tilde{t}) \rangle \chi) \to \langle \mathcal{S}(t) \rangle \phi \right)}{[x_1' = \theta_1, \dots, x_n' = \theta_n \wedge \chi]\phi}$$

✤ Verification Calculus for Differential Dynamic Logic First-Order Rules

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

$$\frac{\vdash \phi(X)}{\vdash \exists x \, \phi(x)}$$

$$\frac{\phi(s(X_1,\ldots,X_n))\vdash}{\exists x\,\phi(x)\vdash}$$

s new, $\{X_1, \ldots, X_n\} = FV(\exists x \phi(x))$

$$\frac{\phi(X) \vdash}{\forall x \, \phi(x) \vdash}$$

X new variable

$$\frac{\vdash \mathsf{QE}(\forall X \ (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \dots, X_n)) \vdash \Psi(s(X_1, \dots, X_n))} \qquad \frac{\vdash \mathsf{QE}(\exists X \ \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \ \dots \ \Phi_n \vdash \Psi_n}$$

X new variable X only in branches $\Phi_i \vdash \Psi_i$

QE needs to be defined in premiss

André Platzer (CMU)

LAHS/28: Completeness of Differential Dynamic Logic

$$\frac{\vdash \forall^{\alpha}(\phi \to \psi)}{[\alpha]\phi \vdash [\alpha]\psi}$$

$$\frac{\vdash \forall^{\alpha} (\phi \to \psi)}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi}$$

$$\frac{\vdash \forall^{\alpha} (\phi \to [\alpha] \phi)}{\phi \vdash [\alpha^*] \phi}$$

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1)\right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

) Verification Calculus for Differential Dynamic Logic d ${\cal L}$

Compositionality Motives

2 Soundness

3 Completeness

- Incompleteness
- Completeness
- Expressibility and Rendition of Hybrid Programs
- Relative Completeness of First-Order Assertions
- Relative Completeness of Differential Logic Calculus

dL calculus is sound, i.e.,

$$\vdash \phi \implies \vdash \phi$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

•
$$x' = f(x)$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

- x' = f(x)
- Side deductions

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

- x' = f(x)
- Side deductions
- Free variables & Skolemization

f 1 Verification Calculus for Differential Dynamic Logic d ${\cal L}$

Compositionality Motives

2 Soundness

3 Completeness

- Incompleteness
- Completeness
- Expressibility and Rendition of Hybrid Programs
- Relative Completeness of First-Order Assertions
- Relative Completeness of Differential Logic Calculus

Can we prove all valid formulas of $d\mathcal{L}$?

$$\vDash \phi \implies \vdash \phi?$$

Theorem (Incompleteness)

Both the discrete fragment and the continuous fragment of $d\mathcal{L}$ are not effectively axiomatisable, i.e., they have no sound and complete effective calculus, because natural numbers are definable in both fragments.

Theorem (Incompleteness)

Both the discrete fragment and the continuous fragment of $d\mathcal{L}$ are not effectively axiomatisable, i.e., they have no sound and complete effective calculus, because natural numbers are definable in both fragments.

Theorem (Gödels's Incompleteness'31)

First-order logic with (non-linear) arithmetic of natural numbers has no sound and complete effective calculus.

Proof (Incompleteness)

Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

+1 +1 +1 +1 +1 +1

Proof (Incompleteness)

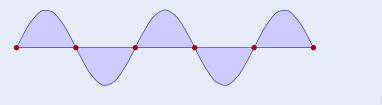
Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

$$\xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1}$$

Continuous fragment:

$$\langle s'' = -s, \tau' = 1 \rangle (s = 0 \land \tau = n) \longrightarrow s = \sin s$$



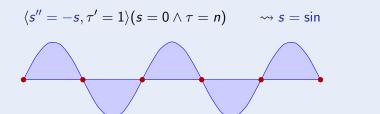
Proof (Incompleteness)

Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

$$\xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1}$$

Continuous fragment:



What's missing in characterization?

Proof (Incompleteness)

Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

$$\xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1}$$

Continuous fragment:

$$\langle s'' = -s, \tau' = 1 \rangle (s = 0 \land \tau = n) \quad \rightsquigarrow s = \sin$$

What's missing in characterization? $s \neq 0 \lor s'(0) \neq 0$

Relativity

 $\mathsf{Cook}, \mathsf{Harel:} \quad \mathsf{discrete-DL}/\mathsf{data}_{\mathbb{N}} \qquad \qquad \mathsf{hybrid-d}\mathcal{L}/\mathsf{data}_{\mathbb{R}} ~ \ref{eq:loss}$

\mathcal{R} Sources of Incompleteness

\mathcal{R} Relative Completeness

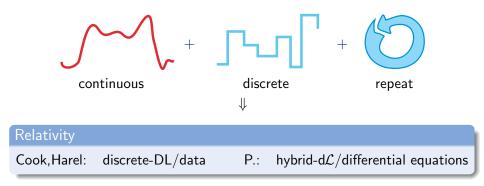
ℜ Relative Completeness

Theorem (Relative Completeness)

d*L* calculus is a sound & complete axiomatisation of hybrid systems relative to differential equations.

Theorem (Relative Completeness)

d*L* calculus is a sound & complete axiomatisation of hybrid systems relative to differential equations.



\mathcal{R} First-Order Logic of Differential Equations FOD

Definition (First-Order Logic of Differential Equations)

$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

FOD $\phi ::= \theta_1 \ge \theta_2 \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \forall x \phi \mid \exists x \phi \mid [x'_1 = \theta_1, \dots, x'_n = \theta_n]\phi$

ℜ First-Order Logic of Differential Equations FOD

Definition (First-Order Logic of Differential Equations)

$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

FOD
$$\phi ::= \theta_1 \ge \theta_2 \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \forall x \phi \mid \exists x \phi \mid [x'_1 = \theta_1, \dots, x'_n = \theta_n]\phi$$

FOD $\phi ::= \theta_1 \ge \theta_2 \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \forall x \phi \mid \exists x \phi \mid [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$ with FOL_R-formula *F*

ℜ First-Order Logic of Differential Equations FOD

Definition (First-Order Logic of Differential Equations)

$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

FOD
$$\phi ::= \theta_1 \ge \theta_2 \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \forall x \phi \mid \exists x \phi \mid [x'_1 = \theta_1, \dots, x'_n = \theta_n]\phi$$

FOD $\phi ::= \theta_1 \ge \theta_2 \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \forall x \phi \mid \exists x \phi \mid [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$ with FOL_R-formula *F*

both will do

Theorem (Relative Completeness)

d*L* calculus is complete relative to first-order logic of differential equations.

 $\models \phi \quad iff \quad Taut_{FOD} \vdash \phi$

where $FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

Proof Outline 15p

Theorem (Relative Completeness)

d*L* calculus is complete relative to first-order logic of differential equations.

 $\models \phi \quad iff \quad Taut_{FOD} \vdash \phi$

where $FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

▶ Proof Outline 15p

Corollary (Proof-theoretical Alignment)

verification of hybrid systems = verification of dynamical systems!

$$\models \phi \quad \text{iff} \quad Taut_{\text{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- $\textcircled{0} d\mathcal{L} \text{ expressible in FOD}$
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- FOD characterises R-Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

$$\models \phi \quad \text{iff} \quad Taut_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- **2** d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- In FOD characterises ℝ-Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

$$\vDash \phi \quad \text{iff} \quad Taut_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- 2 d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- FOD characterises R-Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

$$\vDash \phi \quad \mathsf{iff} \quad \mathit{Taut}_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- $\textcircled{0} d\mathcal{L} \text{ expressible in FOD}$
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- FOD characterises R-Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

$$\vDash \phi \quad \mathsf{iff} \quad \mathit{Taut}_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- $\textcircled{0} d\mathcal{L} \text{ expressible in FOD}$
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- FOD characterises ℝ-Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

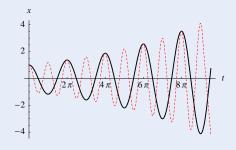
\mathcal{R} Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

▲ Return

Proof (\mathbb{R} -Gödel encoding).

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

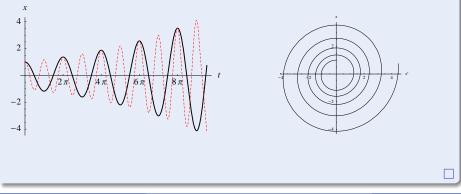


where
$$\mathsf{FOD} = \mathsf{FOL}_{\mathbb{R}} + [x_1' = \theta_1, \dots, x_n' = \theta_n]F$$

▲ Return

Proof (\mathbb{R} -Gödel encoding).

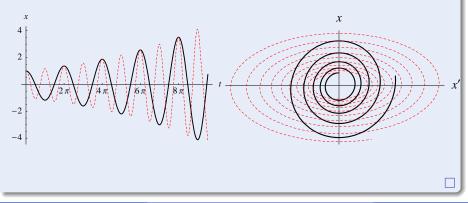
FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$



where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (\mathbb{R} -Gödel encoding).

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

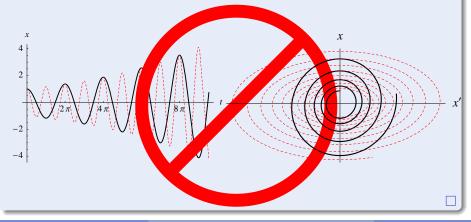


LAHS/28: Completeness of Differential Dynamic Logic

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (\mathbb{R} -Gödel encoding).

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$ not differentiable!



LAHS/28: Completeness of Differential Dynamic Logic

\mathcal{R} Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (\mathbb{R} -Gödel encoding).

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

$$\sum_{i=0}^{\infty} \frac{a_i}{2^i} = a_0.a_1a_2...$$

$$\sum_{i=0}^{\infty} \frac{b_i}{2^i} = b_0.b_1b_2...$$

$$\sum_{i=0}^{\infty} \left(\frac{a_i}{2^{2i-1}} + \frac{b_i}{2^{2i}}\right) = a_0b_0.a_1b_1a_2b_2...$$

\mathcal{R} Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (\mathbb{R} -Gödel encoding).

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

$$\sum_{i=0}^{\infty} \frac{a_i}{2^i} = a_0.a_1a_2...$$

$$\sum_{i=0}^{\infty} \frac{b_i}{2^i} = b_0.b_1b_2...$$

$$\sum_{i=0}^{\infty} \frac{b_i}{2^i} = b_0.b_1b_2...$$

$$Z, n, j, z) \leftrightarrow \forall i : \mathbb{Z} \text{ digit}(z, i) = \text{digit}(Z, n(i-1)+j) \land n > 0 \land n, j \in \mathbb{N}$$

$$\lim_{i \neq i} \sum_{j=1}^{\infty} \frac{b_j}{2^{j-1}} = \lim_{i \neq j \neq i} \sum_{j=1}^{\infty} \frac{b$$

$$\begin{aligned} \text{digit}(a, i) &= \text{intpart}(2 \operatorname{frac}(2^{i-a})) \\ \text{intpart}(a) &= a - \operatorname{frac}(a) \\ \text{frac}(a) &= z \leftrightarrow \exists i : \mathbb{Z} \ z = a - i \land -1 < z \land z < 1 \land az \ge 0 \end{aligned}$$
 "keep sign"

at(2

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (\mathbb{R} -Gödel encoding).

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

$$\sum_{i=0}^{\infty} \frac{a_i}{2^i} = a_0.a_1a_2...$$

$$\sum_{i=0}^{\infty} \frac{b_i}{2^i} = b_0.b_1b_2...$$

$$(Z, n, j, z) \leftrightarrow \forall i : \mathbb{Z} \quad \text{digit}(z, i) = \text{digit}(Z, n(i-1)+j) \land n > 0 \land n, j \in \mathbb{N}$$

$$\text{digit}(a, i) = \text{intpart}(2 \operatorname{frac}(2^{i-1}a))$$

$$\text{intpart}(a) = a - \operatorname{frac}(a)$$

 $frac(a) = z \leftrightarrow \exists i : \mathbb{Z} \ z = a - i \land -1 < z \land z < 1 \land az \ge 0$ "keep sign"

at(

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (
$$\mathbb R$$
-Gödel encoding).

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

$$\sum_{i=0}^{\infty} \frac{a_i}{2^i} = a_0.a_1a_2...$$

$$\sum_{i=0}^{\infty} \frac{b_i}{2^i} = b_0.b_1b_2...$$

$$\sum_{i=0}^{\infty} \left(\frac{a_i}{2^{2i-1}} + \frac{b_i}{2^{2i}}\right) = a_0b_0.a_1b_1a_2b_2...$$

 $2^{i} = z \leftrightarrow i \ge 0 \land \langle x := 1; t := 0; x' = x \ln 2, t' = 1 \rangle (t = i \land x = z) \\ \lor i < 0 \land \langle x := 1; t := 0; x' = -x \ln 2, t' = -1 \rangle (t = i \land x = z) \\ \ln 2 = z \leftrightarrow \langle x := 1; t := 0; x' = x, t' = 1 \rangle (x = 2 \land t = z)$

$$\vDash \phi \quad \text{iff} \quad Taut_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

▲ Return

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- 2 d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- **§** FOD characterises \mathbb{R} -Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **3** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **(2)** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

$$\vDash \phi \quad \text{iff} \quad Taut_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

▲ Return

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- 2 d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- **§** FOD characterises \mathbb{R} -Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **3** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **2** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

$$\vDash \phi \quad \text{iff} \quad Taut_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

▲ Return

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- $\textcircled{0} d\mathcal{L} \text{ expressible in FOD}$
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- **§** FOD characterises \mathbb{R} -Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **(2)** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

$$\vDash \phi \quad \text{iff} \quad Taut_{\mathsf{FOD}} \vdash \phi$$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

▲ Return

- ${\small \textcircled{0}}$ Strong enough invariants and variants expressible in d ${\small \mathcal{L}}$
- 2 d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- **§** FOD characterises \mathbb{R} -Gödel encoding
- First-order expressible & program rendition: for each φ there is F ∈ FOD ⊨ φ ↔ F
- Propositionally & first-order complete
- **3** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F \rightarrow \langle \alpha \rangle G$

Lemma (Program rendition)

For every HP α with variables among $\vec{x} = x_1, \ldots, x_k$ there is a FOD-formula $S_{\alpha}(\vec{x}, \vec{v})$ with variables among the 2k distinct variables $\vec{x} = x_1, \ldots, x_k$ and $\vec{v} = v_1, \ldots, v_k$ such that

$$\models \mathcal{S}_{\alpha}(\vec{x},\vec{v}) \leftrightarrow \langle \alpha \rangle \vec{x} = \vec{v}$$

or, equivalently, for every I, η , v,

$$I, \eta, \mathsf{v} \models \mathcal{S}_{\alpha}(\vec{x}, \vec{v}) \text{ iff } (\mathsf{v}, \mathsf{v}[\vec{x} \mapsto \llbracket \vec{v} \rrbracket_{I, \mathsf{v}, \eta}]) \in \rho_{I, \eta}(\alpha) \ .$$

\cancel{R} Program Rendition Proof

Proof.

$$\begin{split} \mathcal{S}_{x_{1}:=\theta_{1},..,x_{k}:=\theta_{k}}(\vec{x},\vec{v}) &\equiv \bigwedge_{i=1}^{k} (v_{i}=\theta_{i}) \\ \mathcal{S}_{x_{1}'=\theta_{1},..,x_{k}'=\theta_{k}}(\vec{x},\vec{v}) &\equiv \langle x_{1}'=\theta_{1},..,x_{k}'=\theta_{k} \rangle \vec{v} = \vec{x} \\ \mathcal{S}_{x_{1}'=\theta_{1},..,x_{k}'=\theta_{k} \wedge \chi}(\vec{x},\vec{v}) &\equiv \langle t:=0;x_{1}'=\theta_{1},..,x_{k}'=\theta_{k},t'=1 \rangle (\vec{v}=\vec{x}) \\ &\wedge [x_{1}'=-\theta_{1},..,x_{k}'=-\theta_{k},t'=-1](t \geq 0 \rightarrow \chi) \\ \mathcal{S}_{?\chi}(\vec{x},\vec{v}) &\equiv \vec{v}=\vec{x} \wedge \chi \\ \mathcal{S}_{\beta \cup \gamma}(\vec{x},\vec{v}) &\equiv \mathcal{S}_{\beta}(\vec{x},\vec{v}) \lor \mathcal{S}_{\gamma}(\vec{x},\vec{v}) \\ \mathcal{S}_{\beta;\gamma}(\vec{x},\vec{v}) &\equiv \exists \vec{z} (\mathcal{S}_{\beta}(\vec{x},\vec{z}) \wedge \mathcal{S}_{\gamma}(\vec{z},\vec{v})) \\ \mathcal{S}_{\beta^{*}}(\vec{x},\vec{v}) &\equiv \exists Z \exists n : \mathbb{N} (Z_{1}^{(n)}=\vec{x} \wedge Z_{n}^{(n)}=\vec{v} \\ &\wedge \forall i : \mathbb{N} (1 \leq i < n \rightarrow \mathcal{S}_{\beta}(Z_{i}^{(n)}, Z_{i+1}^{(n)}))) \end{split}$$

\mathcal{R} Program Rendition Proof

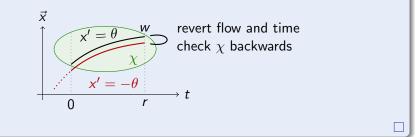
Proof.

$$\begin{split} \mathcal{S}_{x_{1}:=\theta_{1},..,x_{k}:=\theta_{k}}(\vec{x},\vec{v}) &\equiv \bigwedge_{i=1}^{k} (v_{i}=\theta_{i}) \\ \mathcal{S}_{x_{1}'=\theta_{1},..,x_{k}'=\theta_{k}}(\vec{x},\vec{v}) &\equiv \langle x_{1}'=\theta_{1},..,x_{k}'=\theta_{k} \rangle \vec{v} = \vec{x} \\ \mathcal{S}_{x_{1}'=\theta_{1},..,x_{k}'=\theta_{k} \wedge \chi}(\vec{x},\vec{v}) &\equiv \langle t:=0; x_{1}'=\theta_{1},..,x_{k}'=\theta_{k}, t'=1 \rangle (\vec{v}=\vec{x} \\ &\wedge [x_{1}'=-\theta_{1},..,x_{k}'=-\theta_{k},t'=-1](t \geq 0 \rightarrow \chi) \\ \mathcal{S}_{?\chi}(\vec{x},\vec{v}) &\equiv \vec{v}=\vec{x} \wedge \chi \\ \mathcal{S}_{\beta \cup \gamma}(\vec{x},\vec{v}) &\equiv \mathcal{S}_{\beta}(\vec{x},\vec{v}) \lor \mathcal{S}_{\gamma}(\vec{x},\vec{v}) \\ \mathcal{S}_{\beta;\gamma}(\vec{x},\vec{v}) &\equiv \exists \vec{z} (\mathcal{S}_{\beta}(\vec{x},\vec{z}) \wedge \mathcal{S}_{\gamma}(\vec{z},\vec{v})) \\ \mathcal{S}_{\beta^{*}}(\vec{x},\vec{v}) &\equiv \exists Z \exists n : \mathbb{N} (Z_{1}^{(n)}=\vec{x} \wedge Z_{n}^{(n)}=\vec{v} \\ &\wedge \forall i : \mathbb{N} (1 \leq i < n \rightarrow \mathcal{S}_{\beta}(Z_{i}^{(n)}, Z_{i+1}^{(n)}))) \end{split}$$

\mathcal{R} Program Rendition Proof

Proof.

$$\begin{split} \mathcal{S}_{x_1'=\theta_1,\dots,x_k'=\theta_k\wedge\chi}(\vec{x},\vec{v}) &\equiv \langle t := 0; x_1'=\theta_1,\dots,x_k'=\theta_k, t'=1 \rangle \big(\vec{v}=\vec{x} \\ & \wedge [x_1'=-\theta_1,\dots,x_k'=-\theta_k,t'=-1] (t \ge 0 \to \chi) \end{split}$$



Lemma (Expressibility)

d \mathcal{L} expressible in FOD: for all d \mathcal{L} formulas $\phi \in \mathsf{FmI}$ there is a FOD-formula $\phi^{\#} \in \mathsf{FmI}_{FOD}$ that is equivalent, i.e., $\vDash \phi \leftrightarrow \phi^{\#}$.

Proof.

The proof follows an induction on the structure of formula ϕ .

• ϕ first-order, then $\phi^{\#} := \phi$ already is a FOD-formula.

Lemma (Expressibility)

d \mathcal{L} expressible in FOD: for all d \mathcal{L} formulas $\phi \in \mathsf{FmI}$ there is a FOD-formula $\phi^{\#} \in \mathsf{FmI}_{FOD}$ that is equivalent, i.e., $\vDash \phi \leftrightarrow \phi^{\#}$.

Proof.

The proof follows an induction on the structure of formula ϕ .

• ϕ first-order, then $\phi^{\#} := \phi$ already is a FOD-formula.

● φ ≡ φ ∨ ψ, then by IH there are FOD-formulas φ[#], ψ[#] such that
 ⊨ φ ↔ φ[#] and ⊨ ψ ↔ ψ[#]. Thus by congruence
 ⊨ (φ ∨ ψ) ↔ (φ[#] ∨ ψ[#]) giving ⊨ φ ↔ φ[#] for φ[#] ≡ φ[#] ∨ ψ[#].

Lemma (Expressibility)

d \mathcal{L} expressible in FOD: for all d \mathcal{L} formulas $\phi \in \mathsf{FmI}$ there is a FOD-formula $\phi^{\#} \in \mathsf{FmI}_{FOD}$ that is equivalent, i.e., $\vDash \phi \leftrightarrow \phi^{\#}$.

Proof.

The proof follows an induction on the structure of formula ϕ .

• ϕ first-order, then $\phi^{\#} := \phi$ already is a FOD-formula.

• φ ≡ φ ∨ ψ, then by IH there are FOD-formulas φ[#], ψ[#] such that
 ⊨ φ ↔ φ[#] and ⊨ ψ ↔ ψ[#]. Thus by congruence
 ⊨ (φ ∨ ψ) ↔ (φ[#] ∨ ψ[#]) giving ⊨ φ ↔ φ[#] for φ[#] ≡ φ[#] ∨ ψ[#].

$$\models \quad \langle \alpha \rangle \psi \leftrightarrow \exists \vec{\mathbf{v}} \left(\mathcal{S}_{\alpha}(\vec{\mathbf{x}}, \vec{\mathbf{v}}) \land \psi^{\#\vec{\mathbf{v}}}_{\vec{\mathbf{x}}} \right)$$

Lemma (Expressibility)

d \mathcal{L} expressible in FOD: for all d \mathcal{L} formulas $\phi \in \mathsf{FmI}$ there is a FOD-formula $\phi^{\#} \in \mathsf{FmI}_{FOD}$ that is equivalent, i.e., $\vDash \phi \leftrightarrow \phi^{\#}$.

Proof.

The proof follows an induction on the structure of formula ϕ .

- ϕ first-order, then $\phi^{\#} := \phi$ already is a FOD-formula.
- 2 $\phi \equiv \varphi \lor \psi$, then by IH there are FOD-formulas $\varphi^{\#}, \psi^{\#}$ such that $\models \varphi \leftrightarrow \varphi^{\#}$ and $\models \psi \leftrightarrow \psi^{\#}$. Thus by congruence $\models (\varphi \lor \psi) \leftrightarrow (\varphi^{\#} \lor \psi^{\#})$ giving $\models \phi \leftrightarrow \phi^{\#}$ for $\phi^{\#} \equiv \varphi^{\#} \lor \psi^{\#}$.

$$\vdash \langle \alpha \rangle \psi \leftrightarrow \exists \vec{v} \left(S_{\alpha}(\vec{x}, \vec{v}) \land \psi^{\#}_{\vec{x}}^{\nu} \right) \\ \vdash [\alpha] \psi \leftrightarrow \forall \vec{v} \left(S_{\alpha}(\vec{x}, \vec{v}) \rightarrow \psi^{\#}_{\vec{x}}^{\vec{v}} \right)$$

Lemma (Derivability of sequents)

 $\vdash_{\mathcal{D}} \phi \rightarrow \psi$ iff the sequent $\phi \vdash \psi$ is derivable from \mathcal{D} , denoted by $\phi \vdash_{\mathcal{D}} \psi$.

 $\vdash_{\mathcal{D}} \phi \rightarrow \psi$ iff the sequent $\phi \vdash \psi$ is derivable from \mathcal{D} , denoted by $\phi \vdash_{\mathcal{D}} \psi$.

Proof.

 $\vdash_{\mathcal{D}} \phi \rightarrow \psi$ iff the sequent $\phi \vdash \psi$ is derivable from \mathcal{D} , denoted by $\phi \vdash_{\mathcal{D}} \psi$.

Proof.

• When sequents are abbreviations for formulas, both sides are identical.

 $\vdash_{\mathcal{D}} \phi \rightarrow \psi$ iff the sequent $\phi \vdash \psi$ is derivable from \mathcal{D} , denoted by $\phi \vdash_{\mathcal{D}} \psi$.

Proof.

- When sequents are abbreviations for formulas, both sides are identical.
- Otherwise, let $\vdash_{\mathcal{D}} \phi \to \psi$ be derivable from \mathcal{D} .

 $\vdash_{\mathcal{D}} \phi \rightarrow \psi$ iff the sequent $\phi \vdash \psi$ is derivable from \mathcal{D} , denoted by $\phi \vdash_{\mathcal{D}} \psi$.

Proof.

- When sequents are abbreviations for formulas, both sides are identical.
- Otherwise, let $\vdash_{\mathcal{D}} \phi \to \psi$ be derivable from \mathcal{D} .
- Using cut (and weakening), derivation can be extended to $\phi \vdash_{\mathcal{D}} \psi$:

$$\underset{\mathsf{cut}}{\overset{*}{ \phi \vdash \phi \to \psi, \psi}} \xrightarrow{\overset{\mathsf{Ax}}{ \phi \vdash \phi, \psi}} \xrightarrow{\overset{\mathsf{Ax}}{ \phi \vdash \phi, \psi}} \xrightarrow{\mathsf{Ax}} \frac{\overset{*}{ \psi, \phi \vdash \psi}}{ \phi, \phi \to \psi \vdash \psi}}{ \phi \vdash \psi}$$

 $\vdash_{\mathcal{D}} \phi \rightarrow \psi$ iff the sequent $\phi \vdash \psi$ is derivable from \mathcal{D} , denoted by $\phi \vdash_{\mathcal{D}} \psi$.

Proof.

- When sequents are abbreviations for formulas, both sides are identical.
- Otherwise, let $\vdash_{\mathcal{D}} \phi \to \psi$ be derivable from \mathcal{D} .
- Using cut (and weakening), derivation can be extended to $\phi \vdash_{\mathcal{D}} \psi$:

$$\underset{\mathsf{cut}}{\overset{*}{ \phi \vdash \phi \to \psi, \psi}} \xrightarrow{\overset{\mathsf{Ax}}{ \phi \vdash \phi, \psi}} \xrightarrow{\overset{\mathsf{Ax}}{ \phi \vdash \phi, \psi}} \xrightarrow{\mathsf{Ax}} \underbrace{\overset{*}{ \psi, \phi \vdash \psi}}_{\phi, \phi \to \psi \vdash \psi}$$

• The converse direction is by an application of $\rightarrow r$.

\mathcal{R} Generalization

Lemma (Generalization)

If $\vdash_{\mathcal{D}} \phi$ is provable without free logical variables, then so are $\vdash_{\mathcal{D}} \forall x \phi$ and $\vdash_{\mathcal{D}} \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$.

\mathcal{R} Generalization

Lemma (Generalization)

If $\vdash_{\mathcal{D}} \phi$ is provable without free logical variables, then so are $\vdash_{\mathcal{D}} \forall x \phi$ and $\vdash_{\mathcal{D}} \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$.

$\mathcal R$ Generalization

Lemma (Generalization)

If $\vdash_{\mathcal{D}} \phi$ is provable without free logical variables, then so are $\vdash_{\mathcal{D}} \forall x \phi$ and $\vdash_{\mathcal{D}} \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$.

Proof Sketch.

 Second part: Induction on the structure of proofs with inductive jump prefix transformation (1page proof).

$\mathcal R$ Generalization

Lemma (Generalization)

If $\vdash_{\mathcal{D}} \phi$ is provable without free logical variables, then so are $\vdash_{\mathcal{D}} \forall x \phi$ and $\vdash_{\mathcal{D}} \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$.

- Second part: Induction on the structure of proofs with inductive jump prefix transformation (1page proof).
- For reducing the first part of this lemma to the second, let *s* be a Skolem constant for state variable *x*.

${\mathcal R}$ Generalization

Lemma (Generalization)

If $\vdash_{\mathcal{D}} \phi$ is provable without free logical variables, then so are $\vdash_{\mathcal{D}} \forall x \phi$ and $\vdash_{\mathcal{D}} \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$.

- Second part: Induction on the structure of proofs with inductive jump prefix transformation (1page proof).
- For reducing the first part of this lemma to the second, let *s* be a Skolem constant for state variable *x*.
- By first proof, derive $\vdash_{\mathcal{D}} \langle x := s \rangle \phi$.

${\mathcal R}$ Generalization

Lemma (Generalization)

If $\vdash_{\mathcal{D}} \phi$ is provable without free logical variables, then so are $\vdash_{\mathcal{D}} \forall x \phi$ and $\vdash_{\mathcal{D}} \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$.

- Second part: Induction on the structure of proofs with inductive jump prefix transformation (1page proof).
- For reducing the first part of this lemma to the second, let *s* be a Skolem constant for state variable *x*.
- By first proof, derive $\vdash_{\mathcal{D}} \langle x := s \rangle \phi$.
- Using $\forall r$, continue derivation to a proof of $\forall X \langle x := X \rangle \phi$, which we abbreviate as $\forall x \phi$.

${m {\cal R}}$ Generalization

Lemma (Generalization)

If $\vdash_{\mathcal{D}} \phi$ is provable without free logical variables, then so are $\vdash_{\mathcal{D}} \forall x \phi$ and $\vdash_{\mathcal{D}} \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$.

- Second part: Induction on the structure of proofs with inductive jump prefix transformation (1page proof).
- For reducing the first part of this lemma to the second, let *s* be a Skolem constant for state variable *x*.
- By first proof, derive $\vdash_{\mathcal{D}} \langle x := s \rangle \phi$.
- Using ∀r, continue derivation to a proof of ∀X ⟨x := X⟩φ, which we abbreviate as ∀x φ.
- Rule ∀r is applicable for Skolem constant *s* as no free logical variables occur in the proof.

Proposition (Relative completeness of first-order safety)

For every $\alpha \in HP(\Sigma)$ and each $F, G \in Fml_{FOL}$

 $\vDash F \to [\alpha]G \text{ implies } \vdash_{\mathcal{D}} F \to [\alpha]G \quad (\text{thus } F \vdash_{\mathcal{D}} [\alpha]G)$

• This follows from soundness of symmetric rules (equivalent transformations):

- This follows from soundness of symmetric rules (equivalent transformations):
- Premiss is valid iff conclusion valid.

- This follows from soundness of symmetric rules (equivalent transformations):
- Premiss is valid iff conclusion valid.
- Premiss is valid and of smaller complexity (HP get simpler), hence derivable by IH.

- This follows from soundness of symmetric rules (equivalent transformations):
- Premiss is valid iff conclusion valid.
- Premiss is valid and of smaller complexity (HP get simpler), hence derivable by IH.
- Thus, we can derive $F \rightarrow [\alpha]G$ by applying the respective rule.

- This follows from soundness of symmetric rules (equivalent transformations):
- Premiss is valid iff conclusion valid.
- Premiss is valid and of smaller complexity (HP get simpler), hence derivable by IH.
- Thus, we can derive $F \rightarrow [\alpha]G$ by applying the respective rule.
- $\models F \rightarrow [x'_1 = f(x_1)_1, \dots, x'_n = f(x_n)_n]G$ is a FOD-formula and hence derivable as a \mathcal{D} axiom.

• \models *F* \rightarrow [β ; γ]*G*, which implies \models *F* \rightarrow [β][γ]*G*.

- \models $F \rightarrow [\beta; \gamma]G$, which implies \models $F \rightarrow [\beta][\gamma]G$.
- By Expr, there is a FOD-formula $G^{\#}$ such that $\vDash G^{\#} \leftrightarrow [\gamma]G$.

- \models $F \rightarrow [\beta; \gamma]G$, which implies \models $F \rightarrow [\beta][\gamma]G$.
- By Expr, there is a FOD-formula $G^{\#}$ such that $\vDash G^{\#} \leftrightarrow [\gamma]G$.
- From $\vDash F \rightarrow [\beta]G^{\#}$, IH implies $F \vdash_{\mathcal{D}} [\beta]G^{\#}$ is derivable.

- $\models F \rightarrow [\beta; \gamma]G$, which implies $\models F \rightarrow [\beta][\gamma]G$.
- By Expr, there is a FOD-formula $G^{\#}$ such that $\vDash G^{\#} \leftrightarrow [\gamma]G$.
- From $\vDash F \rightarrow [\beta]G^{\#}$, IH implies $F \vdash_{\mathcal{D}} [\beta]G^{\#}$ is derivable.
- By $\models G^{\#} \rightarrow [\gamma]G$, we conclude $\vdash_{\mathcal{D}} G^{\#} \rightarrow [\gamma]G$ by IH.

- \models $F \rightarrow [\beta; \gamma]G$, which implies $\models F \rightarrow [\beta][\gamma]G$.
- By Expr, there is a FOD-formula $G^{\#}$ such that $\vDash G^{\#} \leftrightarrow [\gamma]G$.
- From $\vDash F \rightarrow [\beta]G^{\#}$, IH implies $F \vdash_{\mathcal{D}} [\beta]G^{\#}$ is derivable.
- By $\vDash G^{\#} \rightarrow [\gamma]G$, we conclude $\vdash_{\mathcal{D}} G^{\#} \rightarrow [\gamma]G$ by IH.
- Using Gen, we conclude $\vdash_{\mathcal{D}} \forall^{\beta}(G^{\#} \rightarrow [\gamma]G)$.

- \models $F \rightarrow [\beta; \gamma]G$, which implies $\models F \rightarrow [\beta][\gamma]G$.
- By Expr, there is a FOD-formula $G^{\#}$ such that $\vDash G^{\#} \leftrightarrow [\gamma]G$.
- From $\vDash F \rightarrow [\beta]G^{\#}$, IH implies $F \vdash_{\mathcal{D}} [\beta]G^{\#}$ is derivable.
- By $\models G^{\#} \rightarrow [\gamma]G$, we conclude $\vdash_{\mathcal{D}} G^{\#} \rightarrow [\gamma]G$ by IH.
- Using Gen, we conclude $\vdash_{\mathcal{D}} \forall^{\beta} (G^{\#} \rightarrow [\gamma]G)$.
- Extends with []gen to $[\beta]G^{\#} \vdash_{\mathcal{D}} [\beta][\gamma]G$.

- $\models F \rightarrow [\beta; \gamma]G$, which implies $\models F \rightarrow [\beta][\gamma]G$.
- By Expr, there is a FOD-formula $G^{\#}$ such that $\vDash G^{\#} \leftrightarrow [\gamma]G$.
- From $\vDash F \rightarrow [\beta]G^{\#}$, IH implies $F \vdash_{\mathcal{D}} [\beta]G^{\#}$ is derivable.
- By $\models G^{\#} \rightarrow [\gamma]G$, we conclude $\vdash_{\mathcal{D}} G^{\#} \rightarrow [\gamma]G$ by IH.
- Using Gen, we conclude $\vdash_{\mathcal{D}} \forall^{\beta}(G^{\#} \rightarrow [\gamma]G)$.
- Extends with []gen to $[\beta]G^{\#} \vdash_{\mathcal{D}} [\beta][\gamma]G$.
- Combining propositionally by cut with $[\beta]G^{\#}$, derive $F \vdash_{\mathcal{D}} [\beta][\gamma]G$,

- \models $F \rightarrow [\beta; \gamma]G$, which implies $\models F \rightarrow [\beta][\gamma]G$.
- By Expr, there is a FOD-formula $G^{\#}$ such that $\vDash G^{\#} \leftrightarrow [\gamma]G$.
- From $\vDash F \rightarrow [\beta]G^{\#}$, IH implies $F \vdash_{\mathcal{D}} [\beta]G^{\#}$ is derivable.
- By $\vDash G^{\#} \rightarrow [\gamma]G$, we conclude $\vdash_{\mathcal{D}} G^{\#} \rightarrow [\gamma]G$ by IH.
- Using Gen, we conclude $\vdash_{\mathcal{D}} \forall^{\beta} (G^{\#} \rightarrow [\gamma]G)$.
- Extends with []gen to $[\beta]G^{\#} \vdash_{\mathcal{D}} [\beta][\gamma]G$.
- Combining propositionally by cut with $[\beta]G^{\#}$, derive $F \vdash_{\mathcal{D}} [\beta][\gamma]G$,
- from which composition [;] yields $F \vdash_{\mathcal{D}} [\beta; \gamma] G$.

Proof (α of the form β^*)

• \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:

- \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:
- Define invariant as FOD representation of $[\beta^*]G$:

$$\phi \equiv ([eta^*]G)^\# \equiv orall ec v \left(\mathcal{S}_{eta^*}(ec x, ec v)
ight)
ightarrow G^ec x_{ec x}
ight)$$

Proof (α of the form β^*).

- \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:
- Define invariant as FOD representation of $[\beta^*]G$:

$$\phi \equiv ([\beta^*]G)^\# \equiv \forall ec v \left(\mathcal{S}_{\beta^*}(ec x, ec v)
ightarrow \mathcal{G}_{ec x}^{ec v}
ight) \; .$$

• $F \rightarrow \phi$ and $\phi \rightarrow G$ are valid FOD-formulas, thus derivable by \mathcal{D}

Proof (α of the form β^*).

- \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:
- Define invariant as FOD representation of $[\beta^*]G$:

$$\phi \equiv ([\beta^*]G)^\# \equiv \forall \vec{v} \left(\mathcal{S}_{\beta^*}(\vec{x}, \vec{v}) \to G_{\vec{x}}^{\vec{v}}
ight) \; .$$

F → φ and φ → G are valid FOD-formulas, thus derivable by D
Hence F ⊢_D φ derivable by lemma.

- \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:
- Define invariant as FOD representation of $[\beta^*]G$:

$$\phi \equiv ([\beta^*]G)^\# \equiv \forall ec v \left(\mathcal{S}_{\beta^*}(ec x, ec v)
ightarrow \mathcal{G}_{ec x}^{ec v}
ight) \; .$$

- $F
 ightarrow \phi$ and $\phi
 ightarrow G$ are valid FOD-formulas, thus derivable by ${\cal D}$
- Hence $F \vdash_{\mathcal{D}} \phi$ derivable by lemma.
- By Gen and []gen, $[\beta^*]\phi \vdash_{\mathcal{D}} [\beta^*]G$ is derivable.

- \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:
- Define invariant as FOD representation of $[\beta^*]G$:

$$\phi \equiv ([\beta^*]G)^\# \equiv \forall ec v \left(\mathcal{S}_{\beta^*}(ec x, ec v)
ightarrow \mathcal{G}_{ec x}^{ec v}
ight) \; .$$

- $F o \phi$ and $\phi \to G$ are valid FOD-formulas, thus derivable by ${\cal D}$
- Hence $F \vdash_{\mathcal{D}} \phi$ derivable by lemma.
- By Gen and []gen, $[\beta^*]\phi \vdash_{\mathcal{D}} [\beta^*]G$ is derivable.
- Likewise, $\phi \rightarrow [\beta]\phi$ valid according to semantics of repetition, thus derivable by IH, since β less complex.

- \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:
- Define invariant as FOD representation of $[\beta^*]G$:

$$\phi \equiv ([\beta^*]G)^\# \equiv \forall ec v \left(\mathcal{S}_{\beta^*}(ec x, ec v)
ightarrow \mathcal{G}_{ec x}^{ec v}
ight) \; .$$

- $F \rightarrow \phi$ and $\phi \rightarrow G$ are valid FOD-formulas, thus derivable by \mathcal{D}
- Hence $F \vdash_{\mathcal{D}} \phi$ derivable by lemma.
- By Gen and []gen, $[\beta^*]\phi \vdash_{\mathcal{D}} [\beta^*]G$ is derivable.
- Likewise, $\phi \rightarrow [\beta]\phi$ valid according to semantics of repetition, thus derivable by IH, since β less complex.
- By Gen, derive $\vdash_{\mathcal{D}} \forall^{\beta}(\phi \to [\beta]\phi)$, from which ind yields $\phi \vdash_{\mathcal{D}} [\beta^*]\phi$.

- \models $F \rightarrow [\beta^*]G$ derivable by invariant induction:
- Define invariant as FOD representation of $[\beta^*]G$:

$$\phi \equiv ([\beta^*]G)^\# \equiv orall ec v \left(\mathcal{S}_{\beta^*}(ec x, ec v)
ightarrow \mathcal{G}_{ec x}^{ec v}
ight) \; .$$

- $F o \phi$ and $\phi \to G$ are valid FOD-formulas, thus derivable by ${\cal D}$
- Hence $F \vdash_{\mathcal{D}} \phi$ derivable by lemma.
- By Gen and []gen, $[\beta^*]\phi \vdash_{\mathcal{D}} [\beta^*]G$ is derivable.
- Likewise, $\phi \rightarrow [\beta]\phi$ valid according to semantics of repetition, thus derivable by IH, since β less complex.
- By Gen, derive $\vdash_{\mathcal{D}} \forall^{\beta}(\phi \to [\beta]\phi)$, from which ind yields $\phi \vdash_{\mathcal{D}} [\beta^*]\phi$.
- Combining propositionally by cut with $[\beta^*]\phi$ and ϕ yields $F \vdash_{\mathcal{D}} [\beta^*]G$.

Proposition (Relative completeness of first-order liveness)

For every $\alpha \in HP(\Sigma)$ and each $F, G \in Fml_{FOL}$

 $\vDash F \to \langle \alpha \rangle G \text{ implies } \vdash_{\mathcal{D}} F \to \langle \alpha \rangle G \quad (\text{thus } F \vdash_{\mathcal{D}} \langle \alpha \rangle G) \ .$

\checkmark Relative Completeness of First-Order Liveness Assertions

Proof (α of the form β^*)

• \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:

Proof (α of the form β^*).

- \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:
- Define FOD-formula φ(n) expressing that, after n iterations, β can lead to a state satisfying G, essentially ((β*)G)#:

 $\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \wedge Z_n^{(n)} = \vec{v} \wedge \forall i : \mathbb{N} \, \left(1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)}) \right) \wedge G_{\vec{x}}^{\vec{v}} \big)$

- \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:
- Define FOD-formula φ(n) expressing that, after n iterations, β can lead to a state satisfying G, essentially (⟨β*⟩G)[#]:
 ∃v ∃Z (Z₁⁽ⁿ⁾ = x∧Z_n⁽ⁿ⁾ = v∧∀i: ℕ (1 ≤ i < n → S_β(Z_i⁽ⁿ⁾, Z_{i+1}⁽ⁿ⁾))∧G_v^v)
- $\varphi(n)$ can only hold true if *n* is a natural number.

- \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:
- Define FOD-formula φ(n) expressing that, after n iterations, β can lead to a state satisfying G, essentially (⟨β*⟩G)[#]:
 ∃v ∃Z (Z₁⁽ⁿ⁾ = x∧Z_n⁽ⁿ⁾ = v∧∀i: ℕ (1 ≤ i < n → S_β(Z_i⁽ⁿ⁾, Z_{i+1}⁽ⁿ⁾))∧G_x^v)
- $\varphi(n)$ can only hold true if *n* is a natural number.
- According to loop semantics, $\vDash n > 0 \land \varphi(n) \to \langle \beta \rangle \varphi(n-1)$ valid:

Proof (α of the form β^*).

- \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:
- Define FOD-formula φ(n) expressing that, after n iterations, β can lead to a state satisfying G, essentially ((β*)G)#:

 $\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \wedge Z_n^{(n)} = \vec{v} \wedge \forall i : \mathbb{N} \, \left(1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)}) \right) \wedge G_{\vec{x}}^{\vec{v}} \big)$

- $\varphi(n)$ can only hold true if *n* is a natural number.
- According to loop semantics, $\vDash n > 0 \land \varphi(n) \to \langle \beta \rangle \varphi(n-1)$ valid:
- If n > 0 is natural number then so is n 1. If β reaches G after n repetitions, then, after executing β , n 1 repetitions of β reach G.

Proof (α of the form β^*).

- \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:
- Define FOD-formula $\varphi(n)$ expressing that, after *n* iterations, β can lead to a state satisfying *G*, essentially $(\langle \beta^* \rangle G)^{\#}$:

 $\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \wedge Z_n^{(n)} = \vec{v} \wedge \forall i : \mathbb{N} \, \left(1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)}) \right) \wedge G_{\vec{x}}^{\vec{v}} \big)$

- $\varphi(n)$ can only hold true if *n* is a natural number.
- According to loop semantics, $\vDash n > 0 \land \varphi(n) \rightarrow \langle \beta \rangle \varphi(n-1)$ valid:
- If n > 0 is natural number then so is n 1. If β reaches G after n repetitions, then, after executing β , n 1 repetitions of β reach G.
- By IH, this formula is derivable, since β contains less loops.

Proof (α of the form β^*).

- \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:
- Define FOD-formula $\varphi(n)$ expressing that, after *n* iterations, β can lead to a state satisfying *G*, essentially $(\langle \beta^* \rangle G)^{\#}$:

 $\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \wedge Z_n^{(n)} = \vec{v} \wedge \forall i \colon \mathbb{N} \, \left(1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)}) \right) \wedge G_{\vec{x}}^{\vec{v}} \big)$

- $\varphi(n)$ can only hold true if *n* is a natural number.
- According to loop semantics, $\vDash n > 0 \land \varphi(n) \rightarrow \langle \beta \rangle \varphi(n-1)$ valid:
- If n > 0 is natural number then so is n 1. If β reaches G after n repetitions, then, after executing β , n 1 repetitions of β reach G.
- By IH, this formula is derivable, since β contains less loops.
- By Gen, extends to $\vdash_{\mathcal{D}} \forall^{\beta} \forall n > 0 \, (\varphi(n) \to \langle \beta \rangle \varphi(n-1)).$

Proof (α of the form β^*).

- \models $F \rightarrow \langle \beta^* \rangle G$ derivable by variant convergence:
- Define FOD-formula $\varphi(n)$ expressing that, after *n* iterations, β can lead to a state satisfying *G*, essentially $(\langle \beta^* \rangle G)^{\#}$:

 $\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \wedge Z_n^{(n)} = \vec{v} \wedge \forall i \colon \mathbb{N} \, \left(1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)}) \right) \wedge G_{\vec{x}}^{\vec{v}} \big)$

- $\varphi(n)$ can only hold true if *n* is a natural number.
- According to loop semantics, $\vDash n > 0 \land \varphi(n) \rightarrow \langle \beta \rangle \varphi(n-1)$ valid:
- If n > 0 is natural number then so is n 1. If β reaches G after n repetitions, then, after executing β , n 1 repetitions of β reach G.
- By IH, this formula is derivable, since β contains less loops.
- By Gen, extends to $\vdash_{\mathcal{D}} \forall^{\beta} \forall n > 0 (\varphi(n) \rightarrow \langle \beta \rangle \varphi(n-1)).$
- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.

•
$$\models F \rightarrow \langle \beta^* \rangle G$$
 derivable by variant convergence:

$$\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \land Z_n^{(n)} = \vec{v} \land \forall i : \mathbb{N} \, (1 \leq i < n \rightarrow \mathcal{S}_{\beta}(Z_i^{(n)}, Z_{i+1}^{(n)})) \land G_{\vec{x}}^{\vec{v}} \big)$$

- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.
- From assumption, conclude valid FOD-formulas, hence \mathcal{D} -axioms:

Proof (α of the form β^*)

•
$$\models F \rightarrow \langle \beta^* \rangle G$$
 derivable by variant convergence:

$$\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \land Z_n^{(n)} = \vec{v} \land \forall i : \mathbb{N} \, \left(1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)})) \land G_{\vec{x}}^{\vec{v}} \right)$$

- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.
- From assumption, conclude valid FOD-formulas, hence \mathcal{D} -axioms:

• \models $F \rightarrow \exists v \varphi(v)$, because \models $F \rightarrow \langle \beta^* \rangle G$

•
$$\models F \rightarrow \langle \beta^* \rangle G$$
 derivable by variant convergence:

$$\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \land Z_n^{(n)} = \vec{v} \land \forall i \colon \mathbb{N} \, \, (1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)})) \land G_{\vec{x}}^{\vec{v}} \big)$$

- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.
- From assumption, conclude valid FOD-formulas, hence \mathcal{D} -axioms:
 - \models $F \rightarrow \exists v \varphi(v)$, because \models $F \rightarrow \langle \beta^* \rangle G$
 - ⊨ (∃v≤0φ(v)) → G, because v≤0 and the fact, that, by Gödel, φ(v) only holds true for natural numbers, imply φ(0). Further, φ(0) entails G, because zero repetitions of β have no effect.

•
$$\models F \rightarrow \langle \beta^* \rangle G$$
 derivable by variant convergence:

$$\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \land Z_n^{(n)} = \vec{v} \land \forall i \colon \mathbb{N} \, \left(1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)}) \right) \land G_{\vec{x}}^{\vec{v}} \big)$$

- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.
- From assumption, conclude valid FOD-formulas, hence D-axioms:

•
$$\models$$
 $F \rightarrow \exists v \varphi(v)$, because \models $F \rightarrow \langle \beta^* \rangle G$

- ⊨ (∃v≤0φ(v)) → G, because v≤0 and the fact, that, by Gödel, φ(v) only holds true for natural numbers, imply φ(0). Further, φ(0) entails G, because zero repetitions of β have no effect.
- Derive $\vdash_{\mathcal{D}} \forall^{\beta} (\exists v \leq 0 \, \varphi(v) \rightarrow G)$ by Gen

•
$$\models F \rightarrow \langle \beta^* \rangle G$$
 derivable by variant convergence:

$$\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \land Z_n^{(n)} = \vec{v} \land \forall i \colon \mathbb{N} \, \, (1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)})) \land G_{\vec{x}}^{\vec{v}} \big)$$

- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.
- From assumption, conclude valid FOD-formulas, hence D-axioms:

•
$$\models$$
 $F \rightarrow \exists v \varphi(v)$, because \models $F \rightarrow \langle \beta^* \rangle G$

- ⊨ (∃v≤0φ(v)) → G, because v≤0 and the fact, that, by Gödel, φ(v) only holds true for natural numbers, imply φ(0). Further, φ(0) entails G, because zero repetitions of β have no effect.
- Derive $\vdash_{\mathcal{D}} \forall^{\beta} (\exists v \leq 0 \, \varphi(v) \rightarrow G)$ by Gen
- Extend to $\langle \beta^* \rangle \exists v \leq 0 \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle G$ by $\langle \rangle$ gen.

•
$$\models F \rightarrow \langle \beta^* \rangle G$$
 derivable by variant convergence:

$$\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \land Z_n^{(n)} = \vec{v} \land \forall i \colon \mathbb{N} \, \, (1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)})) \land G_{\vec{x}}^{\vec{v}} \big)$$

- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.
- From assumption, conclude valid FOD-formulas, hence D-axioms:

•
$$\models$$
 $F \rightarrow \exists v \varphi(v)$, because \models $F \rightarrow \langle \beta^* \rangle G$

- ⊨ (∃v≤0φ(v)) → G, because v≤0 and the fact, that, by Gödel, φ(v) only holds true for natural numbers, imply φ(0). Further, φ(0) entails G, because zero repetitions of β have no effect.
- Derive $\vdash_{\mathcal{D}} \forall^{\beta} (\exists v \leq 0 \, \varphi(v) \rightarrow G)$ by Gen
- Extend to $\langle \beta^* \rangle \exists v \leq 0 \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle G$ by $\langle \rangle$ gen.
- From $\vdash_{\mathcal{D}} F \to \exists v \varphi(v)$ conclude $F \vdash_{\mathcal{D}} \exists v \varphi(v)$.

•
$$\models F \rightarrow \langle \beta^* \rangle G$$
 derivable by variant convergence:

$$\exists \vec{v} \, \exists Z \, \big(Z_1^{(n)} = \vec{x} \land Z_n^{(n)} = \vec{v} \land \forall i \colon \mathbb{N} \, \, (1 \leq i < n \rightarrow \mathcal{S}_\beta(Z_i^{(n)}, Z_{i+1}^{(n)})) \land G_{\vec{x}}^{\vec{v}} \big)$$

- Thus $\exists v \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle \exists v \leq 0 \varphi(v)$ by convergence con.
- From assumption, conclude valid FOD-formulas, hence D-axioms:

•
$$\models$$
 $F \rightarrow \exists v \varphi(v)$, because \models $F \rightarrow \langle \beta^* \rangle G$

- ⊨ (∃v≤0φ(v)) → G, because v≤0 and the fact, that, by Gödel, φ(v) only holds true for natural numbers, imply φ(0). Further, φ(0) entails G, because zero repetitions of β have no effect.
- Derive $\vdash_{\mathcal{D}} \forall^{\beta} (\exists v \leq 0 \, \varphi(v) \rightarrow G)$ by Gen
- Extend to $\langle \beta^* \rangle \exists v \leq 0 \varphi(v) \vdash_{\mathcal{D}} \langle \beta^* \rangle G$ by $\langle \rangle$ gen.
- From $\vdash_{\mathcal{D}} F \to \exists v \varphi(v)$ conclude $F \vdash_{\mathcal{D}} \exists v \varphi(v)$.
- Combine propositionally by a cut to $F \vdash_{\mathcal{D}} \langle \beta^* \rangle G$.

Theorem (Relative Completeness)

d*L* calculus is complete relative to first-order logic of differential equations.

 $\models \phi$ iff Taut_{FOD} $\vdash \phi$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof Idea.

 By propositional recombination, inductively identify fragments of φ that correspond to φ₁ → [α]φ₂ or φ₁ → ⟨α⟩φ₂ logically.

Proof Idea.

- By propositional recombination, inductively identify fragments of φ that correspond to φ₁ → [α]φ₂ or φ₁ → ⟨α⟩φ₂ logically.
- Express subformulas φ_i equivalently in FOD and resolve these first-order safety or liveness assertions by previous propositions.

Proof Idea.

- By propositional recombination, inductively identify fragments of φ that correspond to φ₁ → [α]φ₂ or φ₁ → ⟨α⟩φ₂ logically.
- Express subformulas φ_i equivalently in FOD and resolve these first-order safety or liveness assertions by previous propositions.
- Finally, prove that the original d \mathcal{L} formula can be re-derived from the subproofs.

Proof Idea.

• Assume ϕ to be given in conjunctive normal form by appropriate propositional reasoning:

Proof Idea.

- Assume ϕ to be given in conjunctive normal form by appropriate propositional reasoning:
- Push negations inside over modalities using dualities

$$\neg [\alpha] \phi \equiv \langle \alpha \rangle \neg \phi$$
$$\neg \langle \alpha \rangle \phi \equiv [\alpha] \neg \phi$$

Proof Idea.

- Assume ϕ to be given in conjunctive normal form by appropriate propositional reasoning:
- Push negations inside over modalities using dualities

$$\neg [\alpha] \phi \equiv \langle \alpha \rangle \neg \phi$$
$$\neg \langle \alpha \rangle \phi \equiv [\alpha] \neg \phi$$

• Remainder of proof follows induction on a measure $|\phi|$ defined as the number of modalities in ϕ .

Proof Idea.

- Assume ϕ to be given in conjunctive normal form by appropriate propositional reasoning:
- Push negations inside over modalities using dualities

$$\neg [\alpha] \phi \equiv \langle \alpha \rangle \neg \phi$$
$$\neg \langle \alpha \rangle \phi \equiv [\alpha] \neg \phi$$

- Remainder of proof follows induction on a measure $|\phi|$ defined as the number of modalities in ϕ .
- For a simple and uniform proof, assume quantifiers to be abbreviations for modal formulas:

$$\exists x \phi \equiv \langle x' = 1 \rangle \phi \lor \langle x' = -1 \rangle \phi$$

$$\forall x \phi \equiv [x' = 1] \phi \land [x' = -1] \phi$$

Proof.

• $|\phi| = 0$ then ϕ is a first-order formula, hence derivable by \mathcal{D} .

- $|\phi| = 0$ then ϕ is a first-order formula, hence derivable by \mathcal{D} .
- ϕ is of the form $\neg \phi_1$, then ϕ_1 is first-order by NNF, hence $|\phi| = 0$.

- $|\phi| = 0$ then ϕ is a first-order formula, hence derivable by \mathcal{D} .
- ϕ is of the form $\neg \phi_1$, then ϕ_1 is first-order by NNF, hence $|\phi| = 0$.
- ϕ is of the form $\phi_1 \wedge \phi_2$, then individually deduce the simpler proofs for $\vdash_{\mathcal{D}} \phi_1$ and $\vdash_{\mathcal{D}} \phi_2$ by IH, which can be combined by $\wedge r$.

- $|\phi| = 0$ then ϕ is a first-order formula, hence derivable by \mathcal{D} .
- ϕ is of the form $\neg \phi_1$, then ϕ_1 is first-order by NNF, hence $|\phi| = 0$.
- ϕ is of the form $\phi_1 \wedge \phi_2$, then individually deduce the simpler proofs for $\vdash_{\mathcal{D}} \phi_1$ and $\vdash_{\mathcal{D}} \phi_2$ by IH, which can be combined by $\wedge r$.
- ϕ disjunction, hence (otherwise use associativity and commutativity):

$$\begin{array}{rcl}
\phi_1 & \lor & [\alpha]\phi_2 \\
\phi_1 & \lor & \langle \alpha \rangle \phi_2
\end{array}$$

Proof.

• Unified notation: $\phi_1 \vee \langle \! [\alpha] \! \rangle \phi_2$.

- Unified notation: $\phi_1 \vee \langle \alpha \rangle \phi_2$.
- Then, $|\phi_2| < |\phi|$, since ϕ_2 has less modalities.

- Unified notation: $\phi_1 \vee \langle \alpha \rangle \phi_2$.
- Then, $|\phi_2| < |\phi|$, since ϕ_2 has less modalities.
- $|\phi_1| < |\phi|$ as $\langle\!\![\alpha]\!\!\rangle \phi_2$ contributes one modality to $|\phi|$ that is not in ϕ_1 .

- Unified notation: $\phi_1 \vee \langle [\alpha] \rangle \phi_2$.
- Then, $|\phi_2| < |\phi|$, since ϕ_2 has less modalities.
- $|\phi_1| < |\phi|$ as $\langle\!\![\alpha]\!\!\rangle \phi_2$ contributes one modality to $|\phi|$ that is not in ϕ_1 .
- There are equivalent FOD-formulas $\phi_1^{\#}, \phi_2^{\#}$ with $\vDash \phi_i \leftrightarrow \phi_i^{\#}$.

- Unified notation: $\phi_1 \vee \langle [\alpha] \rangle \phi_2$.
- \bullet Then, $|\phi_2| < |\phi|,$ since ϕ_2 has less modalities.
- $|\phi_1| < |\phi|$ as $\langle\!\![\alpha]\!\!\rangle \phi_2$ contributes one modality to $|\phi|$ that is not in ϕ_1 .
- There are equivalent FOD-formulas $\phi_1^{\#}, \phi_2^{\#}$ with $\vDash \phi_i \leftrightarrow \phi_i^{\#}$.
- By congruence, $\vDash \phi$ yields $\vDash \phi_1^{\#} \lor \langle\!\! \{\alpha\}\!\! \rangle \phi_2^{\#}$, thus $\vDash \neg \phi_1^{\#} \to \langle\!\! \{\alpha\}\!\! \rangle \phi_2^{\#}$.

- Unified notation: $\phi_1 \vee \langle [\alpha] \rangle \phi_2$.
- \bullet Then, $|\phi_2| < |\phi|,$ since ϕ_2 has less modalities.
- $|\phi_1| < |\phi|$ as $\langle\!\![\alpha]\!\!\rangle \phi_2$ contributes one modality to $|\phi|$ that is not in ϕ_1 .
- There are equivalent FOD-formulas $\phi_1^{\#}, \phi_2^{\#}$ with $\vDash \phi_i \leftrightarrow \phi_i^{\#}$.
- By congruence, $\vDash \phi$ yields $\vDash \phi_1^{\#} \lor \langle\!\! \{\alpha\}\!\! \rangle \phi_2^{\#}$, thus $\vDash \neg \phi_1^{\#} \to \langle\!\! \{\alpha\}\!\! \rangle \phi_2^{\#}$.
- By previous propositions derive

$$\neg \phi_1^{\#} \vdash_{\mathcal{D}} \langle\!\!\!\langle \alpha \rangle\!\!\!\rangle \phi_2^{\#} \tag{1}$$

Proof.

- Unified notation: $\phi_1 \vee \langle \! [\alpha] \rangle \phi_2$.
- \bullet Then, $|\phi_2| < |\phi|,$ since ϕ_2 has less modalities.
- $|\phi_1| < |\phi|$ as $\langle\!\![\alpha]\!\!\rangle \phi_2$ contributes one modality to $|\phi|$ that is not in ϕ_1 .
- There are equivalent FOD-formulas $\phi_1^{\#}, \phi_2^{\#}$ with $\vDash \phi_i \leftrightarrow \phi_i^{\#}$.
- By congruence, $\vDash \phi$ yields $\vDash \phi_1^{\#} \lor \langle\!\! \{\alpha\}\!\! \rangle \phi_2^{\#}$, thus $\vDash \neg \phi_1^{\#} \to \langle\!\! \{\alpha\}\!\! \rangle \phi_2^{\#}$.
- By previous propositions derive

$$\neg \phi_1^{\#} \vdash_{\mathcal{D}} \langle\!\![\alpha]\!\!] \phi_2^{\#} \tag{1}$$

• $\models \phi_1 \leftrightarrow \phi_1^{\#}$ implies $\models \neg \phi_1 \rightarrow \neg \phi_1^{\#}$, which is derivable by IH, because $|\phi_1| < |\phi|$. By lemma, $\neg \phi_1 \vdash_{\mathcal{D}} \neg \phi_1^{\#}$, which we combine with (1) by a cut with $\neg \phi_1^{\#}$ to

$$\neg \phi_1 \vdash_{\mathcal{D}} \langle\!\!\!\langle \alpha \rangle\!\!\!\rangle \phi_2^\# \quad . \tag{2}$$

• $\models \phi_2 \leftrightarrow \phi_2^{\#}$ implies $\models \phi_2^{\#} \rightarrow \phi_2$, which is derivable by IH, as $|\phi_2| < |\phi|$.

- $\models \phi_2 \leftrightarrow \phi_2^{\#} \text{ implies } \models \phi_2^{\#} \rightarrow \phi_2$, which is derivable by IH, as $|\phi_2| < |\phi|$.
- Extend derivation of $\vdash_{\mathcal{D}} \phi_2^{\#} \to \phi_2$ to one of $\vdash_{\mathcal{D}} \forall^{\alpha} (\phi_2^{\#} \to \phi_2)$ by Gen

- $\models \phi_2 \leftrightarrow \phi_2^{\#}$ implies $\models \phi_2^{\#} \rightarrow \phi_2$, which is derivable by IH, as $|\phi_2| < |\phi|$.
- Extend derivation of $\vdash_{\mathcal{D}} \phi_2^{\#} \to \phi_2$ to one of $\vdash_{\mathcal{D}} \forall^{\alpha} (\phi_2^{\#} \to \phi_2)$ by Gen
- Thus $\langle\!\![\alpha]\!\!]\phi_2^{\#} \vdash_{\mathcal{D}} \langle\!\![\alpha]\!\!]\phi_2$ by []gen or $\langle\!\rangle$ gen.

- $\models \phi_2 \leftrightarrow \phi_2^{\#}$ implies $\models \phi_2^{\#} \rightarrow \phi_2$, which is derivable by IH, as $|\phi_2| < |\phi|$.
- Extend derivation of $\vdash_{\mathcal{D}} \phi_2^{\#} \to \phi_2$ to one of $\vdash_{\mathcal{D}} \forall^{\alpha} (\phi_2^{\#} \to \phi_2)$ by Gen
- Thus $\langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2^{\#} \vdash_{\mathcal{D}} \langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2$ by []gen or $\langle \rangle$ gen.
- Combine propositionally with (2) by a cut with $\langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2^{\#}$ to derive $\neg \phi_1 \vdash_{\mathcal{D}} \langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2$

- $\models \phi_2 \leftrightarrow \phi_2^{\#}$ implies $\models \phi_2^{\#} \rightarrow \phi_2$, which is derivable by IH, as $|\phi_2| < |\phi|$.
- Extend derivation of $\vdash_{\mathcal{D}} \phi_2^{\#} \to \phi_2$ to one of $\vdash_{\mathcal{D}} \forall^{\alpha} (\phi_2^{\#} \to \phi_2)$ by Gen
- Thus $\langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2^{\#} \vdash_{\mathcal{D}} \langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2$ by []gen or $\langle \rangle$ gen.
- Combine propositionally with (2) by a cut with $\langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2^{\#}$ to derive $\neg \phi_1 \vdash_{\mathcal{D}} \langle\!\!\langle \alpha \rangle\!\!\rangle \phi_2$
- Conclude $\vdash_{\mathcal{D}} \phi_1 \vee \langle\!\![\alpha]\!\!\rangle \phi_2$ with a cut.

Theorem (Relative Completeness)

d*L* calculus is a sound & complete axiomatisation of hybrid systems relative to differential equations.

