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Differential-algebraic Dynamic Logic

differential-algebraic dynamic logic

DAL = FOLR + ML

+ DAP

‖d‖ ≥ 1

‖d‖ ≥ 1
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differential-algebraic dynamic logic

DAL = FOLR + DL + DAP

‖d‖ ≥ 1

‖d‖ ≥ 1

‖d‖ ≥ 1

[ d1 :=−d2; d ′1 ≤ −ωd2 ∧ d ′2 ≤ ωd1 ∨ d ′1 ≤ 4︸ ︷︷ ︸
differential-algebraic program

= first-order completion of

hybrid programs

] ‖d‖ ≥ 1
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Idea: Exploit Vector Field of Differential Equations

“Definition” (Differential Invariant)

“Property that remains true in the direction of the dynamics”
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Verification by Discrete and Differential Induction

Definition (Discrete Invariant F )

v w

α∗

[α∗]φ

F
∀α(F → φ)
∀α(F → [α]F )

α

F → [α]F

α α

F

φ

Definition (Differential Invariant F )

v w

[x ′ = θ]φ

F
∀α(F → φ)
∀α(F ′)

F ′

x ′ = θ

F

φ
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Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

F
¬F

F

c

` ∀α(χ→ F ′)

χ→ F

` [x ′ = θ ∧ χ]F

` ∀α(¬F ∧ χ→ F ′�)

[x ′ = θ ∧ ¬F ]χ

` 〈x ′ = θ ∧ χ〉F

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d
′
2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance
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Goal for Differential Induction Principle

σ1 7→ [[F ]]σ1

σ2 7→ [[F ]]σ2

In the limit:
d [[F ]]σ

dσ

(ζ) = [[F ′]]σ̄(ζ)

where dσ(t)
dt is according to ODE

Goal (Derivation lemma)

Valuation is a differential homomorphism
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 6 / 63



Derivations and Differentiation

Definition (Syntactic total derivation D : Trm(Σ∪Σ′)→ Trm(Σ∪Σ′))

D(r) = 0 if r is a (rigid) number symbol

D(x (n)) = x (n+1) if x ∈ Σ is flexible, n ≥ 0

D(a + b) = D(a) + D(b)

D(a · b) = D(a) · b + a · D(b)

D(a/b) = (D(a) · b − a · D(b))/b2

D(F ) ≡
m∧

i=1

D(Fi ) {F1, . . . ,Fm} all literals of F

D(a ≥ b) ≡ D(a) ≥ D(b) accordingly for <,>,≤,=
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Derivations and Differentiation

Lemma (Derivation lemma)

Valuation is differential homomorphism: for all flows ϕ of duration r > 0
along which θ is defined, all ζ ∈ [0, r ]

d [[θ]]ϕ(t)

dt
(ζ) = [[D(θ)]]ϕ̄(ζ)

Lemma (Differential substitution principle)

If ϕ |= x ′i = θi ∧ χ, then ϕ |= D ↔ (χ→ Dθi

x ′
i
) for all D.

Definition (Differential Invariant)

(χ→ F ′) ≡ χ→ D(F )θi

x ′
i

for [x ′i = θi ∧ χ]F
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Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in ϕ̄(ζ)).

If θ is a variable x , immediate by ϕ̄(ζ):

d [[x ]]ϕ(t)

dt
(ζ) =

dϕ(t)(x)

dt
(ζ) = ϕ̄(ζ)(x ′) = [[D(x)]]ϕ̄(ζ)

Derivative exists as ϕ of order 1 in x , thus, continuously differentiable
for x .

The case where θ is of the form a · b or a− b is accordingly, using
Leibniz product rule or subtractiveness of D(), respectively.

The case where θ is of the form a/b uses quotient rule and further
depends on the assumption that b 6= 0 along ϕ. This holds as the
value of θ is assumed to be defined all along state flow ϕ.

The values of numbers r ∈ Q do not change during a state flow (in
fact, they are not affected by the state at all), hence their derivative
is D(r) = 0.
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 9 / 63



Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in ϕ̄(ζ)).

The case where θ is of the form a · b or a− b is accordingly, using
Leibniz product rule or subtractiveness of D(), respectively.

The case where θ is of the form a/b uses quotient rule and further
depends on the assumption that b 6= 0 along ϕ. This holds as the
value of θ is assumed to be defined all along state flow ϕ.

The values of numbers r ∈ Q do not change during a state flow (in
fact, they are not affected by the state at all), hence their derivative
is D(r) = 0.
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Differential Substitution Principle: Proof

Lemma (Differential substitution principle)

If ϕ |= x ′i = θi ∧ χ, then ϕ |= D ↔ (χ→ Dθi

x ′
i
) for all D.

Proof.

Using substitution lemma for FOL on the basis of [[x ′i ]]ϕ̄(ζ) = [[θi ]]ϕ̄(ζ) and
ϕ̄(ζ) |= χ at each time ζ in the domain of ϕ.
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Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

F
¬F

F

c

` ∀α(χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

` ∀α(¬F ∧ χ→ F ′�)

[x ′ = θ ∧ ¬F ]χ ` 〈x ′ = θ ∧ χ〉F

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d
′
2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance
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Differential Invariant Example: Quartic Dynamics

∗

` ∀x (2(x2 + x4) ≥ 0)

` ∀x (2x ′ ≥ 0)

` ∀x (D(2x) ≥ D( 1
4 ))

2x ≥ 1
4 ` [x ′ = x2 + x4]2x ≥ 1

4
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` QE(∀x1, x2 ∀d1, d2 ∀ω (2d1(−ωd2) + 2d2ωd1 = 0))

` ∀x1, x2 ∀d1, d2 ∀ω (2d1(− ωd2) + 2d2ωd1 = 0)

` ∀x1, x2 ∀d1, d2 ∀ω (2d1d ′1 + 2d2d ′2 = 0)

d2
1 + d2

2 = v 2 ` [∃ωF(ω)] d2
1 + d2

2 = v 2

` d2
1 + d2

2 = v 2 → [∃ωF(ω)] d2
1 + d2

2 = v 2

` ∀v (d2
1 + d2

2 = v 2 → [∃ωF(ω)] d2
1 + d2

2 = v 2)

F(ω) ≡ d ′1 = − ωd2 ∧ d ′2 = ωd1
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Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

F
¬F

F

c

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d
′
2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 14 / 63



Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

F
¬F

F

c

d1 ≥ d2 → [x := a2 + 1;

∃ω (ω ≤ 1 ∧ d ′1 = −ωd2 ∧ d ′2 = ωd1) ∨ (d ′1 ≤ 2d1)

] d1 ≥ d2

quantified nondeterminism/disturbance
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Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

F
¬F

F

c

d1 ≥ d2 → [x > 0→ ∃a (a < 5 ∧ x := a2 + 1);

∃ω (ω ≤ 1 ∧ d ′1 = −ωd2 ∧ d ′2 = ωd1) ∨ (d ′1 ≤ 2d1)

] d1 ≥ d2

discrete quantified nondeterminism/disturbance
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Restricting Differential Invariance

F
¬F

F
¬F

` ∀α(χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

` ∀α(F ∧ χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

Example (Restrictions)

` ∀x (x2 ≤ 0→ 2x · 1 ≤ 0)
x2 ≤ 0 ` [x ′ = 1]x2 ≤ 0

0 t

x x0 + t

x
′ = 1
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` ∀α(F ∧ χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

Example (Restrictions are unsound nonsense!)

` ∀x (x2 ≤ 0→ 2x · 1 ≤ 0)
x2 ≤ 0 ` [x ′ = 1]x2 ≤ 0

0 t
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x
′ = 1
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Differential Invariance of Negative Equations

Example (Negative equations)

∗
` ∀x (1 6= 0)

x 6= 0 ` [x ′ = 1]x 6= 0

0 t

x x0 + t

x
′ = 1
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Disjunctive Differential Invariants

F ∧ G ′ ≡

F ′ ∧ G ′

F ∨ G ′ ≡

Example (Differential induction provable)

d2
1 + d2

2 = v 2 → [∃ωF(ω)] d2
1 + d2

2 = v 2

Example (Thus provable)

x1 ≥ 0 ∨ d2
1 + d2

2 = v 2 → [∃ωF(ω)](x1 ≥ 0 ∨ d2
1 + d2

2 = v 2)
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Closure Properties of Differential Invariants

Lemma

Differential invariants are closed under conjunction and differentiation:
F diff. inv., G diff. inv. ⇒ F ∧ G diff. inv. (of same system)

F diff. inv. ⇒ F ′ diff. inv. (of same system)
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Outline

1 Verification Calculus for Differential-algebraic Dynamic Logic dL
Motivation for Differential Induction
Derivations and Differentiation
Differential Induction
Motivation for Differential Saturation
Differential Variants
Compositional Verification Calculus
Differential Transformation
Differential Reduction & Differential Elimination
Proof Rules

2 Soundness

3 Restricting Differential Invariants
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Differential Induction for Aircraft Roundabouts

` 2(x1 − y1)(−ω(x2 − y2)) + 2(x2 − y2)ω(x1 − y1) ≥ 0

` 2(x1 − y1)(d1 − e1) + 2(x2 − y2)(d2 − e2) ≥ 0

` ∂‖x−y‖2

∂x1
x ′1 + ∂‖x−y‖2

∂y1
y ′1 + ∂‖x−y‖2

∂x2
x ′2 + ∂‖x−y‖2

∂y2
y ′2 ≥ ∂p2

∂x1
x ′1 . . .

` [x ′1 = d1, d
′
1 = − ωd2, x

′
2 = d2, d

′
2 = ωd1, ..](x1 − y1)2 + (x2 − y2)2 ≥ p2

x

y

c

` −ωd2 + ωe2 = −ω(d2 − e2)

` ∂(d1−e1)
∂d1

d ′1 + ∂(d1−e1)
∂e1

e ′1 = −∂ω(x2−y2)
∂x2

x ′2 − ∂ω(x2−y2)
∂y2

y ′2

.. ` [d ′1 = − ωd2, e
′
1 = − ωe2, x

′
2 = d2, d

′
2 = ωd1, ..]d1 − e1 = −ω(x2 − y2)

refine dynamics by differential saturation
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 19 / 63



Differential Induction for Aircraft Roundabouts

` 2(x1 − y1)(−ω(x2 − y2)) + 2(x2 − y2)ω(x1 − y1) ≥ 0
` 2(x1 − y1)(d1 − e1) + 2(x2 − y2)(d2 − e2) ≥ 0

` ∂‖x−y‖2

∂x1
d1 + ∂‖x−y‖2

∂y1
e1 + ∂‖x−y‖2

∂x2
d2 + ∂‖x−y‖2

∂y2
e2 ≥ ∂p2

∂x1
d1 . . .

` [x ′1 = d1, d
′
1 = − ωd2, x

′
2 = d2, d

′
2 = ωd1, ..](x1 − y1)2 + (x2 − y2)2 ≥ p2

c

x

y

d

e

x
−

y

e
d− e

` −ωd2 + ωe2 = −ω(d2 − e2)

` ∂(d1−e1)
∂d1

(−ωd2) + ∂(d1−e1)
∂e1

(−ωe2) = −∂ω(x2−y2)
∂x2

d2 − ∂ω(x2−y2)
∂y2

e2

.. ` [d ′1 = − ωd2, e
′
1 = − ωe2, x

′
2 = d2, d

′
2 = ωd1, ..]d1 − e1 = −ω(x2 − y2)

refine dynamics by differential saturation
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Differential Induction & Differential Saturation
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d1 . . .

` [x ′1 = d1, d
′
1 = − ωd2, x

′
2 = d2, d

′
2 = ωd1, ..](x1 − y1)2 + (x2 − y2)2 ≥ p2

Proposition (Differential saturation)

F differential invariant of [x ′ = θ ∧ H]φ, then
[x ′ = θ ∧ H]φ iff [x ′ = θ ∧ H ∧ F ]φ
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Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

F
¬F

F

c

` (χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

` (¬F ∧ χ→ F ′�)

[x ′ = θ ∧ ∼F ]χ ` 〈x ′ = θ ∧ χ〉F

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d
′
2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance
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Differential Variants

Definition (Differential Variant)

F positive under total differentiation with respect to differential constraints

F
¬F

F

c

` (χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

` (¬F ∧ χ→ F ′�)

[x ′ = θ ∧ ∼F ]χ ` 〈x ′ = θ ∧ χ〉F

` ∃ε>0 ∀y1, yk (¬F ∧ χ→ (F ′ ≥ ε)θ1

x ′
1
. . .θn

x ′
n
)

[∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ ∼F )]χ ` 〈∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ χ)〉F
when Lipschitz-continuous and F without equalities
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Differential Variants for Flight Progress

` b > 0

` QE(∃d ((‖d‖2 ≤ b2) ∧ (d1 > 0 ∧ d2 > 0)))

` ‖d‖2 ≤ b2

` d1 > 0 ∧ d2 > 0

` ∃ε>0 ∀x1, x2 (x1 < p1 ∨ x2 < p2 → d1 ≥ ε ∧ d2 ≥ ε)
` 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)

` ‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)

` ∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2))

` ∀p ∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2))

F(0) ≡ x ′1 = d1 ∧ x ′2 = d2

F ≡ x1 ≥ p1 ∧ x2 ≥ p2

F ′ ≡ x ′1 ≥ 0 ∧ x ′2 ≥ 0

F ′ ≥ ε ≡ x ′1 ≥ ε ∧ x ′2 ≥ ε
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Differential Variants for Progress

Example (Progress)

` ∀x (x > 0→ −x < 0)
` 〈x ′ = −x〉x ≤ 0

0 t

x
x0

x0e−t

x ′= −x
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Differential Variants for Progress

Example (Unsound without minimal progress!)

` ∀x (x > 0→ −x < 0)
` 〈x ′ = −x〉x ≤ 0

0 t

x
x0

x0e−t

x ′= −x
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Differential Variants for Progress

Example (Mixed dynamics)

∗
` ∃ε>0∀x∀y (x < 6→ 1 ≥ ε)

` 〈x ′ = 1 ∧ y ′ = 1 + y 2〉x ≥ 6

y

x

���Π
2 Π ������3 Π

2 2 Π
t

-6

-4

-2

0

2

4
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Differential Variants for Progress

Example (Unsound without Lipschitz-continuity!)

∗
` ∃ε>0∀x∀y (x < 6→ 1 ≥ ε)

` 〈x ′ = 1 ∧ y ′ = 1 + y 2〉x ≥ 6

y
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Verification of Differential-algebraic Dynamic Logic

φθx

[x := θ]φ v w
x := θ

φ

∃t≥0 〈x := yx (t)〉φ

〈x ′ = θ〉φ
v w

x ′ = θ

φ

x := yx (t)

∃t≥0 (χ̄ ∧ 〈x := yx (t)〉φ)

〈x ′ = θ ∧ χ〉φ

v w
x ′ = θ ∧ χ

φ

x := yx(t)

χ̄ ≡ ∀0≤s≤t 〈x := yx (s)〉χ
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 25 / 63



Verification of Differential-algebraic Dynamic Logic

φθx
[x := θ]φ v w

φθx
x := θ

φ

∃t≥0 〈x := yx (t)〉φ

〈x ′ = θ〉φ
v w

x ′ = θ

φ

x := yx (t)

∃t≥0 (χ̄ ∧ 〈x := yx (t)〉φ)

〈x ′ = θ ∧ χ〉φ

v w
x ′ = θ ∧ χ

φ

x := yx(t)

χ̄ ≡ ∀0≤s≤t 〈x := yx (s)〉χ
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Verification of Differential-algebraic Dynamic Logic

compositional semantics ⇒ compositional rules!

[α]φ ∧ [β]φ

[α ∪ β]φ
v

w1

w2

α
φ

β
φ

α ∪ β

[α][β]φ

[α;β]φ
v s w

α;β

α β
φ

` F ` (F → [α]F )

` [α∗]F v w

α∗

α α α

F
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Verification of Differential-algebraic Dynamic Logic

` ∃v ϕ(v) ` ∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1)) ` (∃v≤0ϕ(v)→ ψ)

` 〈α∗〉ψ

v w

α∗

α α α
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Verification of Differential-algebraic Dynamic Logic
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Differential Transformation

Lemma (Differential transformation principle)

Let D and E be DA-constraints (same changed variables). If D → E is a
tautology of (non-differential) first-order real arithmetic (that is, when
considering x (n) as a new variable independent from x), then ρ(D) ⊆ ρ(E).

DA-constraints D and E are equivalent iff ρ(D) = ρ(E).

Semantics of DA-programs is preserved when replacing DA-constraint
equivalently in non-differential first-order real arithmetic.
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Differential Transformation: Proof

Proof.

D ≡ φx ′
X and E ≡ ψx ′

X .

Let φ→ ψ be valid in (non-differential) real arithmetic.

Let (v ,w) ∈ ρ(D) according to a state flow ϕ.

Then ϕ is a state flow for E that justifies (v ,w) ∈ ρ(E):

For any ζ ∈ [0, r ], we have ϕ̄(ζ) |= D
Hence ϕ̄(ζ) |= E ,

because ϕ̄(ζ) |= φx ′
X implies ϕ̄(ζ) |= ψx ′

X by validity of φ→ ψ.

D and E need same set of changed variables as unchanged variables z
remain constant.

Add z ′ = 0 as required.
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Differential Reduction

Lemma (Differential inequality elimination)

DA-constraints admit differential inequality elimination, i.e., to each
DA-constraint D, an equivalent DA-constraint without differential
inequalities can be effectively associated that has no other free variables.

Proof.

Let E like D with all differential inequalities θ1 ≤ θ2 replaced by a
quantified differential equation ∃u (θ1 = θ2 − u ∧ u ≥ 0) with a new
variable u for the quantified disturbance (accordingly for ≥, >,<).

Diff. trafo: equivalence of D and E is a simple consequence of the
corresponding equivalences in first-order real arithmetic.
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Differential Reduction
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Differential Equation Normalization

DA-constraint may become inhomogeneous: θ1 ≤ x ′ ≤ θ2 produces

∃u ∃v (x ′ = θ1 + u ∧ x ′ = θ2 − v ∧ u ≥ 0 ∧ v ≥ 0)

Lemma (Differential equation normalisation)

DA-constraints admit differential equation normalisation, i.e., to each
DA-constraint D, an equivalent DA-constraint with at most one
differential equation for each differential symbol can be effectively
associated that has no other free variables. This differential equation is of
the form x (n) = θ where ordx θ < n.

Proof.

For each differential symbol x (n) ∈ Σ′ , introduce new non-differential
variable Xn ∈ Σ.

Diff. trafo: equivalence of D and ∃Xn (x (n) = Xn ∧ DXn

x(n)) is a simple
consequence of the corresponding equivalence in FOLR.

Induction for all such x (n) ∈ Σ′ in D gives desired result.
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Differential Variants for Flight Progress

Recall aircraft progress property

∀p ∃d (‖d‖2 ≤ b2 ∧ 〈x ′1 = d1 ∧ x ′2 = d2〉(x1 ≥ p1 ∧ x2 ≥ p2))

Similar proof can be found for

∀p ∃d (‖d‖2 ≤ b2 ∧ 〈x ′1 ≥ d1 ∧ x ′2 ≥ d2〉(x1 ≥ p1 ∧ x2 ≥ p2))

 . . 〈∃u (x ′1 = d1 + u1 ∧ x ′2 = d2 + u2 ∧ u1 ≥ 0 ∧ u2 ≥ 0)〉(x1 ≥ p1 ∧ x2 ≥ p2)

The proof is identical to before, except that differential induction yields

∀x ∀u ((x1 < p1 ∨ x2 < p2) ∧ u1 ≥ 0 ∧ u2 ≥ 0 → d1 + u1 ≥ ε ∧ d2 + u2 ≥ ε)
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Admissibility

Definition (Admissible substitution)

An application of a substitution σ is admissible if no variable x that σ
replaces by σx occurs in the scope of a quantifier or modality binding x or
a (logical or state) variable of the replacement σx . A modality binds
variable x iff its DA-program changes x , i.e., contains a DJ-constraint with
x := θ or a DA-constraint with x ′.

All substitutions in all rules need to be admissible!
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Rule Schema Applications

Definition (Rules)

Any instance
Φ1 ` Ψ1 . . . Φn ` Ψn

Φ0 ` Ψ0

of a rule can be applied as a proof rule in context:

Γ,Φ1 ` Ψ1,∆ . . . Γ,Φn ` Ψn,∆

Γ,Φ0 ` Ψ0,∆

Γ,∆ are arbitrary finite sets of additional context formulas (including
empty sets)
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Rule Schema Applications

Definition (Rules)

Symmetric schemata can be applied on either side of the sequent: If

φ1

φ0

is an instance, then

Γ ` φ1,∆

Γ ` φ0,∆
and

Γ, φ1 ` ∆

Γ, φ0 ` ∆

can both be applied as proof rules of the dL calculus, where Γ,∆ are
arbitrary finite sets of context formulas
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Verification of Differential-algebraic Dynamic Logic
Propositional Rules

10 propositional rules

` φ
¬φ `

φ `
` ¬φ

φ ` ψ
` φ→ ψ

φ, ψ `
φ ∧ ψ `

` φ ` ψ
` φ ∧ ψ

` φ ψ `
φ→ ψ `

φ ` ψ `
φ ∨ ψ `

` φ, ψ
` φ ∨ ψ

φ ` φ

` φ φ `
`
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Verification of Differential-algebraic Dynamic Logic
Dynamic Rules

〈α〉〈β〉φ
〈α;β〉φ

[α][β]φ

[α;β]φ

〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

[α]φ ∧ [β]φ

[α ∪ β]φ

∃x 〈J 〉φ
〈∃x J 〉φ

∀x [J ]φ

[∃x J ]φ

〈J1 ∪ . . . ∪ Jn〉φ
〈J 〉φ

[J1 ∪ . . . ∪ Jn]φ

[J ]φ

χ ∧ φθ1
x1
. . .θn

xn

〈x1 := θ1 ∧ . . ∧ xn := θn ∧ χ〉φ

χ→ φθ1
x1
. . .θn

xn

[x1 := θ1 ∧ . . ∧ xn := θn ∧ χ]φ

〈(D1 ∪ . . . ∪ Dn)∗〉φ
〈D〉φ

[(D1 ∪ . . . ∪ Dn)∗]φ

[D]φ
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Verification of Differential-algebraic Dynamic Logic
Dynamic Rules

` [E ]φ

` [D]φ

` 〈D〉φ
` 〈E〉φ

` [D]χ ` [D ∧ χ]φ

` [D]φ
where “D → E”

in FOLR
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Verification of Differential-algebraic Dynamic Logic
Global Rules

` ∀α(φ→ ψ)

[α]φ ` [α]ψ

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ
` ∀α(F → [α]F )

F ` [α∗]F

` ∀α(ϕ(x)→ 〈α〉ϕ(x − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

` ∀α∀y1 . .∀yk (χ→ F ′θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)]F

` ∃ε>0 ∀α∀y1, yk (¬F ∧ χ→ (F ′ ≥ ε)θ1

x ′
1
. . .θn

x ′
n
)

[∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ ∼F )]χ ` 〈∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ χ)〉F
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Verification of Differential-algebraic Dynamic Logic
First-Order Rules

` φ(s(X1, . . ,Xn))

` ∀x φ(x)

φ(s(X1, . . ,Xn)) `
∃x φ(x) `

s new, {X1, . . ,Xn} = FV (∃x φ(x))

` QE(∀X (Φ(X ) ` Ψ(X )))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

X new variable

` φ(X )

` ∃x φ(x)

φ(X ) `
∀x φ(x) `

X new variable

` QE(∃X
∧

i (Φi ` Ψi ))

Φ1 ` Ψ1 . . . Φn ` Ψn

X only in branches Φi ` Ψi

QE needs to be defined in premiss
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Soundness

Theorem (Soundness)

DAL calculus is sound, i.e.,

` φ ⇒ � φ

Challenges (Soundness Proof)

Differential induction

Side deductions

Definition (Local Soundness)

Φ

Ψ
locally sound iff for each v (v |= Φ ⇒ v |= Ψ)
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Soundness Proof

[(D1 ∪ . . . ∪ Dn)∗]φ

[D]φ

Proof ( locally sound).

diff.trafo. ⇒ there is an equivalent DNF D1 ∨ · · · ∨ Dn of D.

ρ(D) ⊇ ρ((D1 ∪ . . . ∪ Dn)∗) obvious

ρ(D) ⊆ ρ((D1 ∪ . . . ∪ Dn)∗) to show.

Let ϕ state flow for a transition (v , ω) ∈ ρ(D).

Assume ϕ non-Zeno.

Finite number, m, of switches between Di , say Di1 ,Di2 , . . . ,Dim .

Transition (v , ω) belonging to ϕ can be simulated piecewise by m
repetitions of D1 ∪ . . . ∪ Dn:

Each piece selects the respective part Dij .
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 41 / 63



Soundness Proof

[(D1 ∪ . . . ∪ Dn)∗]φ

[D]φ

Proof ( locally sound).

diff.trafo. ⇒ there is an equivalent DNF D1 ∨ · · · ∨ Dn of D.

ρ(D) ⊇ ρ((D1 ∪ . . . ∪ Dn)∗) obvious

ρ(D) ⊆ ρ((D1 ∪ . . . ∪ Dn)∗) to show.

Let ϕ state flow for a transition (v , ω) ∈ ρ(D).

Assume ϕ non-Zeno.

Finite number, m, of switches between Di , say Di1 ,Di2 , . . . ,Dim .

Transition (v , ω) belonging to ϕ can be simulated piecewise by m
repetitions of D1 ∪ . . . ∪ Dn:

Each piece selects the respective part Dij .
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Soundness Proof

` [E ]φ

` [D]φ

` 〈D〉φ
` 〈E〉φ

where “D → E” in FOLR

Proof ( locally sound).

Immediate consequence of diff.trafo. and semantics of modalities.
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Soundness Proof

` [D]χ ` [D ∧ χ]φ

` [D]φ

Proof ( locally sound).

Left premiss ⇒ every flow ϕ that satisfies D also satisfies χ all along
the flow, i.e., ϕ |= χ.

Thus, ϕ |= D implies ϕ |= D ∧ χ
Right premiss entails the conclusion.
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Soundness Proof

` ∀α∀y1 . .∀yk (χ→ F ′θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)]F

Proof ( locally sound).

Let v satisfy premiss and antecedent of conclusion.

Diff.trafo. ⇒ assume F in DNF. Consider disjunct G of F with
v |= G .

F continuous invariant if, say, each conjunct of G is.

Assume conjunct is c ≥ 0 (accordingly for c > 0).

Let ϕ : [0, r ]→ States flow with ϕ |= ∃y (x ′ = θ ∧ χ) and ϕ(0) = v .

⇒ ϕ |= ∃y χ, thus v |= F , i.e., c ≥ 0 holds at v .

Assume duration r > 0 (otherwise v |= c ≥ 0 already holds).

Show ϕ |= c ≥ 0.
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Let v satisfy premiss and antecedent of conclusion.

Diff.trafo. ⇒ assume F in DNF. Consider disjunct G of F with
v |= G .

F continuous invariant if, say, each conjunct of G is.

Assume conjunct is c ≥ 0 (accordingly for c > 0).

Let ϕ : [0, r ]→ States flow with ϕ |= ∃y (x ′ = θ ∧ χ) and ϕ(0) = v .

⇒ ϕ |= ∃y χ, thus v |= F , i.e., c ≥ 0 holds at v .

Assume duration r > 0 (otherwise v |= c ≥ 0 already holds).

Show ϕ |= c ≥ 0.

André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 44 / 63



Soundness Proof

` ∀α∀y1 . .∀yk (χ→ F ′θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)]F

Proof ( locally sound).

Let v satisfy premiss and antecedent of conclusion.

Diff.trafo. ⇒ assume F in DNF. Consider disjunct G of F with
v |= G .

F continuous invariant if, say, each conjunct of G is.

Assume conjunct is c ≥ 0 (accordingly for c > 0).

Let ϕ : [0, r ]→ States flow with ϕ |= ∃y (x ′ = θ ∧ χ) and ϕ(0) = v .

⇒ ϕ |= ∃y χ, thus v |= F , i.e., c ≥ 0 holds at v .

Assume duration r > 0 (otherwise v |= c ≥ 0 already holds).

Show ϕ |= c ≥ 0.
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 44 / 63



Soundness Proof

` ∀α∀y1 . .∀yk (χ→ F ′θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)]F

Proof ( locally sound).

Let v satisfy premiss and antecedent of conclusion.

Diff.trafo. ⇒ assume F in DNF. Consider disjunct G of F with
v |= G .

F continuous invariant if, say, each conjunct of G is.

Assume conjunct is c ≥ 0 (accordingly for c > 0).

Let ϕ : [0, r ]→ States flow with ϕ |= ∃y (x ′ = θ ∧ χ) and ϕ(0) = v .

⇒ ϕ |= ∃y χ, thus v |= F , i.e., c ≥ 0 holds at v .

Assume duration r > 0 (otherwise v |= c ≥ 0 already holds).

Show ϕ |= c ≥ 0.
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)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)]F

Proof ( locally sound).

By contradiction suppose there was a ζ ∈ [0, r ] where ϕ(ζ) |= c < 0.

⇒ h : [0, r ]→ R; h(t) = [[c]]ϕ(t) satisfies h(0) ≥ 0 > h(ζ),
because v |= c ≥ 0 by antecedent.

ϕ is of order of c ′: ordx ϕ ≥ 1, ordz ϕ =∞ for unchanged z .

By α-renaming, c ′ cannot contain quantified variables y , hence, ϕ is
not required to be of any order in y .

Value of c defined along ϕ, as χ guards against zeros division.

Thus, by derivation lemma, h is continuous on [0, r ] and differentiable
at every ξ ∈ (0, r).
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)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)]F

Proof ( locally sound).

Mean value theorem ⇒ there is ξ ∈ (0, ζ) such that

dh(t)

dt
(ξ) · (ζ − 0︸ ︷︷ ︸

≥0

) = h(ζ)− h(0) < 0

0 >
dh(t)

dt
(ξ)

deriv .lem
= [[c ′]]ϕ̄(ξ)

diff .subst
= [[c ′

θ
x ′ ]]ϕ̄(ξ)u

y

because ϕ |= ∃y (x ′ = θ ∧ χ) so that ϕ̄(ξ)u
y |= x ′ = θ ∧ χ for

some u ∈ R and because y ′ does not occur and y 6∈ c .

Contradiction: by premiss ϕ |= ∀y (χ→ c ′θx ′ ≥ 0) as ∀α comprises all
changed variables.

For ϕ̄(ξ)u
y |= χ, we have ϕ̄(ξ)u

y |= c ′θx ′ ≥ 0.
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 46 / 63



Soundness Proof

` ∀α∀y1 . .∀yk (χ→ F ′θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)]F

Proof ( locally sound).

Mean value theorem ⇒ there is ξ ∈ (0, ζ) such that

dh(t)

dt
(ξ) · (ζ − 0︸ ︷︷ ︸

≥0

) = h(ζ)− h(0) < 0

0 >
dh(t)

dt
(ξ)

deriv .lem
= [[c ′]]ϕ̄(ξ)

diff .subst
= [[c ′

θ
x ′ ]]ϕ̄(ξ)u

y

because ϕ |= ∃y (x ′ = θ ∧ χ) so that ϕ̄(ξ)u
y |= x ′ = θ ∧ χ for

some u ∈ R and because y ′ does not occur and y 6∈ c .

Contradiction: by premiss ϕ |= ∀y (χ→ c ′θx ′ ≥ 0) as ∀α comprises all
changed variables. For ϕ̄(ξ)u

y |= χ, we have ϕ̄(ξ)u
y |= c ′θx ′ ≥ 0.
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Soundness Proof

` ∃ε>0 ∀α∀y1, yk (¬F ∧ χ→ (F ′ ≥ ε)θ1

x ′
1
. . .θn

x ′
n
)

[∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ ∼F )]χ ` 〈∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ χ)〉F

Proof ( locally sound, quantifier free case).

Let v satisfy premiss and antecedent of conclusion.

After α-renaming, ε fresh, thus v |= ∀α(¬F ∧ χ→ (F ′ ≥ ε)θx ′).

We required Lipschitz-continuity. Global Picard-Lindelöf theorem ⇒
there is a global solution of arbitrary duration r ≥ 0.

Let ϕ |= x ′ = θ start in v of some duration r ≥ 0.

If there is ζ with ϕ(ζ) |= F , then by antecedent, until (including,
as ∼F contains closure of ¬F ) “first” ζ, χ holds during ϕ.

Hence, restriction of ϕ to [0, ζ] is flow for v |= 〈x ′ = θ ∧ χ〉F .
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If there is ζ with ϕ(ζ) |= F , then by antecedent, until (including,
as ∼F contains closure of ¬F ) “first” ζ, χ holds during ϕ.

Hence, restriction of ϕ to [0, ζ] is flow for v |= 〈x ′ = θ ∧ χ〉F .
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Soundness Proof

` ∃ε>0 ∀α∀y1, yk (¬F ∧ χ→ (F ′ ≥ ε)θ1

x ′
1
. . .θn

x ′
n
)

[∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ ∼F )]χ ` 〈∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ χ)〉F

Proof ( locally sound, quantified case).

If there is no such ζ, extending ϕ by larger r will make F true:

Thus ϕ |= ¬F ∧ χ and, by premiss, ϕ |= F ′θx ′ ≥ ε, because ∀α
comprises all changed variables.

F ′θx ′ ≥ ε is a conjunction.

Consider one of its conjuncts c ′θx ′ ≥ ε belonging to c ≥ 0 (others
similar).

Again, ϕ of the order of c ′ and value of c defined along ϕ, because
ϕ |= χ and χ guards against zeros.
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Soundness Proof

` ∃ε>0 ∀α∀y1, yk (¬F ∧ χ→ (F ′ ≥ ε)θ1

x ′
1
. . .θn

x ′
n
)

[∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ ∼F )]χ ` 〈∃y1, yk (x ′1 = θ1∧,∧x ′n = θn ∧ χ)〉F

Proof ( locally sound, quantified case).

By mean-value theorem, derivation lemma & diff.subst., we conclude
for each ζ ∈ [0, r ] that for some ξ ∈ (0, ζ)

[[c]]ϕ(ζ) − [[c]]ϕ(0) = [[c ′
θ
x ′ ]]ϕ̄(ξ)(ζ − 0)

≥ ζ[[ε]]ϕ(0)

As [[ε]]ϕ(0) > 0 we have for all ζ > − [[c]]ϕ(0)

[[ε]]ϕ(0)
that ϕ(ζ) |= c ≥ 0 and

ϕ(r) |= c ≥ 0, even ϕ(r) |= c > 0.

By extending r , all literals c ≥ 0 of one conjunct of F are true, which
concludes the proof, because, until F finally holds, ϕ |= χ is implied
by antecedent (above).
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Soundness Proof

` ∃ε>0 ∀α∀y1 . . yk (¬F ∧ χ→ (F ′ ≥ ε)θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . . yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ ∼F )]χ ` 〈∃y1 . . yk (x ′1 = θ1 ∧ . . ∧ x ′n = θn ∧ χ)〉F

Proof ( locally sound, quantified case).

With quantifiers ∃y we prove slightly stronger statement, because y
is quantified universally in the premiss (and antecedent):

F reachable for all choices of y that respect χ (not only one).

By antecedent, there is a u ∈ R such that v u
y |= χ.

Hence, v u
y satisfies assumptions of quantifier-free case.

Thus, v u
y |= 〈x ′ = θ ∧ χ〉F ,

Hence v |= 〈∃y (x ′ = θ ∧ χ)〉F using u constantly as the value for the
quantified variable y during the evolution.
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Restricting Differential Invariance

F
¬F

F
¬F

` (χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

` (F ∧ χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

Example (Restrictions)

` ∀x (x2 ≤ 0→ 2x · 1 ≤ 0)
x2 ≤ 0 ` [x ′ = 1]x2 ≤ 0

0 t

x x0 + t

x
′ = 1
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Restricting Differential Invariance

F
¬F

F
¬F

` (χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

` (F ∧ χ→ F ′)

χ→ F ` [x ′ = θ ∧ χ]F

Example (Restrictions are unsound nonsense!)

` ∀x (x2 ≤ 0→ 2x · 1 ≤ 0)
x2 ≤ 0 ` [x ′ = 1]x2 ≤ 0

0 t

x x0 + t

x
′ = 1
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Restricting Differential Invariants (Soundly!)

` ∀y1 . . . ∀yk (F ∧ χ→ F ′θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x ′1 = θ1 ∧ · · · ∧ x ′n = θn ∧ χ)]F
F open

locally sound if F open.

Proof similar to diff.inv.

Except that assuming ϕ(ζ) |= ¬F only yields h(0) ≥ 0 ≥ h(ζ),

which does not lead to a contradiction.

F open ⇒ distance to ∂F is positive in ϕ(0)

Thus h(0) > 0 ≥ h(ζ), and the contradiction arises accordingly.

André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 52 / 63



Restricting Differential Invariants (Soundly!)

` ∀y1 . . . ∀yk (F ∧ χ→ F ′θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x ′1 = θ1 ∧ · · · ∧ x ′n = θn ∧ χ)]F
F open

locally sound if F open.

Proof similar to diff.inv.

Except that assuming ϕ(ζ) |= ¬F only yields h(0) ≥ 0 ≥ h(ζ),

which does not lead to a contradiction.

F open ⇒ distance to ∂F is positive in ϕ(0)

Thus h(0) > 0 ≥ h(ζ), and the contradiction arises accordingly.
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Restricting Differential Invariants (Soundly!)

` ∀y1 . . . ∀yk (F ∧ χ→ (F ′ > 0)θ1

x ′
1
. . .θn

x ′
n
)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x ′1 = θ1 ∧ · · · ∧ x ′n = θn ∧ χ)]F

locally sound.

Repeating argument for diff.inv., assume F ≡ c ≥ 0.

By contradiction suppose there was a ι ∈ [0, r ] where ϕ(ι) |= c < 0.

Let ζ ∈ [0, r ] infimum of these ι,

Hence, ϕ(ζ) |= c = 0 by continuity.

⇒ h : [0, r ]→ R; h(t) = [[c]]ϕ(t) satisfies h(0) ≥ 0 ≥ h(ζ),
because v |= c ≥ 0 by antecedent.

Repeating argument with derivation lemma, h continuous on [0, r ]
and differentiable at every ξ ∈ (0, r) with a derivative of
dh(t)

dt (ξ) = [[c ′]]ϕ̄(ξ)
diff .subst.

= [[c ′θx ′ ]]ϕ̄(ξ), as ϕ |= x ′ = θ.
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Hence, ϕ(ζ) |= c = 0 by continuity.

⇒ h : [0, r ]→ R; h(t) = [[c]]ϕ(t) satisfies h(0) ≥ 0 ≥ h(ζ),
because v |= c ≥ 0 by antecedent.

Repeating argument with derivation lemma, h continuous on [0, r ]
and differentiable at every ξ ∈ (0, r) with a derivative of
dh(t)

dt (ξ) = [[c ′]]ϕ̄(ξ)
diff .subst.

= [[c ′θx ′ ]]ϕ̄(ξ), as ϕ |= x ′ = θ.
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Restricting Differential Invariants (Soundly!)
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[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x ′1 = θ1 ∧ · · · ∧ x ′n = θn ∧ χ)]F

locally sound.

Mean value theorem ⇒ there is ξ ∈ (0, ζ) such that

dh(t)

dt
(ξ) · (ζ − 0︸ ︷︷ ︸

≥0

) = h(ζ)− h(0)

≤ 0

dh(t)

dt
(ξ) = [[c ′

θ
x ′ ]]ϕ̄(ξ) ≤ 0

Contradiction: by premiss ϕ̄(ξ) |= c ′θx ′ > 0, as the flow
satisfies ϕ |= χ and ϕ(ξ) |= c ≥ 0, because ζ > ξ is the infimum of
the counterexamples ι with ϕ(ι) |= c < 0.
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Restricting Differential Invariants

Example (Any differential invariant restriction rule)

∗

` ∀x (x > 1
4 → x3 > 0)

x > 1
4 ` [x ′ = x3]x > 1

4

0 t

x

x0

x′ = x3
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 55 / 63



Restricting Differential Invariants

Example (Any differential invariant restriction rule)

∗
` ∀x (x > 1

4 → x3 > 0)

x > 1
4 ` [x ′ = x3]x > 1

4

0 t

x

x0

x′ = x3
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Outline

1 Verification Calculus for Differential-algebraic Dynamic Logic dL
Motivation for Differential Induction
Derivations and Differentiation
Differential Induction
Motivation for Differential Saturation
Differential Variants
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Differential Transformation
Differential Reduction & Differential Elimination
Proof Rules
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Which formulas are best as differential invariants?
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Equational Deductive Power

Does it make a difference if we have propositional operators?

Proposition (Equational deductive power)

The deductive power of differential induction with atomic equations is
identical to the deductive power of differential induction with propositional
combinations of polynomial equations: Formulas are provable with
propositional combinations of equations as differential invariants iff they
are provable with only atomic equations as differential invariants.

“differential induction for ’=’ ≡ differential induction for logic of ’=’ ”
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Equational Deductive Power: Proof

Proof.

Assume differential invariant F is in NNF.

F ≡ p1 = p2 ∨ q1 = q2 equivalent to

(p1 − p2)(q1 − q2) = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
((p1 − p2)(q1 − q2))′ = (p′1 − p′2)(q1 − q2) + (p1 − p2)(q′1 − q′2)

= 0

F ≡ p1 = p2 ∧ q1 = q2 equivalent to (p1 − p2)2 + (q1 − q2)2 = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
2(p1 − p2)(p′1 − p′2) + 2(q1 − q2)(q′1 − q′2)

= 0

F ≡ ¬(p1 = p2) does not qualify as differential invariant.
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 58 / 63



Equational Deductive Power: Proof

Proof.

Assume differential invariant F is in NNF.

F ≡ p1 = p2 ∨ q1 = q2 equivalent to

(p1 − p2)(q1 − q2) = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
((p1 − p2)(q1 − q2))′ = (p′1 − p′2)(q1 − q2) + (p1 − p2)(q′1 − q′2)

= 0

F ≡ p1 = p2 ∧ q1 = q2 equivalent to (p1 − p2)2 + (q1 − q2)2 = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
2(p1 − p2)(p′1 − p′2) + 2(q1 − q2)(q′1 − q′2)

= 0

F ≡ ¬(p1 = p2) does not qualify as differential invariant.
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 58 / 63



Equational Deductive Power: Proof

Proof.

Assume differential invariant F is in NNF.

F ≡ p1 = p2 ∨ q1 = q2 equivalent to

(p1 − p2)(q1 − q2) = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
((p1 − p2)(q1 − q2))′ = (p′1 − p′2)(q1 − q2) + (p1 − p2)(q′1 − q′2) = 0

F ≡ p1 = p2 ∧ q1 = q2 equivalent to (p1 − p2)2 + (q1 − q2)2 = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
2(p1 − p2)(p′1 − p′2) + 2(q1 − q2)(q′1 − q′2)

= 0

F ≡ ¬(p1 = p2) does not qualify as differential invariant.
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 58 / 63



Equational Deductive Power: Proof

Proof.

Assume differential invariant F is in NNF.

F ≡ p1 = p2 ∨ q1 = q2 equivalent to

(p1 − p2)(q1 − q2) = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
((p1 − p2)(q1 − q2))′ = (p′1 − p′2)(q1 − q2) + (p1 − p2)(q′1 − q′2) = 0

F ≡ p1 = p2 ∧ q1 = q2 equivalent to (p1 − p2)2 + (q1 − q2)2 = 0.

F ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
2(p1 − p2)(p′1 − p′2) + 2(q1 − q2)(q′1 − q′2) = 0

F ≡ ¬(p1 = p2) does not qualify as differential invariant.
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Deductive Power

Does it make a difference if we have propositional operators?

Theorem (Deductive power)

The deductive power of differential induction with arbitrary formulas
exceeds the deductive power of differential induction with atomic formulas:
All DAL formulas that are provable using atomic differential invariants are
provable using general differential invariants, but not vice versa!

“differential induction for atomic formulas < general differential induction”
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Deductive Power: Proof

Proof (Single differential induction step).

∗

` ∀x ∀y (x > 0 ∧ y > 0→ xy > 0 ∧ xy > 0)

x > 0 ∧ y > 0 ` [x ′ = xy ∧ y ′ = xy ](x > 0 ∧ y > 0)

Suppose single polynomial p(x , y) such that p(x , y) > 0 is a
differential invariant. The we have valid formulas:

1 x > 0 ∧ y > 0→ p(x , y) > 0, as differential invariants hold in prestate

2 p(x , y) > 0→ x > 0 ∧ y > 0, as differential invariant implies
postcondition

Hence x > 0 ∧ y > 0↔ p(x , y) > 0 valid.

Thus, p satisfies:

p(x , y) ≥ 0 for x ≥ 0, y ≥ 0, and, otherwise, p(x , y) ≤ 0 (QS)

Assume p minimal total degree with property

p(x , y) ≥ 0 for x ≥ 0, y ≥ 0, and, otherwise, p(x , y) ≤ 0 (QS)

p(x , 0) is univariate polynomial in x with zeros at all x > 0

⇒ p(x , 0) = 0 is the zero polynomial

⇒ y divides p(x , y).

Accordingly, p(0, y) = 0 for all y , hence x divides p(x , y).

Thus, xy divides p.
−p(−x ,−y)

xy satisfies (QS) with smaller total degree than p,
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∗
` ∀x ∀y (x > 0 ∧ y > 0→ xy > 0 ∧ xy > 0)

x > 0 ∧ y > 0 ` [x ′ = xy ∧ y ′ = xy ](x > 0 ∧ y > 0)

There is no polynomial p such that x > 0 ∧ y > 0↔ p(x , y) = 0,

because only zero polynomial is zero on the full quadrant (0,∞)2.

x > 0 ∧ y > 0↔ p(x , y) ≥ 0 is impossible for continuity reasons that
imply p(0, 0) = 0, which is a contradiction.

Same argument for any other sign condition that characterizes one
quadrant of R2 uniquely.

So far, argument independent of actual dynamics

Thus, still valid in the presence of arbitrary differential weakening.
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Deductive Power: Proof

Proof (Nested differential induction + strengthening).

∗
` ∀x ∀y (x > 0 ∧ y > 0→ xy > 0 ∧ xy > 0)

x > 0 ∧ y > 0 ` [x ′ = xy ∧ y ′ = xy ](x > 0 ∧ y > 0)

Inductively, strengthening χ needs to be a differential invariant:

xy > 0

x > 0 y > 0

x ′ = xy > 0 y ′ = xy > 0

Differential invariance of xy > 0 needs
xy > 0→ (xy)′xy

x ′
xy
y ′

= (x ′y + yx ′)xy
x ′

xy
y ′ = xyy + yxy = (y + x)xy > 0

xy > 0→ (y + x)xy > 0

≡ x ≥ 0 ∨ y ≥ 0 ≡ ¬(−x > 0 ∧ −y > 0)

not provable by atomic differential induction/weakening (see above).

Circular dependencies for strengthening by x > 0, y > 0, xy > 0,
respectively, which cannot be resolved in any proof tree without
simultaneous differential induction using non-atomic differential
invariants, because differential strengthenings have to be ordered
totally along each proof branch.
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André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 62 / 63



Deductive Power: Proof

Proof (Nested differential induction + strengthening).

∗
` ∀x ∀y (x > 0 ∧ y > 0→ xy > 0 ∧ xy > 0)

x > 0 ∧ y > 0 ` [x ′ = xy ∧ y ′ = xy ](x > 0 ∧ y > 0)

Inductively, strengthening χ needs to be a differential invariant:

xy > 0

x > 0 y > 0

x ′ = xy > 0 y ′ = xy > 0

Differential invariance of xy > 0 needs
xy > 0→ (xy)′xy

x ′
xy
y ′ = (x ′y + yx ′)xy

x ′
xy
y ′ = xyy + yxy = (y + x)xy > 0

xy > 0→ (y + x)xy > 0 ≡ x ≥ 0 ∨ y ≥ 0 ≡ ¬(−x > 0 ∧ −y > 0)

not provable by atomic differential induction/weakening (see above).

Circular dependencies for strengthening by x > 0, y > 0, xy > 0,
respectively, which cannot be resolved in any proof tree without
simultaneous differential induction using non-atomic differential
invariants, because differential strengthenings have to be ordered
totally along each proof branch.
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