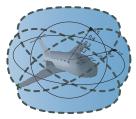
15-819/18-879: Logical Analysis of Hybrid Systems 26: Soundness of Proof Rules

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA



ℜ Verification Calculus for Differential Dynamic Logic Propositional Rules

10 propositional rules

$\frac{\vdash \phi}{\neg \phi \vdash}$	$\frac{\phi,\psi\vdash}{\phi\wedge\psi\vdash}$	$\frac{\phi \vdash \psi \vdash}{\phi \lor \psi \vdash}$	$\frac{\vdash \phi \ \phi \vdash}{\vdash}$
$\frac{\phi \vdash}{\vdash \neg \phi}$	$\frac{\vdash \phi \vdash \psi}{\vdash \phi \land \psi}$	$\frac{\vdash \phi, \psi}{\vdash \phi \lor \psi}$	
$\frac{\phi \vdash \psi}{\vdash \phi \rightarrow \psi}$	$\frac{\vdash \phi \psi \vdash}{\phi \rightarrow \psi \vdash}$	$\overline{\phi \vdash \phi}$	

ℜ Verification Calculus for Differential Dynamic Logic Dynamic Rules

$$\frac{\langle \alpha \rangle \langle \beta \rangle \phi}{\langle \alpha; \beta \rangle \phi} \qquad \qquad \frac{\phi \lor \langle \alpha \rangle \langle \alpha^* \rangle \phi}{\langle \alpha^* \rangle \phi} \qquad \frac{\phi_{x_1}^{\theta_1} \dots_{x_n}^{\theta_n}}{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}$$

$$\frac{[\alpha][\beta]\phi}{[\alpha;\beta]\phi} \qquad \qquad \frac{\phi \wedge [\alpha][\alpha^*]\phi}{[\alpha^*]\phi} \qquad \frac{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}{[x_1 := \theta_1, \dots, x_n := \theta_n]\phi}$$

$$\frac{\langle \alpha \rangle \phi \lor \langle \beta \rangle \phi}{\langle \alpha \cup \beta \rangle \phi} \quad \frac{\chi \land \psi}{\langle ?\chi \rangle \psi} \quad \frac{\exists t \ge 0 \left((\forall 0 \le \tilde{t} \le t \langle \mathcal{S}(\tilde{t}) \rangle \chi) \land \langle \mathcal{S}(t) \rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi}$$

$$\frac{[\alpha]\phi\wedge[\beta]\phi}{[\alpha\cup\beta]\phi} \qquad \frac{\chi\to\psi}{[?\chi]\psi} \qquad \qquad \frac{\forall t\ge 0\left((\forall 0\le \tilde{t}\le t\,\langle \mathcal{S}(\tilde{t})\rangle\chi)\to\langle \mathcal{S}(t)\rangle\phi\right)}{[x_1'=\theta_1,\ldots,x_n'=\theta_n\wedge\chi]\phi}$$

✤ Verification Calculus for Differential Dynamic Logic First-Order Rules

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

$$\frac{\vdash \phi(X)}{\vdash \exists x \, \phi(x)}$$

$$\frac{\phi(s(X_1,\ldots,X_n))\vdash}{\exists x\,\phi(x)\vdash}$$

s new, $\{X_1, \ldots, X_n\} = FV(\exists x \phi(x))$

$$\frac{\phi(X) \vdash}{\forall x \, \phi(x) \vdash}$$

X new variable

$$\frac{\vdash \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \dots, X_n)) \vdash \Psi(s(X_1, \dots, X_n))} \qquad \frac{\vdash \mathsf{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

X new variable X only in branches $\Phi_i \vdash \Psi_i$

QE needs to be defined in premiss

André Platzer (CMU)

LAHS/26: Soundness of Proof Rules

$$\frac{\vdash \forall^{\alpha}(\phi \to \psi)}{[\alpha]\phi \vdash [\alpha]\psi}$$

$$\frac{\vdash \forall^{\alpha} (\phi \to \psi)}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi}$$

$$\frac{\vdash \forall^{\alpha} (\phi \to [\alpha] \phi)}{\phi \vdash [\alpha^*] \phi}$$

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

dL calculus is sound, i.e.,

$$\vdash \phi \implies \vdash \phi$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

•
$$x' = f(x)$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

- x' = f(x)
- Side deductions

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

- x' = f(x)
- Side deductions
- Free variables & Skolemization

Definition (Tableau Model)

Formula *F* has model iff there is *I*, *v* such that *for all* variable assignments η we have *I*, η , $v \models \phi$.

 ψ consequence of ϕ iff, for every *I*, *v* there is a η such that $I, \eta, v \models \psi$, provided that, for every *I*, *v* there is a η such that $I, \eta, v \models \phi$.

Definition (Tableau Model)

Formula *F* has model iff there is *I*, *v* such that *for all* variable assignments η we have *I*, η , $v \models \phi$.

 ψ consequence of ϕ iff, for every *I*, *v* there is a η such that $I, \eta, v \models \psi$, provided that, for every *I*, *v* there is a η such that $I, \eta, v \models \phi$.

Definition (Soundness)

Calculus rule *sound* iff conclusions Ψ consequence of premisses Φ .

 $\frac{\Phi}{\Psi}$ sound iff Ψ consequence of Φ

 ψ consequence of ϕ iff, for every *I*, *v* there is a η such that $I, \eta, v \models \psi$, provided that, for every *I*, *v* there is a η such that $I, \eta, v \models \phi$.

Definition (Soundness)

Calculus rule *sound* iff conclusions Ψ consequence of premisses Φ .

$$\frac{\Phi_1 \quad \dots \quad \Phi_n}{\Psi_1 \quad \dots \quad \Psi_m}$$

 ψ consequence of ϕ iff, for every *I*, *v* there is a η such that $I, \eta, v \models \psi$, provided that, for every *I*, *v* there is a η such that $I, \eta, v \models \phi$.

Definition (Soundness)

Calculus rule *sound* iff conclusions Ψ consequence of premisses Φ .

$$\begin{array}{cccc} \Phi_1 & \dots & \Phi_n \\ \hline \Psi_1 & \dots & \Psi_m \end{array} \quad \Psi_1 \wedge \dots \wedge \Psi_m \text{ consequence of } \Phi_1 \wedge \dots \wedge \Phi_n \end{array}$$

 ψ consequence of ϕ iff, for every *I*, *v* there is a η such that $I, \eta, v \models \psi$, provided that, for every *I*, *v* there is a η such that $I, \eta, v \models \phi$.

Definition (Soundness)

Calculus rule *sound* iff conclusions Ψ consequence of premisses Φ .

$$\begin{array}{cccc} \Phi_1 & \dots & \Phi_n \\ \hline \Psi_1 & \dots & \Psi_m \end{array} \quad \Psi_1 \wedge \dots \wedge \Psi_m \text{ consequence of } \Phi_1 \wedge \dots \wedge \Phi_n \end{array}$$

Definition (Local Soundness)

ocally sound iff for each
$$I,\eta, v ~(I,\eta, v \models \Phi ~\Rightarrow~ I,\eta, v \models \Psi)$$

 ψ consequence of ϕ iff, for every *I*, *v* there is a η such that $I, \eta, v \models \psi$, provided that, for every *I*, *v* there is a η such that $I, \eta, v \models \phi$.

Definition (Soundness)

Calculus rule *sound* iff conclusions Ψ consequence of premisses Φ .

$$\frac{\Phi_1 \quad \dots \quad \Phi_n}{\Psi_1 \quad \dots \quad \Psi_m} \quad \Psi_1 \wedge \dots \wedge \Psi_m \text{ consequence of } \Phi_1 \wedge \dots \wedge \Phi_n$$

Definition (Local Soundness)

locally sound iff for each $I,\eta, v \ (I,\eta, v \models \Phi \ \Rightarrow \ I,\eta, v \models \Psi)$

Φ

W.

 ψ consequence of ϕ iff, for every *I*, *v* there is a η such that $I, \eta, v \models \psi$, provided that, for every *I*, *v* there is a η such that $I, \eta, v \models \phi$.

Definition (Soundness)

Calculus rule *sound* iff conclusions Ψ consequence of premisses Φ .

$$\begin{array}{cccc} \Phi_1 & \dots & \Phi_n \\ \hline \Psi_1 & \dots & \Psi_m \end{array} \quad \Psi_1 \wedge \dots \wedge \Psi_m \text{ consequence of } \Phi_1 \wedge \dots \wedge \Phi_n \end{array}$$

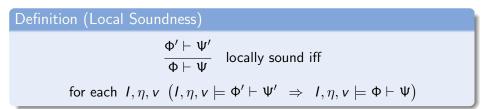
↑

Definition (Local Soundness)

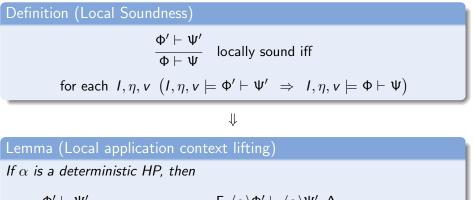
locally sound iff for each
$$I,\eta, v \ (I,\eta, v \models \Phi \ \Rightarrow \ I,\eta, v \models \Psi)$$

Φ Ψ

ℜ Local Application of Local Soundness in Context



\mathcal{R} Local Application of Local Soundness in Context



$$\frac{\Phi' \vdash \Psi'}{\Phi \vdash \Psi} \text{ locally sound } \Rightarrow \frac{\Gamma, \langle \alpha \rangle \Phi' \vdash \langle \alpha \rangle \Psi', \Delta}{\Gamma, \langle \alpha \rangle \Phi \vdash \langle \alpha \rangle \Psi, \Delta} \text{ locally sound }$$

$$\frac{\phi_{x_1}^{\theta_1}\dots_{x_n}^{\theta_n}}{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}$$

Proof ($\langle := \rangle$ locally sound).

• Assume premiss holds in I, η, v , i.e., $I, \eta, v \models \phi_{x_1}^{\theta_1} \dots \phi_{x_n}^{\theta_n}$.

$$\frac{\phi_{x_1}^{\theta_1}\dots_{x_n}^{\theta_n}}{\langle x_1 := \theta_1,\dots,x_n := \theta_n \rangle \phi}$$

Proof ($\langle := \rangle$ locally sound).

• Assume premiss holds in I, η, v , i.e., $I, \eta, v \models \phi_{x_1}^{\theta_1} \dots \phi_{x_n}^{\theta_n}$.

• Show $I, \eta, v \models \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$,

$$\frac{\phi_{x_1}^{\theta_1}\dots_{x_n}^{\theta_n}}{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}$$

- Assume premiss holds in I, η, v , i.e., $I, \eta, v \models \phi_{x_1}^{\theta_1} \dots \phi_{x_n}^{\theta_n}$.
- Show $I, \eta, v \models \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$,
- i.e., $I, \eta, \omega \models \phi$ for a state ω with $(v, \omega) \in \rho_{I,\eta}(x_1 := \theta_1, \dots, x_n := \theta_n)$.

\mathcal{R} Soundness Proof

$$\frac{\phi_{x_1}^{\theta_1}\dots_{x_n}^{\theta_n}}{\langle x_1 := \theta_1,\dots,x_n := \theta_n \rangle \phi}$$

- Assume premiss holds in I, η, v , i.e., $I, \eta, v \models \phi_{x_1}^{\theta_1} \dots \phi_{x_n}^{\theta_n}$.
- Show $I, \eta, v \models \langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi$,
- i.e., $I, \eta, \omega \models \phi$ for a state ω with $(v, \omega) \in \rho_{I,\eta}(x_1 := \theta_1, \dots, x_n := \theta_n)$.
- Follows from substitution lemma, which generalises to dynamic logic for admissible substitutions.

\mathcal{R} Soundness Proof

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

Proof ($\langle x' \rangle$ locally sound).

• Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.
- Assume premiss holds: $I, \eta, v \models \exists t \ge 0 (\bar{\chi} \land \langle \mathcal{S}(t) \rangle \phi)$

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.
- Assume premiss holds: $I, \eta, v \models \exists t \ge 0 (\bar{\chi} \land \langle S(t) \rangle \phi)$
- By assumption, there is a $r \ge 0$ such that $I, \eta_t^r, v \models \bar{\chi} \land \langle S(t) \rangle \phi$.

\mathcal{R} Soundness Proof

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.
- Assume premiss holds: $I, \eta, v \models \exists t \ge 0 (\bar{\chi} \land \langle \mathcal{S}(t) \rangle \phi)$
- By assumption, there is a $r \ge 0$ such that $I, \eta_t^r, v \models \bar{\chi} \land \langle S(t) \rangle \phi$.
- We have to show $I, \eta, \mathbf{v} \models \langle \mathcal{D} \rangle \phi$.

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.
- Assume premiss holds: $I, \eta, v \models \exists t \ge 0 (\bar{\chi} \land \langle S(t) \rangle \phi)$
- By assumption, there is a $r \ge 0$ such that $I, \eta_t^r, v \models \bar{\chi} \land \langle S(t) \rangle \phi$.
- We have to show $I, \eta, \mathbf{v} \models \langle \mathcal{D} \rangle \phi$.
- Equivalently, by coincidence lemma, $I, \eta_t^r, v \models \langle \mathcal{D} \rangle \phi$, because t fresh.

\mathcal{R} Soundness Proof

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.
- Assume premiss holds: $I, \eta, v \models \exists t \ge 0 (\bar{\chi} \land \langle \mathcal{S}(t) \rangle \phi)$
- By assumption, there is a $r \ge 0$ such that $I, \eta_t^r, v \models \bar{\chi} \land \langle S(t) \rangle \phi$.
- We have to show $I, \eta, \mathbf{v} \models \langle \mathcal{D} \rangle \phi$.
- Equivalently, by coincidence lemma, $I, \eta_t^r, v \models \langle \mathcal{D} \rangle \phi$, because t fresh.
- Let $f : [0, r] \to \text{States such that } (v, f(\zeta)) \in \rho_{I, \eta_t^{\zeta}}(\mathcal{S}(t)) \text{ for all } \zeta \in [0, r].$ By premiss, f(0) = v and ϕ holds at f(r).

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.
- Assume premiss holds: I, η , $\mathsf{v} \models \exists t \geq 0 (\bar{\chi} \land \langle \mathcal{S}(t) \rangle \phi)$
- By assumption, there is a $r \ge 0$ such that $I, \eta_t^r, v \models \bar{\chi} \land \langle S(t) \rangle \phi$.
- We have to show $I, \eta, \mathbf{v} \models \langle \mathcal{D} \rangle \phi$.
- Equivalently, by coincidence lemma, $I, \eta_t^r, v \models \langle \mathcal{D} \rangle \phi$, because t fresh.
- Let $f : [0, r] \to \text{States such that } (v, f(\zeta)) \in \rho_{I, \eta_t^{\zeta}}(\mathcal{S}(t)) \text{ for all } \zeta \in [0, r].$ By premiss, f(0) = v and ϕ holds at f(r).
- It only remains to show that f is a flow for $\rho_{I,\eta}(\mathcal{D})$.

\mathcal{R} Soundness Proof

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Let y_1, \ldots, y_n solve ODE $x'_1 = \theta_1, \ldots, x'_n = \theta_n$ with IV x_1, \ldots, x_n .
- Let $\langle \mathcal{S}(t) \rangle$ be $\langle x_1 := y_1(t), \dots, x_n := y_n(t) \rangle$.
- Assume premiss holds: $I, \eta, v \models \exists t \ge 0 (\bar{\chi} \land \langle \mathcal{S}(t) \rangle \phi)$
- By assumption, there is a $r \ge 0$ such that $I, \eta_t^r, v \models \bar{\chi} \land \langle S(t) \rangle \phi$.
- We have to show $I, \eta, \mathbf{v} \models \langle \mathcal{D} \rangle \phi$.
- Equivalently, by coincidence lemma, $I, \eta_t^r, v \models \langle \mathcal{D} \rangle \phi$, because t fresh.
- Let $f : [0, r] \to \text{States such that } (v, f(\zeta)) \in \rho_{I, \eta_t^{\zeta}}(\mathcal{S}(t)) \text{ for all } \zeta \in [0, r].$ By premiss, f(0) = v and ϕ holds at f(r).
- It only remains to show that f is a flow for $\rho_{I,\eta}(\mathcal{D})$.
- f continuous and differentiable according to y_i.

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

Proof ($\langle x' \rangle$ locally sound).

• Moreover, $[\![x_i]\!]_{I,f(\zeta),\eta_t^r} = [\![y_i(t)]\!]_{I,v,\eta_t^r}$ has a derivative of value $[\![\theta_i]\!]_{I,f(\zeta),\eta_t^r}$, because y_i is a solution of the differential equation $x_i^r = \theta_i$ with corresponding initial value $v(x_i)$.

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Moreover, $[\![x_i]\!]_{I,f(\zeta),\eta_t^r} = [\![y_i(t)]\!]_{I,v,\eta_t^r}$ has a derivative of value $[\![\theta_i]\!]_{I,f(\zeta),\eta_t^r}$, because y_i is a solution of the differential equation $x_i^r = \theta_i$ with corresponding initial value $v(x_i)$.
- Further, evolution invariant region χ is respected along f:

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Moreover, $\llbracket x_i \rrbracket_{I,f(\zeta),\eta_t^r} = \llbracket y_i(t) \rrbracket_{I,\nu,\eta_t^r}$ has a derivative of value $\llbracket \theta_i \rrbracket_{I,f(\zeta),\eta_t^r}$, because y_i is a solution of the differential equation $x_i^r = \theta_i$ with corresponding initial value $v(x_i)$.
- Further, evolution invariant region χ is respected along f:
- By premiss, $I, \eta_t^r, v \models \overline{\chi}$ holds for the initial state v, thus $[\![\chi]\!]_{I,f(\zeta),\eta_t^r} = true$ for all $\zeta \in [0, r]$.

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Moreover, $\llbracket x_i \rrbracket_{I,f(\zeta),\eta_t^r} = \llbracket y_i(t) \rrbracket_{I,\nu,\eta_t^r}$ has a derivative of value $\llbracket \theta_i \rrbracket_{I,f(\zeta),\eta_t^r}$, because y_i is a solution of the differential equation $x_i^r = \theta_i$ with corresponding initial value $v(x_i)$.
- Further, evolution invariant region χ is respected along f:
- By premiss, $I, \eta_t^r, v \models \overline{\chi}$ holds for the initial state v, thus $[\![\chi]\!]_{I,f(\zeta),\eta_t^r} = true$ for all $\zeta \in [0, r]$.
- In short, f is a witness for $I, \eta, v \models \langle \mathcal{D} \rangle \phi$.

$$\frac{\exists t \ge 0 \left(\left(\forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi \right) \land \left\langle \mathcal{S}(t) \right\rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi} \quad \text{where} \quad \frac{\bar{\chi} \equiv \forall 0 \le \tilde{t} \le t \left\langle \mathcal{S}(\tilde{t}) \right\rangle \chi}{\mathcal{D} \equiv x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi}$$

- Moreover, $\llbracket x_i \rrbracket_{I,f(\zeta),\eta_t^r} = \llbracket y_i(t) \rrbracket_{I,\nu,\eta_t^r}$ has a derivative of value $\llbracket \theta_i \rrbracket_{I,f(\zeta),\eta_t^r}$, because y_i is a solution of the differential equation $x_i^r = \theta_i$ with corresponding initial value $\nu(x_i)$.
- Further, evolution invariant region χ is respected along f:
- By premiss, $I, \eta_t^r, v \models \overline{\chi}$ holds for the initial state v, thus $[\![\chi]\!]_{I,f(\zeta),\eta_t^r} = true$ for all $\zeta \in [0, r]$.
- In short, f is a witness for $I, \eta, \mathbf{v} \models \langle \mathcal{D} \rangle \phi$.
- Converse direction can be shown to prove the dual rule [x'] using that flows are unique.

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

Proof ($\forall r \text{ sound}$).

• Contrapositively, assume there are *I*, *v* such that for all η , *I*, η , *v* $\not\models \forall x \phi(x)$, hence *I*, η , *v* $\models \exists x \neg \phi(x)$.

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

- Contrapositively, assume there are I, v such that for all η , $I, \eta, v \not\models \forall x \phi(x)$, hence $I, \eta, v \models \exists x \neg \phi(x)$.
- Construct I' that agrees with I except for new function symbol s.

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

- Contrapositively, assume there are I, v such that for all η , $I, \eta, v \not\models \forall x \phi(x)$, hence $I, \eta, v \models \exists x \neg \phi(x)$.
- Construct I' that agrees with I except for new function symbol s.
- For any $b_1, \ldots, b_n \in \mathbb{R}$ let η^b assign b_i to X_i for $1 \le i \le n$.

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

- Contrapositively, assume there are I, v such that for all η , $I, \eta, v \not\models \forall x \phi(x)$, hence $I, \eta, v \models \exists x \neg \phi(x)$.
- Construct I' that agrees with I except for new function symbol s.
- For any $b_1, \ldots, b_n \in \mathbb{R}$ let η^b assign b_i to X_i for $1 \le i \le n$.
- As $I, \eta, v \models \exists x \neg \phi(x)$ holds for all η , we pick a witness d for $I, \eta^b, v \models \exists x \neg \phi(x)$ and choose $I'(s)(b_1, \ldots, b_n) = d$.

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

- Contrapositively, assume there are I, v such that for all η , $I, \eta, v \not\models \forall x \phi(x)$, hence $I, \eta, v \models \exists x \neg \phi(x)$.
- Construct I' that agrees with I except for new function symbol s.
- For any $b_1, \ldots, b_n \in \mathbb{R}$ let η^b assign b_i to X_i for $1 \le i \le n$.
- As $I, \eta, v \models \exists x \neg \phi(x)$ holds for all η , we pick a witness d for $I, \eta^b, v \models \exists x \neg \phi(x)$ and choose $I'(s)(b_1, \ldots, b_n) = d$.
- We have I', η, ν ⊭ φ(s(X₁,...,X_n)) for all η by coincidence lemma, as X₁,...,X_n are all FV determining truth value of φ(s(X₁,...,X_n)).

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

Proof ($\forall r \text{ sound}$).

- Contrapositively, assume there are I, v such that for all η , $I, \eta, v \not\models \forall x \phi(x)$, hence $I, \eta, v \models \exists x \neg \phi(x)$.
- Construct I' that agrees with I except for new function symbol s.
- For any $b_1, \ldots, b_n \in \mathbb{R}$ let η^b assign b_i to X_i for $1 \le i \le n$.
- As $I, \eta, v \models \exists x \neg \phi(x)$ holds for all η , we pick a witness d for $I, \eta^b, v \models \exists x \neg \phi(x)$ and choose $I'(s)(b_1, \ldots, b_n) = d$.
- We have I', η, ν ⊭ φ(s(X₁,...,X_n)) for all η by coincidence lemma, as X₁,...,X_n are all FV determining truth value of φ(s(X₁,...,X_n)).
- Γ, Δ, ⟨J⟩ can be added: Since s is new, Γ, Δ do not change truth value by passing from I to I'. Further s is rigid and does not change value by adding jump prefix ⟨J⟩.

André Platzer (CMU)

$$\frac{\vdash \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \ldots, X_n)) \vdash \Psi(s(X_1, \ldots, X_n))}$$

X new variable

Proof (i \forall locally sound).

• Assume $I, \eta, v \models \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X))).$

$$\frac{\vdash \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \ldots, X_n)) \vdash \Psi(s(X_1, \ldots, X_n))}$$

X new variable

Proof (i \forall locally sound).

- Assume $I, \eta, v \models \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X))).$
- QE yields an equivalence, thus $I, \eta, \nu \models \forall X (\Phi(X) \vdash \Psi(X))$.

$$\frac{\vdash \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \ldots, X_n)) \vdash \Psi(s(X_1, \ldots, X_n))}$$

X new variable

Proof (i \forall locally sound).

- Assume $I, \eta, v \models \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X))).$
- QE yields an equivalence, thus $I, \eta, v \models \forall X (\Phi(X) \vdash \Psi(X)).$
- If $I, \eta, v \models \Phi(s(X_1, \ldots, X_n))$, we conclude $I, \eta, v \models \Psi(s(X_1, \ldots, X_n))$ by choosing $[\![s(X_1, \ldots, X_n)]\!]_{I,v,\eta}$ for X in premiss.

$$\frac{\vdash \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \ldots, X_n)) \vdash \Psi(s(X_1, \ldots, X_n))}$$

X new variable

Proof (i \forall locally sound).

- Assume $I, \eta, v \models \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X))).$
- QE yields an equivalence, thus $I, \eta, v \models \forall X (\Phi(X) \vdash \Psi(X)).$
- If $I, \eta, v \models \Phi(s(X_1, \ldots, X_n))$, we conclude $I, \eta, v \models \Psi(s(X_1, \ldots, X_n))$ by choosing $[\![s(X_1, \ldots, X_n)]\!]_{I,v,\eta}$ for X in premiss.
- By admissibility of substitutions, variables X_1, \ldots, X_n are free at all occurrences of $s(X_1, \ldots, X_n)$, hence their value is the same in all occurrences.

$$\frac{\vdash \phi(X)}{\vdash \exists x \, \phi(x)}$$

Proof $(\exists r \text{ locally sound})$.

• For any I, η, v with $I, \eta, v \models \phi(X)$ we conclude $I, \eta, v \models \exists x \phi(x)$ according to the witness $\eta(X)$.

$$\frac{\vdash \mathsf{QE}(\exists X \ \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \ \dots \ \Phi_n \vdash \Psi_n}$$

X only in branches $\Phi_i \vdash \Psi_i$

Proof (i∃ sound).

• For any I, v let η be such that $I, \eta, v \models \mathsf{QE}(\exists X \land_i (\Phi_i \vdash \Psi_i))$.

$$\frac{\vdash \mathsf{QE}(\exists X \ \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \ \dots \ \Phi_n \vdash \Psi_n}$$

X only in branches $\Phi_i \vdash \Psi_i$

Proof (i∃ sound).

- For any I, v let η be such that $I, \eta, v \models \mathsf{QE}(\exists X \land_i (\Phi_i \vdash \Psi_i))$.
- QE yields equivalence, thus $I, \eta, \nu \models \exists X \bigwedge_i (\Phi_i \vdash \Psi_i)$.

$$\frac{\vdash \mathsf{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

C only in branches $\Phi_i \vdash \Psi_i$

Proof (i∃ sound).

- For any *I*, *v* let η be such that $I, \eta, v \models \mathsf{QE}(\exists X \land_i (\Phi_i \vdash \Psi_i))$.
- QE yields equivalence, thus $I, \eta, v \models \exists X \land_i (\Phi_i \vdash \Psi_i)$.
- Pick witness $d \in \mathbb{R}$ for this existential quantifier.

$$\frac{\vdash \mathsf{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

C only in branches $\Phi_i \vdash \Psi_i$

Proof (i \exists sound).

- For any *I*, *v* let η be such that $I, \eta, v \models \mathsf{QE}(\exists X \land_i (\Phi_i \vdash \Psi_i))$.
- QE yields equivalence, thus $I, \eta, \nu \models \exists X \bigwedge_i (\Phi_i \vdash \Psi_i)$.
- Pick witness $d \in \mathbb{R}$ for this existential quantifier.
- As X does not occur anywhere else in the proof, it disappears from all open premisses of the proof by applying i∃. Hence, by coincidence lemma, value of X does not change truth value of premise.

$$\frac{\vdash \mathsf{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

C only in branches $\Phi_i \vdash \Psi_i$

Proof (i \exists sound).

- For any *I*, *v* let η be such that $I, \eta, v \models \mathsf{QE}(\exists X \land_i (\Phi_i \vdash \Psi_i))$.
- QE yields equivalence, thus $I, \eta, v \models \exists X \land_i (\Phi_i \vdash \Psi_i)$.
- Pick witness $d \in \mathbb{R}$ for this existential quantifier.
- As X does not occur anywhere else in the proof, it disappears from all open premisses of the proof by applying i∃. Hence, by coincidence lemma, value of X does not change truth value of premise.
- Consequently, η can be extended to η' by changing the interpretation of X to the witness d such that I, η', ν ⊨ Λ_i(Φ_i ⊢ Ψ_i).

$$\frac{\vdash \mathsf{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

C only in branches $\Phi_i \vdash \Psi_i$

Proof (i \exists sound).

- For any *I*, *v* let η be such that $I, \eta, v \models \mathsf{QE}(\exists X \land_i (\Phi_i \vdash \Psi_i))$.
- QE yields equivalence, thus $I, \eta, v \models \exists X \land_i (\Phi_i \vdash \Psi_i)$.
- Pick witness $d \in \mathbb{R}$ for this existential quantifier.
- As X does not occur anywhere else in the proof, it disappears from all open premisses of the proof by applying i∃. Hence, by coincidence lemma, value of X does not change truth value of premise.
- Consequently, η can be extended to η' by changing the interpretation of X to the witness d such that I, η', ν ⊨ Λ_i(Φ_i ⊢ Ψ_i).
- Thus, η' extends I,η,ν to a simultaneous model of all conclusions.

$$\frac{\vdash \forall^{\alpha} (\phi \to \psi)}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi}$$

Proof ($\langle \rangle$ gen locally sound).

 Simple refinement of coincidence lemma using that the universal closure ∀^α comprises all variables that change in α.

$$\frac{\vdash \forall^{\alpha} (\phi \to \psi)}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi}$$

- Simple refinement of coincidence lemma using that the universal closure \forall^{α} comprises all variables that change in α .
- Let $I, \eta, \mathbf{v} \models \langle \alpha \rangle \phi$, i.e., let $(\mathbf{v}, \nu') \in \rho_{I,\eta}(\alpha)$ with $I, \eta, \nu' \models \phi$.

$$\frac{\vdash \forall^{\alpha} (\phi \to \psi)}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi}$$

- Simple refinement of coincidence lemma using that the universal closure ∀^α comprises all variables that change in α.
- Let $I, \eta, \mathbf{v} \models \langle \alpha \rangle \phi$, i.e., let $(\mathbf{v}, \nu') \in \rho_{I,\eta}(\alpha)$ with $I, \eta, \nu' \models \phi$.
- As α can only change its bound variables, which are quantified universally in the universal closure ∀^α, the premiss implies I, η, ν' ⊨ φ → ψ, thus I, η, ν' ⊨ ψ and I, η, ν ⊨ ⟨α⟩ψ.

$$\frac{\vdash \forall^{\alpha}(\phi \to [\alpha]\phi)}{\phi \vdash [\alpha^*]\phi}$$

Proof (ind locally sound).

• For any I, η, v with $I, \eta, v \models \forall^{\alpha} (\phi \to [\alpha] \phi)$, we conclude $I, \eta, v' \models \phi \to [\alpha] \phi$ for all v' with $(v, v') \in \rho_{I,\eta}(\alpha)$.

$$\frac{\vdash \forall^{\alpha}(\phi \to [\alpha]\phi)}{\phi \vdash [\alpha^*]\phi}$$

Proof (ind locally sound).

- For any I, η, ν with $I, \eta, \nu \models \forall^{\alpha} (\phi \to [\alpha] \phi)$, we conclude $I, \eta, \nu' \models \phi \to [\alpha] \phi$ for all ν' with $(\nu, \nu') \in \rho_{I,\eta}(\alpha)$.
- As these share the same η, we conclude I, η, v ⊨ φ → [α^{*}]φ by induction along the series of states ν' reached from v by repeating α.

$$\frac{\vdash \forall^{\alpha}(\phi \to [\alpha]\phi)}{\phi \vdash [\alpha^*]\phi}$$

Proof (ind locally sound).

- For any I, η, ν with $I, \eta, \nu \models \forall^{\alpha} (\phi \to [\alpha] \phi)$, we conclude $I, \eta, \nu' \models \phi \to [\alpha] \phi$ for all ν' with $(\nu, \nu') \in \rho_{I,\eta}(\alpha)$.
- As these share the same η, we conclude I, η, ν ⊨ φ → [α^{*}]φ by induction along the series of states ν' reached from ν by repeating α.
- The universal closure is necessary as, otherwise, the premiss may yield different η in different states $\nu'.$

$$\frac{\vdash \forall^{\alpha} \forall \boldsymbol{v} {>} 0 \left(\varphi(\boldsymbol{v}) \rightarrow \langle \alpha \rangle \varphi(\boldsymbol{v} - 1) \right)}{\exists \boldsymbol{v} \, \varphi(\boldsymbol{v}) \vdash \langle \alpha^* \rangle \exists \boldsymbol{v} {\leq} 0 \, \varphi(\boldsymbol{v})}$$

Proof (con locally sound).

• Assume antecedent and premiss hold in I, η, v .

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

Proof (con locally sound).

- Assume antecedent and premiss hold in I, η, v .
- By premiss, I, η[v → d], ν' ⊨ v > 0 ∧ φ(v) → ⟨α⟩φ(v − 1) for all d ∈ ℝ and all states ν' that are reachable by α* from v, because ∀^α comprises all variables that are bound by α or by α*.

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

Proof (con locally sound).

- Assume antecedent and premiss hold in I, η, v .
- By premiss, I, η[v → d], ν' ⊨ v > 0 ∧ φ(v) → ⟨α⟩φ(v − 1) for all d ∈ ℝ and all states ν' that are reachable by α* from v, because ∀^α comprises all variables that are bound by α or by α*.
- By antecedent, there is a $d \in \mathbb{R}$ such that $I, \eta[v \mapsto d], v \models \varphi(v)$.

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

Proof (con locally sound).

• If $d \leq 0$, we have $I, \eta, v \models \langle \alpha^* \rangle \exists v \leq 0 \varphi(v)$ for zero repetitions.

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

Proof (con locally sound).

- If $d \leq 0$, we have $I, \eta, v \models \langle \alpha^* \rangle \exists v \leq 0 \varphi(v)$ for zero repetitions.
- Otherwise, if d > 0, we have, by premiss, that

$$I, \eta[\boldsymbol{v} \mapsto \boldsymbol{d}], \boldsymbol{v} \models \boldsymbol{v} > \boldsymbol{0} \land \varphi(\boldsymbol{v}) \rightarrow \langle \alpha \rangle \varphi(\boldsymbol{v}-1)$$

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

Proof (con locally sound).

- If $d \leq 0$, we have $I, \eta, v \models \langle \alpha^* \rangle \exists v \leq 0 \varphi(v)$ for zero repetitions.
- Otherwise, if d > 0, we have, by premiss, that

$$I, \eta[\mathbf{v} \mapsto \mathbf{d}], \mathbf{v} \models \mathbf{v} > \mathbf{0} \land \varphi(\mathbf{v}) \rightarrow \langle \alpha \rangle \varphi(\mathbf{v} - 1)$$

• As $v > 0 \land \varphi(v)$, we have for some ν' with $(v, \nu') \in \rho_{I,\eta[v \mapsto d]}(\alpha)$ that $I, \eta[v \mapsto d], \nu' \models \varphi(v-1).$

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

Proof (con locally sound).

- If $d \leq 0$, we have $I, \eta, v \models \langle \alpha^* \rangle \exists v \leq 0 \varphi(v)$ for zero repetitions.
- Otherwise, if d > 0, we have, by premiss, that

$$I, \eta[\mathbf{v} \mapsto \mathbf{d}], \mathbf{v} \models \mathbf{v} > \mathbf{0} \land \varphi(\mathbf{v}) \to \langle \alpha \rangle \varphi(\mathbf{v}-1)$$

- As $v > 0 \land \varphi(v)$, we have for some ν' with $(v, \nu') \in \rho_{I,\eta[v \mapsto d]}(\alpha)$ that $I, \eta[v \mapsto d], \nu' \models \varphi(v-1).$
- Thus, I, η[v → d − 1], ν' ⊨ φ(v) satisfies IH for a smaller d and a reachable ν', because (v, ν') ∈ ρ_{I,η}(α) as v does not occur in α.

$$\frac{\vdash \forall^{\alpha} \forall v > 0 \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right)}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

Proof (con locally sound).

- If $d \leq 0$, we have $I, \eta, v \models \langle \alpha^* \rangle \exists v \leq 0 \varphi(v)$ for zero repetitions.
- Otherwise, if d > 0, we have, by premiss, that

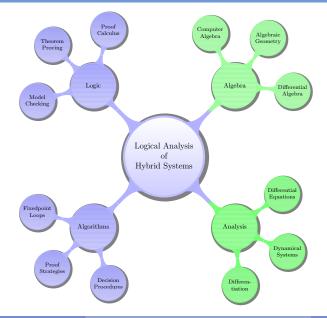
$$I, \eta[\mathbf{v} \mapsto \mathbf{d}], \mathbf{v} \models \mathbf{v} > \mathbf{0} \land \varphi(\mathbf{v}) \to \langle \alpha \rangle \varphi(\mathbf{v}-1)$$

- As $v > 0 \land \varphi(v)$, we have for some ν' with $(v, \nu') \in \rho_{I,\eta[v \mapsto d]}(\alpha)$ that $I, \eta[v \mapsto d], \nu' \models \varphi(v-1).$
- Thus, I, η[v → d − 1], ν' ⊨ φ(v) satisfies IH for a smaller d and a reachable ν', because (v, ν') ∈ ρ_{I,η}(α) as v does not occur in α.
- Induction well-founded, because d decreases by 1 down to $d \leq 0$.

Verifying parametric hybrid systems:

- Logics for hybrid systems
- Compositional calculi
- R-Skolem and free variables for automation
- Sound & complete / ODE

\mathcal{R} Landscape



André Platzer (CMU)

A. Platzer.

Differential dynamic logic for verifying parametric hybrid systems. In N. Olivetti, editor, *TABLEAUX*, volume 4548 of *LNCS*, pages 216–232. Springer, 2007.

A. Platzer.

Differential dynamic logic for hybrid systems.

J. Autom. Reas., 41(2):143-189, 2008.

A. Platzer.

Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg, 2010.