15-819/18-879: Hybrid Systems Analysis & Theorem Proving

12: Differential-algebraic Dynamic Logic & Differential Induction

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA

André Platzer (CMU)

15-819/12: Differential-algebraic Dynamic Proving

Outline

1 Verification Calculus for Differential-algebraic Dynamic Logic d $\mathcal L$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- Soundness
- **Restricting Differential Invariants**

Deductive Power

Outline

1 Verification Calculus for Differential-algebraic Dynamic Logic d $\mathcal L$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules

Я Differential-algebraic Dynamic Logic

Outline

1 Verification Calculus for Differential-algebraic Dynamic Logic dL

Motivation for Differential Induction

- Derivations and Differentiation
- Differential Induction

- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules

"Definition" (Differential Invariant)

"Property that remains true in the direction of the dynamics"

"Definition" (Differential Invariant)

"Property that remains true in the direction of the dynamics"

${oldsymbol{\mathcal{R}}}$ Verification by Discrete and Differential Induction

${\mathcal R}$ Verification by Discrete and Differential Induction

\mathcal{R} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

Definition (Differential Invariant)

$$\frac{\vdash \forall^{\alpha} (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

Definition (Differential Invariant)

$$\frac{\vdash \forall^{\alpha}(\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash \forall^{\alpha} (\neg F \land \chi \to F'_{\gg})}{[x' = \theta \land \neg F]\chi \vdash \langle x' = \theta \land \chi \rangle F}$$

Definition (Differential Invariant)

Outline

1 Verification Calculus for Differential-algebraic Dynamic Logic d $\mathcal L$

Motivation for Differential Induction

Derivations and Differentiation

- Differential Induction

- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules

${\mathcal R}$ Goal for Differential Induction Principle

$$\sigma_1 \mapsto \llbracket F \rrbracket_{\sigma_1}$$

${\mathcal R}$ Goal for Differential Induction Principle

$$\begin{array}{rccc} \sigma_1 & \mapsto & \llbracket F \rrbracket_{\sigma_1} \\ \sigma_2 & \mapsto & \llbracket F \rrbracket_{\sigma_2} \end{array}$$

${\mathcal R}$ Goal for Differential Induction Principle

In the limit:

d	$\llbracket F \rrbracket_\sigma$
	$d\sigma$

\mathcal{R} Goal for Differential Induction Principle

$$\begin{array}{cccc} \sigma_1 & \mapsto & \llbracket F \rrbracket_{\sigma_1} \\ \sigma_2 & \mapsto & \llbracket F \rrbracket_{\sigma_2} \end{array}$$

In the limit:

 $\frac{\mathrm{d}\,\llbracket F\rrbracket_{\sigma(t)}}{\mathrm{d}\,t}$

where
$$\frac{d\sigma(t)}{dt}$$
 is according to ODE

\mathcal{R} Goal for Differential Induction Principle

$$\begin{array}{cccc} \sigma_1 & \mapsto & \llbracket F \rrbracket_{\sigma_1} \\ \sigma_2 & \mapsto & \llbracket F \rrbracket_{\sigma_2} \end{array}$$

In the limit:

$$\frac{\mathsf{d}\,\llbracket F \rrbracket_{\sigma(t)}}{\mathsf{d}t}(\zeta) = \llbracket F' \rrbracket_{\bar{\sigma}(\zeta)}$$

where
$$\frac{d\sigma(t)}{dt}$$
 is according to ODE

\mathcal{R} Goal for Differential Induction Principle

$$\begin{array}{cccc} \sigma_1 & \mapsto & \llbracket F \rrbracket_{\sigma_1} \\ \sigma_2 & \mapsto & \llbracket F \rrbracket_{\sigma_2} \end{array}$$

In the limit:

$$\frac{\mathsf{d}\,\llbracket F \rrbracket_{\sigma(t)}}{\mathsf{d}\,t}(\zeta) = \llbracket F' \rrbracket_{\bar{\sigma}(\zeta)}$$

where
$$\frac{d\sigma(t)}{dt}$$
 is according to ODE

Goal (Derivation lemma)

Valuation is a differential homomorphism

Lemma (Derivation lemma)

Valuation is differential homomorphism: for all flows φ of duration r > 0along which θ is defined, all $\zeta \in [0, r]$

$$\frac{\mathsf{d}\left[\!\left[\theta\right]\!\right]_{\varphi(t)}}{\mathsf{d}t}(\zeta) = \left[\!\left[D(\theta)\right]\!\right]_{\bar{\varphi}(\zeta)}$$

Lemma (Differential substitution principle)

If
$$\varphi \models x'_i = \theta_i \land \chi$$
, then $\varphi \models \mathcal{D} \leftrightarrow (\chi \to \mathcal{D}_{x'_i}^{\theta_i})$ for all \mathcal{D} .

Definition (Differential Invariant)

$$(\chi \to F') \equiv \chi \to D(F)^{ heta_i}_{x'_i} \quad \text{ for } [x'_i = heta_i \wedge \chi]F$$

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

• If θ is a variable x, immediate by $\bar{\varphi}(\zeta)$:

$$\frac{\mathrm{d}\,[\![x]\!]_{\varphi(t)}}{\mathrm{d}t}(\zeta) = \frac{\mathrm{d}\,\varphi(t)(x)}{\mathrm{d}t}(\zeta) = \bar{\varphi}(\zeta)(x') = [\![D(x)]\!]_{\bar{\varphi}(\zeta)}$$

Derivative exists as φ of order 1 in x, thus, continuously differentiable for x.

\mathcal{R} Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

$$\frac{\mathsf{d}}{\mathsf{d}t}(\llbracket a+b\rrbracket_{\varphi(t)})(\zeta)$$

\mathcal{R} Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

• If θ is of the form a + b:

$$\begin{aligned} &\frac{\mathrm{d}}{\mathrm{d}t}(\llbracket a+b\rrbracket_{\varphi(t)})(\zeta)\\ &=\frac{\mathrm{d}}{\mathrm{d}t}(\llbracket a\rrbracket_{\varphi(t)}+\llbracket b\rrbracket_{\varphi(t)})(\zeta)\end{aligned}$$

 $\llbracket \cdot \rrbracket_v$ homomorph for +

${\mathcal R}$ Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

$$\begin{aligned} &\frac{d}{dt}(\llbracket a + b \rrbracket_{\varphi(t)})(\zeta) \\ &= \frac{d}{dt}(\llbracket a \rrbracket_{\varphi(t)} + \llbracket b \rrbracket_{\varphi(t)})(\zeta) & \llbracket \cdot \rrbracket_{\nu} \text{ homomorph for } + \\ &= \frac{d}{dt}(\llbracket a \rrbracket_{\varphi(t)})(\zeta) + \frac{d}{dt}(\llbracket b \rrbracket_{\varphi(t)})(\zeta) & \frac{d}{dt} \text{ is a (linear) derivation} \end{aligned}$$

${\mathcal R}$ Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

$$\begin{aligned} &\frac{d}{dt}(\llbracket a+b\rrbracket_{\varphi(t)})(\zeta) \\ &= \frac{d}{dt}(\llbracket a\rrbracket_{\varphi(t)} + \llbracket b\rrbracket_{\varphi(t)})(\zeta) & \llbracket \cdot \rrbracket_{\nu} \text{ homomorph for } + \\ &= \frac{d}{dt}(\llbracket a\rrbracket_{\varphi(t)})(\zeta) + \frac{d}{dt}(\llbracket b\rrbracket_{\varphi(t)})(\zeta) & \frac{d}{dt} \text{ is a (linear) derivation} \\ &= \llbracket D(a)\rrbracket_{\bar{\varphi}(\zeta)} + \llbracket D(b)\rrbracket_{\bar{\varphi}(\zeta)} & \text{by induction hypothesis} \end{aligned}$$

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

$$\begin{aligned} &\frac{d}{dt}(\llbracket a + b\rrbracket_{\varphi(t)})(\zeta) \\ &= \frac{d}{dt}(\llbracket a\rrbracket_{\varphi(t)} + \llbracket b\rrbracket_{\varphi(t)})(\zeta) & \llbracket \cdot \rrbracket_{\nu} \text{ homomorph for } + \\ &= \frac{d}{dt}(\llbracket a\rrbracket_{\varphi(t)})(\zeta) + \frac{d}{dt}(\llbracket b\rrbracket_{\varphi(t)})(\zeta) & \frac{d}{dt} \text{ is a (linear) derivation} \\ &= \llbracket D(a)\rrbracket_{\bar{\varphi}(\zeta)} + \llbracket D(b)\rrbracket_{\bar{\varphi}(\zeta)} & \text{by induction hypothesis} \\ &= \llbracket D(a) + D(b)\rrbracket_{\bar{\varphi}(\zeta)} & \llbracket \cdot \rrbracket_{\nu} \text{ homomorph for } + \end{aligned}$$

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

$$\begin{aligned} \frac{d}{dt}(\llbracket a + b \rrbracket_{\varphi(t)})(\zeta) \\ &= \frac{d}{dt}(\llbracket a \rrbracket_{\varphi(t)} + \llbracket b \rrbracket_{\varphi(t)})(\zeta) & \llbracket \cdot \rrbracket_{\nu} \text{ homomorph for } + \\ &= \frac{d}{dt}(\llbracket a \rrbracket_{\varphi(t)})(\zeta) + \frac{d}{dt}(\llbracket b \rrbracket_{\varphi(t)})(\zeta) & \frac{d}{dt} \text{ is a (linear) derivation} \\ &= \llbracket D(a) \rrbracket_{\bar{\varphi}(\zeta)} + \llbracket D(b) \rrbracket_{\bar{\varphi}(\zeta)} & \text{by induction hypothesis} \\ &= \llbracket D(a) + D(b) \rrbracket_{\bar{\varphi}(\zeta)} & \llbracket \cdot \rrbracket_{\nu} \text{ homomorph for } + \\ &= \llbracket D(a + b) \rrbracket_{\bar{\varphi}(\zeta)} & D(\cdot) \text{ is a syntactic derivation} \end{aligned}$$

\mathcal{R} Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

 The case where θ is of the form a · b or a - b is accordingly, using Leibniz product rule or subtractiveness of D(), respectively.

${\mathcal R}$ Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- The case where θ is of the form a · b or a b is accordingly, using Leibniz product rule or subtractiveness of D(), respectively.
- The case where θ is of the form a/b uses quotient rule and further depends on the assumption that b ≠ 0 along φ. This holds as the value of θ is assumed to be defined all along state flow φ.

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- The case where θ is of the form a · b or a b is accordingly, using Leibniz product rule or subtractiveness of D(), respectively.
- The case where θ is of the form a/b uses quotient rule and further depends on the assumption that b ≠ 0 along φ. This holds as the value of θ is assumed to be defined all along state flow φ.
- The values of numbers r ∈ Q do not change during a state flow (in fact, they are not affected by the state at all), hence their derivative is D(r) = 0.
Lemma (Differential substitution principle)

If
$$\varphi \models x'_i = \theta_i \land \chi$$
, then $\varphi \models \mathcal{D} \leftrightarrow (\chi \to \mathcal{D}_{x'_i}^{\theta_i})$ for all \mathcal{D} .

Proof.

Using substitution lemma for FOL on the basis of $[\![x'_i]\!]_{\overline{\varphi}(\zeta)} = [\![\theta_i]\!]_{\overline{\varphi}(\zeta)}$ and $\overline{\varphi}(\zeta) \models \chi$ at each time ζ in the domain of φ .

\mathcal{R} Outline

$lace{1}$ Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation

Differential Induction

- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2 Soundness
- 3 Restricting Differential Invariants

Deductive Power

$$\frac{\vdash \forall^{\alpha} (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

$$\frac{\vdash \forall^{\alpha} (\neg F \land \chi \to F'_{\gg})}{[x' = \theta \land \neg F]\chi \vdash \langle x' = \theta \land \chi \rangle F}$$

${\mathcal R}$ Differential Invariant Example: Quartic Dynamics

$$\overline{2x \ge \frac{1}{4} \vdash [x' = x^2 + x^4] 2x \ge \frac{1}{4}}$$

${\mathcal R}$ Differential Invariant Example: Quartic Dynamics

$$\frac{}{2x \geq \frac{1}{4} \vdash [x' = x^2 + x^4]2x \geq \frac{1}{4}}$$

$$\frac{ \begin{matrix} \vdash \forall x \, (2\mathbf{x'} \geq 0) \\ \vdash \forall x \, (D(2x) \geq D(\frac{1}{4})) \\ \hline 2x \geq \frac{1}{4} \vdash [\mathbf{x'} = x^2 + x^4] 2x \geq \frac{1}{4} \end{matrix}$$

ℜ Differential Invariant Example: Quartic Dynamics

ℜ Differential Invariant Example: Quartic Dynamics

$\vdash \forall v (d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \mathcal{F}(\omega)] d_1^2 + d_2^2 = v^2)$

$$\mathcal{F}(\omega) \;\equiv\; d_1' = \,-\,\omega d_2 \wedge d_2' = \omega d_1$$

$$\begin{array}{c} \vdash d_1^2 + d_2^2 = v^2 \rightarrow \left[\exists \omega \, \mathcal{F}(\omega) \right] d_1^2 + d_2^2 = v^2 \\ \vdash \forall v \, (d_1^2 + d_2^2 = v^2 \rightarrow \left[\exists \omega \, \mathcal{F}(\omega) \right] d_1^2 + d_2^2 = v^2) \end{array}$$

$$\mathcal{F}(\omega) \;\equiv\; d_1' = \,-\,\omega d_2 \wedge d_2' = \omega d_1$$

$$\begin{array}{c} d_1^2 + d_2^2 = v^2 \vdash [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2 \\ \\ \hline & + d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2 \\ \\ \hline & + \forall v \, (d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2) \end{array}$$

$$\mathcal{F}(\omega) \;\equiv\; d_1' = \,-\,\omega d_2 \wedge d_2' = \omega d_1$$

$$\begin{array}{c} \vdash \forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \, (2d_1d_1' + 2d_2d_2' = 0) \\ \hline d_1^2 + d_2^2 = v^2 \vdash [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2 \\ \hline \vdash d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2 \\ \hline \vdash \forall v \, (d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2) \end{array}$$

$$\mathcal{F}(\omega) \equiv \mathbf{d}_1' = -\omega \mathbf{d}_2 \wedge \mathbf{d}_2' = \omega \mathbf{d}_1$$

$$\begin{array}{c} \vdash \forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \, (2d_1(\,-\,\omega \,d_2) + 2d_2 \omega \,d_1 = 0) \\ \vdash \forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \, (2d_1d_1' + 2d_2d_2' = 0) \\ \hline d_1^2 + d_2^2 = v^2 \vdash [\exists \omega \,\mathcal{F}(\omega)] \,d_1^2 + d_2^2 = v^2 \\ \hline d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \,\mathcal{F}(\omega)] \,d_1^2 + d_2^2 = v^2 \\ \vdash d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \,\mathcal{F}(\omega)] \,d_1^2 + d_2^2 = v^2 \\ \vdash \forall v \, (d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \,\mathcal{F}(\omega)] \,d_1^2 + d_2^2 = v^2) \end{array}$$

$$\mathcal{F}(\omega) \equiv d_1' = -\omega d_2 \wedge d_2' = \omega d_1$$

$$\begin{array}{r} \vdash \mathsf{QE}(\forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \,(2d_1(-\omega d_2) + 2d_2 \omega d_1 = 0)) \\ \vdash \forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \,(2d_1(-\omega d_2) + 2d_2 \omega d_1 = 0) \\ \hline \vdash \forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \,(2d_1 d_1' + 2d_2 d_2' = 0) \\ \hline d_1^2 + d_2^2 = v^2 \vdash [\exists \omega \,\mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2 \\ \hline \vdash d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \,\mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2 \\ \vdash \forall v \,(d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \,\mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2) \end{array}$$

$$\mathcal{F}(\omega) \;\equiv\; d_1' = \,-\,\omega d_2 \wedge d_2' = \omega d_1$$

*

$$\begin{array}{c} \vdash \mathsf{QE}(\forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \,(2d_1(-\omega d_2) + 2d_2 \omega d_1 = 0)) \\ \vdash \forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \,(2d_1(-\omega d_2) + 2d_2 \omega d_1 = 0) \\ \vdash \forall x_1, x_2 \,\forall d_1, d_2 \,\forall \omega \,(2d_1d'_1 + 2d_2d'_2 = 0) \\ \hline d_1^2 + d_2^2 = v^2 \vdash [\exists \omega \,\mathcal{F}(\omega)] \,d_1^2 + d_2^2 = v^2 \\ \vdash d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \,\mathcal{F}(\omega)] \,d_1^2 + d_2^2 = v^2 \\ \vdash \forall v \,(d_1^2 + d_2^2 = v^2 \rightarrow [\exists \omega \,\mathcal{F}(\omega)] \,d_1^2 + d_2^2 = v^2) \end{array}$$

$$\mathcal{F}(\omega) \;\equiv\; d_1' = \,-\,\omega d_2 \wedge d_2' = \omega d_1$$

$$\begin{aligned} d_1 \geq d_2 \rightarrow [x := a^2 + 1; \\ (d_1' = -\omega d_2 \wedge d_2' = \omega d_1) \lor (d_1' \leq 2d_1) \\] d_1 \geq d_2 \end{aligned}$$

$$\begin{aligned} d_1 \geq d_2 \rightarrow [x := a^2 + 1; \\ \exists \omega \, (\omega \leq 1 \land d_1' = -\omega d_2 \land d_2' = \omega d_1) \lor (d_1' \leq 2d_1) \\ \end{bmatrix} d_1 \geq d_2 \end{aligned}$$

F closed under total differentiation with respect to differential constraints

$$\begin{aligned} d_1 \geq d_2 &\to [x := a^2 + 1; \\ &\exists \omega \, (\omega \leq 1 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1) \lor (d_1' \leq 2d_1) \\ &] d_1 \geq d_2 \end{aligned}$$

• quantified nondeterminism/disturbance

André Platzer (CMU)

F closed under total differentiation with respect to differential constraints

$$\begin{aligned} d_1 \geq d_2 &\to [\mathsf{x} := \mathsf{a}^2 + 1; \\ &\exists \omega \, (\omega \leq 1 \land d_1' = -\omega d_2 \land d_2' = \omega d_1) \lor (d_1' \leq 2d_1) \\ &] d_1 \geq d_2 \end{aligned}$$

• quantified nondeterminism/disturbance

André Platzer (CMU)

F closed under total differentiation with respect to differential constraints

$$\begin{aligned} d_1 \geq d_2 \rightarrow [x > 0 \rightarrow \exists a \, (a < 5 \land x := a^2 + 1); \\ \exists \omega \, (\omega \leq 1 \land d'_1 = -\omega d_2 \land d'_2 = \omega d_1) \lor (d'_1 \leq 2d_1) \\ \end{bmatrix} d_1 \geq d_2 \end{aligned}$$

discrete quantified nondeterminism/disturbance

$$\frac{\vdash \forall^{\alpha} (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

$$\frac{\vdash \forall^{\alpha} (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

$$\frac{\vdash \forall^{\alpha} (F \land \chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

$$\frac{\vdash \forall^{\alpha} (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

$$\frac{\vdash \forall^{\alpha} (F \land \chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

Example (Restrictions)

$$\frac{\vdash \forall x (x^2 \le 0 \to 2x \cdot 1 \le 0)}{x^2 \le 0 \vdash [x'=1]x^2 \le 0}$$

$$\frac{\vdash \forall^{\alpha} (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash \forall^{\alpha} (F \land \chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi] F}$$

Example (Restrictions)

$$\frac{\vdash \forall x \left(x^2 \leq 0 \to 2x \cdot 1 \leq 0\right)}{x^2 \leq 0 \vdash [x'=1]x^2 \leq 0}$$

$$\begin{array}{c} x & x_0 + t \\ 0 & & \\ & & \\ x & & \\$$

Example (Restrictions are unsound nonsense!)

$$\frac{\vdash \forall x \left(x^2 \leq \mathbf{0} \to 2x \cdot 1 \leq \mathbf{0}\right)}{x^2 \leq \mathbf{0} \vdash [x'=1]x^2 \leq \mathbf{0}}$$

Example (Negative equations)

$$\frac{x}{x \neq 0 \vdash [x'=1] \neq 0}$$

 $F\wedge G'\equiv$

$$F \wedge G' \equiv F' \wedge G'$$

$$F \wedge G' \equiv F' \wedge G'$$

 $F \vee G' \equiv$

$$F \wedge G' \equiv F' \wedge G'$$

 $F \vee G' \equiv F' \vee G'$?

$$F \wedge G' \equiv F' \wedge G'$$

 $F \vee G' \equiv F' \vee G'$?

Example (Differential induction provable)

$$d_1^2 + d_2^2 = v^2 \rightarrow \left[\exists \omega \, \mathcal{F}(\omega)\right] d_1^2 + d_2^2 = v^2$$

$$F \wedge G' \equiv F' \wedge G'$$

 $F \vee G' \equiv F' \vee G'$?

Example (Differential induction provable)

$$d_1^2 + d_2^2 = v^2
ightarrow [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2$$

Example (Thus provable)

$$x_1 \geq 0 \lor d_1^2 + d_2^2 = v^2
ightarrow [\exists \omega \mathcal{F}(\omega)](x_1 \geq 0 \lor d_1^2 + d_2^2 = v^2)$$
\mathcal{R} Disjunctive Differential Invariants

$$F \wedge G' \equiv F' \wedge G'$$

 $F \vee G' \equiv F' \vee G'$?

Example (Differential induction provable)

$$d_1^2 + d_2^2 = v^2
ightarrow [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2$$

Example (Nonsense!)

$$x_1 \geq 0 \lor d_1^2 + d_2^2 = v^2
ightarrow [\exists \omega \mathcal{F}(\omega)](x_1 \geq 0 \lor d_1^2 + d_2^2 = v^2)$$

\mathcal{R} Disjunctive Differential Invariants

$$F \wedge G' \equiv F' \wedge G'$$
$$F \vee G' \equiv F' \wedge G'$$
!

Example (Differential induction provable)

$$d_1^2 + d_2^2 = v^2
ightarrow [\exists \omega \, \mathcal{F}(\omega)] \, d_1^2 + d_2^2 = v^2$$

Example (Nonsense!)

$$x_1 \geq 0 \lor d_1^2 + d_2^2 = v^2
ightarrow [\exists \omega \mathcal{F}(\omega)](x_1 \geq 0 \lor d_1^2 + d_2^2 = v^2)$$

Lemma

Differential invariants are closed under conjunction and differentiation: F diff. inv., G diff. inv. \Rightarrow $F \land G$ diff. inv. (of same system) F diff. inv. \Rightarrow F' diff. inv. (of same system)

\mathcal{R} Outline

$lace{1}$ Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction

• Motivation for Differential Saturation

- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2 Soundness
- 3 Restricting Differential Invariants

Deductive Power

$F_{1} = d_{1}, d_{1}' = -\omega d_{2}, x_{2}' = d_{2}, d_{2}' = \omega d_{1}, ..](x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2} \ge p^{2}$

 $\frac{\left|+\frac{\partial \|x-y\|^2}{\partial x_1}x_1'+\frac{\partial \|x-y\|^2}{\partial y_1}y_1'+\frac{\partial \|x-y\|^2}{\partial x_2}x_2'+\frac{\partial \|x-y\|^2}{\partial y_2}y_2'\geq \frac{\partial p^2}{\partial x_1}x_1'\dots\right|}{\left|+[x_1'=d_1,d_1'=-\omega d_2,x_2'=d_2,d_2'=\omega d_1,..](x_1-y_1)^2+(x_2-y_2)^2\geq p^2}$

$$\frac{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0}{\vdash \frac{\partial ||x - y||^2}{\partial x_1} d_1 + \frac{\partial ||x - y||^2}{\partial y_1} e_1 + \frac{\partial ||x - y||^2}{\partial x_2} d_2 + \frac{\partial ||x - y||^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots}$$
$$\vdash [x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, \dots](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

$$\frac{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0}{\vdash \frac{\partial ||x - y||^2}{\partial x_1} d_1 + \frac{\partial ||x - y||^2}{\partial y_1} e_1 + \frac{\partial ||x - y||^2}{\partial x_2} d_2 + \frac{\partial ||x - y||^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots} \\ \vdash [x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, \dots](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

$$\frac{\left| \begin{array}{c} \left| (x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \right| \geq 0 \\ \left| \begin{array}{c} \left| \frac{\partial \|x - y\|^2}{\partial x_1} d_1 + \frac{\partial \|x - y\|^2}{\partial y_1} e_1 + \frac{\partial \|x - y\|^2}{\partial x_2} d_2 + \frac{\partial \|x - y\|^2}{\partial y_2} e_2 \right| \geq \frac{\partial p^2}{\partial x_1} d_1 \dots \\ \left| \left| x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, \dots \right| (x_1 - y_1)^2 + (x_2 - y_2)^2 \geq p^2 \end{array} \right|$$

$$\overline{...} \vdash [d'_1 = -\omega d_2, e'_1 = -\omega e_2, x'_2 = d_2, d'_2 = \omega d_1, ...] d_1 - e_1 = -\omega (x_2 - y_2)$$

$$\frac{\vdash 2(x_1 - y_1)(-\omega(x_2 - y_2)) + 2(x_2 - y_2)\omega(x_1 - y_1) \ge 0}{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0}$$
$$\frac{\vdash \frac{\partial ||x - y||^2}{\partial x_1} d_1 + \frac{\partial ||x - y||^2}{\partial y_1} e_1 + \frac{\partial ||x - y||^2}{\partial x_2} d_2 + \frac{\partial ||x - y||^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots}{\vdash [x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, \dots](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2}$$

$$.. \vdash [d'_1 = -\omega d_2, e'_1 = -\omega e_2, x'_2 = d_2, d'_2 = \omega d_1, ..] d_1 - e_1 = -\omega (x_2 - y_2)$$

$$\begin{array}{l} \displaystyle \frac{\vdash 2(x_1 - y_1)(-\omega(x_2 - y_2)) + 2(x_2 - y_2)\omega(x_1 - y_1) \ge 0}{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0} \\ \displaystyle \frac{\vdash \frac{\partial ||x - y||^2}{\partial x_1} d_1 + \frac{\partial ||x - y||^2}{\partial y_1} e_1 + \frac{\partial ||x - y||^2}{\partial x_2} d_2 + \frac{\partial ||x - y||^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots \\ \displaystyle \frac{\vdash |x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, ...](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2} \end{array}$$

$$\frac{\left[\left(\frac{\partial (d_1-e_1)}{\partial d_1}d_1'+\frac{\partial (d_1-e_1)}{\partial e_1}e_1'\right)e_1'\right] = -\frac{\partial \omega(x_2-y_2)}{\partial x_2}x_2'-\frac{\partial \omega(x_2-y_2)}{\partial y_2}y_2'}{\ldots \left[d_1'=-\omega d_2, e_1'=-\omega e_2, x_2'=d_2, d_2'=\omega d_1, \ldots\right]d_1-e_1=-\omega(x_2-y_2)}$$

$$\frac{\vdash 2(x_1 - y_1)(-\omega(x_2 - y_2)) + 2(x_2 - y_2)\omega(x_1 - y_1) \ge 0}{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0}$$

$$\frac{\vdash \frac{\partial ||x - y||^2}{\partial x_1} d_1 + \frac{\partial ||x - y||^2}{\partial y_1} e_1 + \frac{\partial ||x - y||^2}{\partial x_2} d_2 + \frac{\partial ||x - y||^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots$$

$$\vdash [x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, \dots](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

$$\frac{\left[\left(\frac{\partial (d_1 - e_1)}{\partial d_1} d'_1 + \frac{\partial (d_1 - e_1)}{\partial e_1} e'_1 \right) = - \frac{\partial \omega (x_2 - y_2)}{\partial x_2} x'_2 - \frac{\partial \omega (x_2 - y_2)}{\partial y_2} y'_2 \right]}{\left[\left(\frac{\partial (d_1 - e_1)}{\partial e_1} d'_1 - \omega d_2, e'_1 \right) = - \omega e_2, x'_2 = d_2, d'_2 = \omega d_1, \ldots \right] d_1 - e_1 = -\omega (x_2 - y_2)}$$

$$\frac{\vdash 2(x_1 - y_1)(-\omega(x_2 - y_2)) + 2(x_2 - y_2)\omega(x_1 - y_1) \ge 0}{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0}$$

$$\frac{\vdash \frac{\partial ||x - y||^2}{\partial x_1} d_1 + \frac{\partial ||x - y||^2}{\partial y_1} e_1 + \frac{\partial ||x - y||^2}{\partial x_2} d_2 + \frac{\partial ||x - y||^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots$$

$$\vdash [x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, \dots](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

$$\frac{\left[\left(\frac{\partial(d_1-e_1)}{\partial d_1}(-\omega d_2)+\frac{\partial(d_1-e_1)}{\partial e_1}(-\omega e_2)\right)-\frac{\partial\omega(x_2-y_2)}{\partial x_2}d_2-\frac{\partial\omega(x_2-y_2)}{\partial y_2}e_2\right]}{\left[\left(\frac{\partial d_1}{\partial e_1}-\omega d_2,e_1'=-\omega e_2,x_2'=d_2,d_2'=\omega d_1,\ldots\right]d_1-e_1=-\omega(x_2-y_2)}$$

ℜ Differential Induction for Aircraft Roundabouts

$$\begin{array}{l} \displaystyle \frac{\vdash 2(x_1 - y_1)(-\omega(x_2 - y_2)) + 2(x_2 - y_2)\omega(x_1 - y_1) \ge 0}{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0} \\ \displaystyle \frac{\vdash \frac{\partial ||x - y||^2}{\partial x_1} d_1 + \frac{\partial ||x - y||^2}{\partial y_1} e_1 + \frac{\partial ||x - y||^2}{\partial x_2} d_2 + \frac{\partial ||x - y||^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots \\ \displaystyle \frac{\vdash |x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, ...](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2} \end{array}$$

\mathcal{R} Differential Induction & Differential Saturation

$$\begin{array}{l} \displaystyle \frac{\vdash 2(x_1 - y_1)(-\omega(x_2 - y_2)) + 2(x_2 - y_2)\omega(x_1 - y_1) \ge 0}{\vdash 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0} \\ \displaystyle \frac{\vdash \frac{\partial ||x - y||^2}{\partial x_1}d_1 + \frac{\partial ||x - y||^2}{\partial y_1}e_1 + \frac{\partial ||x - y||^2}{\partial x_2}d_2 + \frac{\partial ||x - y||^2}{\partial y_2}e_2 \ge \frac{\partial p^2}{\partial x_1}d_1 \dots \\ \displaystyle \vdash [x_1' = d_1, d_1' = -\omega d_2, x_2' = d_2, d_2' = \omega d_1, \dots](x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2 \end{array}$$

Proposition (Differential saturation)

F differential invariant of
$$[x' = \theta \land H]\phi$$
, then
 $[x' = \theta \land H]\phi$ iff $[x' = \theta \land H \land F]\phi$

$$\frac{\vdash -\omega d_2 + \omega e_2 = -\omega (d_2 - e_2)}{\vdash \frac{\partial (d_1 - e_1)}{\partial d_1} (-\omega d_2) + \frac{\partial (d_1 - e_1)}{\partial e_1} (-\omega e_2) = -\frac{\partial \omega (x_2 - y_2)}{\partial x_2} d_2 - \frac{\partial \omega (x_2 - y_2)}{\partial y_2} e_2}$$
$$\vdots \vdash [d'_1 = -\omega d_2, e'_1 = -\omega e_2, x'_2 = d_2, d'_2 = \omega d_1, ..] d_1 - e_1 = -\omega (x_2 - y_2)$$

${\mathscr R}$ Differential Induction & Differential Saturation

\mathcal{R} Outline

$lace{1}$ Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2 Soundness
- 3 Restricting Differential Invariants

Deductive Power

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$\frac{\vdash (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash (\neg F \land \chi \to F'_{\gg})}{[x' = \theta \land \sim F]\chi \vdash \langle x' = \theta \land \chi \rangle F}$$

Definition (Differential Variant)

F positive under total differentiation with respect to differential constraints

$$\mathcal{F}(0) \equiv x_1' = d_1 \wedge x_2' = d_2$$

 $\mathcal{F} \equiv x_1 \ge p_1 \wedge x_2 \ge p_2$

$$\begin{aligned} \mathcal{F}(0) &\equiv x_1' = d_1 \wedge x_2' = d_2 \\ F &\equiv x_1 \geq p_1 \wedge x_2 \geq p_2 \\ F' &\equiv x_1' \geq 0 \wedge x_2' \geq 0 \end{aligned}$$

$$\mathcal{F}(0) \equiv x_1' = d_1 \wedge x_2' = d_2$$

$$F \equiv x_1 \ge p_1 \wedge x_2 \ge p_2$$

$$F' \equiv x_1' \ge 0 \wedge x_2' \ge 0$$

$$F' \ge \epsilon \equiv x_1' \ge \epsilon \wedge x_2' \ge \epsilon$$

$$\mathcal{F}(0) \equiv \mathbf{x}_{1}' = d_{1} \wedge \mathbf{x}_{2}' = d_{2}$$

$$F \equiv \mathbf{x}_{1} \ge p_{1} \wedge \mathbf{x}_{2} \ge p_{2}$$

$$F' \equiv \mathbf{x}_{1}' \ge 0 \wedge \mathbf{x}_{2}' \ge 0$$

$$F' \ge \epsilon \equiv \mathbf{x}_{1}' \ge \epsilon \wedge \mathbf{x}_{2}' \ge \epsilon$$

$$\mathcal{F}(0) \equiv x_1' = d_1 \wedge x_2' = d_2$$

$$F \equiv x_1 \ge p_1 \wedge x_2 \ge p_2$$

$$F' \equiv d_1 \ge 0 \wedge d_2 \ge 0$$

$$F' \ge \epsilon \equiv d_1 \ge \epsilon \wedge d_2 \ge \epsilon$$

Example (Progress)

$$\frac{\vdash \forall x (x > 0 \rightarrow -x < 0)}{\vdash \langle x' = -x \rangle x \le 0}$$

$$\frac{\vdash \forall x (x > 0 \to -x < 0)}{\vdash \langle x' = -x \rangle x \le 0}$$

Example (Mixed dynamics)

*

$$\begin{array}{l} \vdash \exists \varepsilon \! > \! 0 \, \forall x \forall y \, (x < 6 \rightarrow 1 \ge \varepsilon) \\ \vdash \langle x' = 1 \land y' = 1 + y^2 \rangle x \ge 6 \end{array}$$

Example (Mixed dynamics)

\mathcal{R} Outline

$lace{1}$ Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants

• Compositional Verification Calculus

- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2 Soundness
- 3 Restricting Differential Invariants

Deductive Power

${\mathscr R}$ Verification of Differential-algebraic Dynamic Logic

$$v \xrightarrow{x := \theta} w$$

$$[x := \theta]\phi$$

${\mathcal R}$ Verification of Differential-algebraic Dynamic Logic

$$\overline{[x := \theta]\phi}$$

${\mathcal R}$ Verification of Differential-algebraic Dynamic Logic

 $\bar{\chi} \equiv \forall 0 \leq s \leq t \langle x := y_x(s) \rangle \chi$

compositional semantics \Rightarrow compositional rules!

$$\frac{\vdash \exists v \, \varphi(v) \quad \vdash \forall v > 0 \, (\varphi(v) \to \langle \alpha \rangle \varphi(v-1))}{\vdash \langle \alpha^* \rangle \psi} \\
\frac{\exists v \, \varphi(v)}{\lor} \\
\frac{\forall v \to 0 \, (\varphi(v) \to \langle \alpha \rangle \varphi(v-1))}{\lor \langle \alpha \rangle \varphi(v-1))} \\
\frac{\forall v \to 0 \, (\varphi(v) \to \langle \alpha \rangle \varphi(v-1))}{\lor} \\$$

$$\frac{\vdash \exists v \, \varphi(v) \quad \vdash \forall v > 0 \, (\varphi(v) \to \langle \alpha \rangle \varphi(v-1)) \quad \vdash (\exists v \leq 0 \, \varphi(v) \to \psi)}{\vdash \langle \alpha^* \rangle \psi}$$

\mathcal{R} Outline

$lacebox{I}$ Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus

• Differential Transformation

- Differential Reduction & Differential Elimination
- Proof Rules

2 Soundness

3 Restricting Differential Invariants

Deductive Power

Lemma (Differential transformation principle)

Let \mathcal{D} and \mathcal{E} be DA-constraints (same changed variables). If $\mathcal{D} \to \mathcal{E}$ is a tautology of (non-differential) first-order real arithmetic (that is, when considering $x^{(n)}$ as a new variable independent from x), then $\rho(\mathcal{D}) \subseteq \rho(\mathcal{E})$.

Lemma (Differential transformation principle)

Let \mathcal{D} and \mathcal{E} be DA-constraints (same changed variables). If $\mathcal{D} \to \mathcal{E}$ is a tautology of (non-differential) first-order real arithmetic (that is, when considering $x^{(n)}$ as a new variable independent from x), then $\rho(\mathcal{D}) \subseteq \rho(\mathcal{E})$.

• DA-constraints \mathcal{D} and \mathcal{E} are *equivalent* iff $\rho(\mathcal{D}) = \rho(\mathcal{E})$.

Lemma (Differential transformation principle)

Let \mathcal{D} and \mathcal{E} be DA-constraints (same changed variables). If $\mathcal{D} \to \mathcal{E}$ is a tautology of (non-differential) first-order real arithmetic (that is, when considering $x^{(n)}$ as a new variable independent from x), then $\rho(\mathcal{D}) \subseteq \rho(\mathcal{E})$.

- DA-constraints \mathcal{D} and \mathcal{E} are *equivalent* iff $\rho(\mathcal{D}) = \rho(\mathcal{E})$.
- Semantics of DA-programs is preserved when replacing DA-constraint equivalently in non-differential first-order real arithmetic.

•
$$\mathcal{D} \equiv \phi_X^{x'}$$
 and $\mathcal{E} \equiv \psi_X^{x'}$.

- $\mathcal{D} \equiv \phi_X^{\mathbf{x}'}$ and $\mathcal{E} \equiv \psi_X^{\mathbf{x}'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.

- $\mathcal{D} \equiv \phi_X^{\mathbf{x}'}$ and $\mathcal{E} \equiv \psi_X^{\mathbf{x}'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ .

- $\mathcal{D} \equiv \phi_X^{x'}$ and $\mathcal{E} \equiv \psi_X^{x'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ .
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:

- $\mathcal{D} \equiv \phi_X^{x'}$ and $\mathcal{E} \equiv \psi_X^{x'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ .
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:

• For any
$$\zeta \in [0,r]$$
, we have $ar{arphi}(\zeta) \models \mathcal{D}$

- $\mathcal{D} \equiv \phi_X^{x'}$ and $\mathcal{E} \equiv \psi_X^{x'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ .
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in [0,r]$, we have $ar{arphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,

lpha Differential Transformation: Proof

- $\mathcal{D} \equiv \phi_X^{\mathbf{x}'}$ and $\mathcal{E} \equiv \psi_X^{\mathbf{x}'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ .
- Then φ is a state flow for $\mathcal E$ that justifies $(v, w) \in \rho(\mathcal E)$:
- For any $\zeta \in [0,r]$, we have $ar{arphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,
- because $\bar{\varphi}(\zeta) \models \phi_X^{x'}$ implies $\bar{\varphi}(\zeta) \models \psi_X^{x'}$ by validity of $\phi \to \psi$.

- $\mathcal{D} \equiv \phi_X^{x'}$ and $\mathcal{E} \equiv \psi_X^{x'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ .
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in [0,r]$, we have $ar{arphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,
- because $\bar{\varphi}(\zeta) \models \phi_X^{x'}$ implies $\bar{\varphi}(\zeta) \models \psi_X^{x'}$ by validity of $\phi \to \psi$.
- \mathcal{D} and \mathcal{E} need same set of changed variables as unchanged variables *z* remain constant.

- $\mathcal{D} \equiv \phi_X^{\mathbf{x}'}$ and $\mathcal{E} \equiv \psi_X^{\mathbf{x}'}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ .
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in [0,r]$, we have $ar{arphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,
- because $\bar{\varphi}(\zeta) \models \phi_X^{x'}$ implies $\bar{\varphi}(\zeta) \models \psi_X^{x'}$ by validity of $\phi \to \psi$.
- \mathcal{D} and \mathcal{E} need same set of changed variables as unchanged variables *z* remain constant.
- Add z' = 0 as required.

\mathcal{R} Outline

$lace{1}$ Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2) Soundness
- 3 Restricting Differential Invariants

Deductive Power
Lemma (Differential inequality elimination)

DA-constraints admit differential inequality elimination, i.e., to each DA-constraint \mathcal{D} , an equivalent DA-constraint without differential inequalities can be effectively associated that has no other free variables.

Proof.

Lemma (Differential inequality elimination)

DA-constraints admit differential inequality elimination, i.e., to each DA-constraint D, an equivalent DA-constraint without differential inequalities can be effectively associated that has no other free variables.

Proof.

Let *E* like *D* with all differential inequalities θ₁ ≤ θ₂ replaced by a quantified differential equation ∃u (θ₁ = θ₂ − u ∧ u ≥ 0) with a new variable u for the quantified disturbance (accordingly for ≥, >, <).

Lemma (Differential inequality elimination)

DA-constraints admit differential inequality elimination, i.e., to each DA-constraint D, an equivalent DA-constraint without differential inequalities can be effectively associated that has no other free variables.

Proof.

- Let \mathcal{E} like \mathcal{D} with all differential inequalities $\theta_1 \leq \theta_2$ replaced by a quantified differential equation $\exists u \ (\theta_1 = \theta_2 u \land u \geq 0)$ with a new variable u for the quantified disturbance (accordingly for $\geq, >, <$).
- Diff. trafo: equivalence of \mathcal{D} and \mathcal{E} is a simple consequence of the corresponding equivalences in first-order real arithmetic.

\mathcal{R} Differential Equation Normalization

DA-constraint may become inhomogeneous: $\theta_1 \le x' \le \theta_2$ produces $\exists u \exists v (x' = \theta_1 + u \land x' = \theta_2 - v \land u \ge 0 \land v \ge 0)$

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D} , an equivalent DA-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)} = \theta$ where $\operatorname{ord}_x \theta < n$.

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D} , an equivalent DA-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)} = \theta$ where $\operatorname{ord}_x \theta < n$.

Proof.

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D} , an equivalent DA-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)} = \theta$ where $\operatorname{ord}_x \theta < n$.

Proof.

• For each differential symbol $x^{(n)} \in \Sigma'$, introduce new non-differential variable $X_n \in \Sigma$.

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D} , an equivalent DA-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)} = \theta$ where $\operatorname{ord}_x \theta < n$.

Proof.

- For each differential symbol $x^{(n)} \in \Sigma'$, introduce new non-differential variable $X_n \in \Sigma$.
- Diff. trafo: equivalence of D and ∃X_n (x⁽ⁿ⁾ = X_n ∧ D^{X_n}_{x⁽ⁿ⁾}) is a simple consequence of the corresponding equivalence in FOL_R.

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D} , an equivalent DA-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)} = \theta$ where $\operatorname{ord}_x \theta < n$.

Proof.

- For each differential symbol $x^{(n)} \in \Sigma'$, introduce new non-differential variable $X_n \in \Sigma$.
- Diff. trafo: equivalence of D and ∃X_n (x⁽ⁿ⁾ = X_n ∧ D^{X_n}_{x⁽ⁿ⁾}) is a simple consequence of the corresponding equivalence in FOL_R.
- Induction for all such $x^{(n)} \in \Sigma'$ in \mathcal{D} gives desired result.

Recall aircraft progress property

$$\forall p \exists d (\|d\|^2 \leq b^2 \land \langle x_1' = d_1 \land x_2' = d_2 \rangle (x_1 \geq p_1 \land x_2 \geq p_2))$$

Similar proof can be found for

$$\forall p \exists d (\|d\|^2 \leq b^2 \land \langle x_1' \geq d_1 \land x_2' \geq d_2 \rangle (x_1 \geq p_1 \land x_2 \geq p_2)) \\ \rightsquigarrow \ldots \langle \exists u (x_1' = d_1 + u_1 \land x_2' = d_2 + u_2 \land u_1 \geq 0 \land u_2 \geq 0) \rangle (x_1 \geq p_1 \land x_2 \geq p_2)$$

The proof is identical to before, except that differential induction yields

$$\forall x \,\forall u \, ((x_1 < p_1 \lor x_2 < p_2) \land u_1 \ge 0 \land u_2 \ge 0 \rightarrow d_1 + u_1 \ge \varepsilon \land d_2 + u_2 \ge \varepsilon)$$

\mathcal{R} Outline

$lacebox{I}$ Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2 Soundness
- 8 Restricting Differential Invariants

Deductive Power

Definition (Admissible substitution)

An application of a substitution σ is *admissible* if no variable x that σ replaces by σx occurs in the scope of a quantifier or modality binding x or a (logical or state) variable of the replacement σx . A modality *binds* variable x iff its DA-program changes x, i.e., contains a DJ-constraint with $x := \theta$ or a DA-constraint with x'.

Definition (Admissible substitution)

An application of a substitution σ is *admissible* if no variable x that σ replaces by σx occurs in the scope of a quantifier or modality binding x or a (logical or state) variable of the replacement σx . A modality *binds* variable x iff its DA-program changes x, i.e., contains a DJ-constraint with $x := \theta$ or a DA-constraint with x'.

All substitutions in all rules need to be admissible!

Definition (Rules)

Any instance

$$\frac{\Phi_1 \vdash \Psi_1 \quad \dots \quad \Phi_n \vdash \Psi_n}{\Phi_0 \vdash \Psi_0}$$

of a rule can be applied as a proof rule in context:

$$\frac{\Gamma, \Phi_1 \vdash \Psi_1, \Delta \quad \dots \quad \Gamma, \Phi_n \vdash \Psi_n, \Delta}{\Gamma, \Phi_0 \vdash \Psi_0, \Delta}$$

 Γ, Δ are arbitrary finite sets of additional context formulas (including empty sets)

Definition (Rules)

Symmetric schemata can be applied on either side of the sequent: If

 ϕ_0

can both be applied as proof rules of the dL calculus, where Γ,Δ are arbitrary finite sets of context formulas

R Verification of Differential-algebraic Dynamic Logic Propositional Rules

10 propositional rules

$\frac{\vdash \phi}{\neg \phi \vdash}$	$\frac{\phi,\psi\vdash}{\phi\wedge\psi\vdash}$	$\frac{\phi \vdash \psi \vdash}{\phi \lor \psi \vdash}$	
$\frac{\phi \vdash}{\vdash \neg \phi}$	$\frac{\vdash \phi \vdash \psi}{\vdash \phi \land \psi}$	$\frac{\vdash \phi, \psi}{\vdash \phi \lor \psi}$	
$\frac{\phi \vdash \psi}{\vdash \phi \to \psi}$	$\frac{\vdash \phi \psi \vdash}{\phi \to \psi \vdash}$	$\overline{\phi\vdash\phi}$	

ℜ Verification of Differential-algebraic Dynamic Logic Dynamic Rules

$$\frac{\langle \alpha \rangle \langle \beta \rangle \phi}{\langle \alpha; \beta \rangle \phi} \qquad \frac{\exists x \, \langle \mathcal{J} \rangle \phi}{\langle \exists x \, \mathcal{J} \rangle \phi} \qquad \frac{\chi \wedge \phi_{x_1}^{\theta_1} \dots_{x_n}^{\theta_n}}{\langle x_1 := \theta_1 \wedge \dots \wedge x_n := \theta_n \wedge \chi \rangle \phi}$$

$$\frac{[\alpha][\beta]\phi}{[\alpha;\beta]\phi} \qquad \qquad \frac{\forall x\,[\mathcal{J}]\phi}{[\exists x\,\mathcal{J}]\phi} \qquad \qquad \frac{\chi \to \phi_{x_1}^{\theta_1}\dots_{x_n}^{\theta_n}}{[x_1:=\theta_1\wedge\dots\wedge x_n:=\theta_n\wedge\chi]\phi}$$

$$\frac{\langle \alpha \rangle \phi \lor \langle \beta \rangle \phi}{\langle \alpha \cup \beta \rangle \phi} \quad \frac{\langle \mathcal{J}_1 \cup \ldots \cup \mathcal{J}_n \rangle \phi}{\langle \mathcal{J} \rangle \phi} \quad \frac{\langle (\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^* \rangle \phi}{\langle \mathcal{D} \rangle \phi}$$

 $\frac{[\alpha]\phi\wedge[\beta]\phi}{[\alpha\cup\beta]\phi} \quad \frac{[\mathcal{J}_1\cup\ldots\cup\mathcal{J}_n]\phi}{[\mathcal{J}]\phi} \quad \frac{[(\mathcal{D}_1\cup\ldots\cup\mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$

\mathcal{R} Verification of Differential-algebraic Dynamic Logic Dynamic Rules

$$\frac{\vdash [\mathcal{E}]\phi}{\vdash [\mathcal{D}]\phi} \qquad \frac{\vdash \langle \mathcal{D}\rangle\phi}{\vdash \langle \mathcal{E}\rangle\phi} \qquad \qquad \frac{\vdash [\mathcal{D}]\chi \vdash [\mathcal{D}\wedge\chi]\phi}{\vdash [\mathcal{D}]\phi} \text{ where } ``\mathcal{D} \to \mathcal{E}''$$

in $\mathsf{FOL}_{\mathbb{R}}$

\mathcal{R} Verification of Differential-algebraic Dynamic Logic Global Rules

$$\frac{\vdash \forall^{\alpha}(\phi \to \psi)}{[\alpha]\phi \vdash [\alpha]\psi} \quad \frac{\vdash \forall^{\alpha}(\phi \to \psi)}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi} \quad \frac{\vdash \forall^{\alpha}(F \to [\alpha]F)}{F \vdash [\alpha^*]F}$$

$$\frac{\vdash \forall^{\alpha}(\varphi(x) \to \langle \alpha \rangle \varphi(x-1))}{\exists v \, \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 \, \varphi(v)}$$

$$\frac{\vdash \forall^{\alpha} \forall y_{1} \dots \forall y_{k} (\chi \to F'^{\theta_{1}}_{x_{1}'} \dots \overset{\theta_{n}}{x_{n}'})}{[\exists y_{1} \dots \exists y_{k} \chi]F \vdash [\exists y_{1} \dots \exists y_{k} (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \chi)]F}$$

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \ \forall^{\alpha} \forall y_{1}, y_{k} \left(\neg F \land \chi \rightarrow (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \cdots_{x_{n}'}^{\theta_{n}} \right) \\ \hline \\ \hline \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F \right)] \chi \vdash \langle \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi \right) \rangle F \end{array}$$

Δ

~

ℜ Verification of Differential-algebraic Dynamic Logic First-Order Rules

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

$$\frac{\vdash \phi(X)}{\vdash \exists x \, \phi(x)}$$

$$\frac{\phi(s(X_1,\ldots,X_n))\vdash}{\exists x\,\phi(x)\vdash}$$

s new, $\{X_1, \ldots, X_n\} = FV(\exists x \phi(x))$

$$\frac{\phi(X) \vdash}{\forall x \, \phi(x) \vdash}$$

X new variable

$$\frac{\vdash \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \dots, X_n)) \vdash \Psi(s(X_1, \dots, X_n))} \qquad \frac{\vdash \mathsf{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

X new variable X only in branches $\Phi_i \vdash \Psi_i$

QE needs to be defined in premiss

15-819/12: Differential-algebraic Dynamic Proving

\mathcal{R} Outline

1

Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules

2 Soundness

3 Restricting Differential Invariants

Deductive Power

Theorem (Soundness)

DAL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

Definition (Local Soundness)

$$rac{\Phi}{W}$$
 locally sound iff for each v ($v \models \Phi \; \Rightarrow \; v \models \Psi$)

Theorem (Soundness)

DAL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

Challenges (Soundness Proof)

Definition (Local Soundness)

 $\frac{\Phi}{\Psi} \quad \text{locally sound iff for each } v \ (v \models \Phi \ \Rightarrow \ v \models \Psi)$

Theorem (Soundness)

DAL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

Challenges (Soundness Proof)

• Differential induction

Definition (Local Soundness)

 $\frac{\Phi}{\Psi} \quad \text{locally sound iff for each } v \ (v \models \Phi \ \Rightarrow \ v \models \Psi)$

Theorem (Soundness)

DAL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

Challenges (Soundness Proof)

- Differential induction
- Side deductions

Definition (Local Soundness)

 $\frac{\Phi}{\Psi} \quad \text{locally sound iff for each } v \ (v \models \Phi \ \Rightarrow \ v \models \Psi)$

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

Proof (locally sound).

• diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .
- $\rho(\mathcal{D}) \supseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ obvious

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .
- $\rho(\mathcal{D}) \supseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ to show.

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .
- $\rho(\mathcal{D}) \supseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ to show.
- Let φ state flow for a transition $(\mathbf{v}, \omega) \in \rho(\mathcal{D})$.

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .
- $\rho(\mathcal{D}) \supseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ to show.
- Let φ state flow for a transition $(\mathbf{v}, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .
- $\rho(\mathcal{D}) \supseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ to show.
- Let φ state flow for a transition $(v, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.
- Finite number, *m*, of switches between \mathcal{D}_i , say $\mathcal{D}_{i_1}, \mathcal{D}_{i_2}, \dots, \mathcal{D}_{i_m}$.

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .
- $\rho(\mathcal{D}) \supseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ to show.
- Let φ state flow for a transition $(\mathbf{v}, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.
- Finite number, *m*, of switches between \mathcal{D}_i , say $\mathcal{D}_{i_1}, \mathcal{D}_{i_2}, \dots, \mathcal{D}_{i_m}$.
- Transition (v, ω) belonging to φ can be simulated piecewise by m repetitions of D₁ ∪ ... ∪ D_n:

$$\frac{[(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*]\phi}{[\mathcal{D}]\phi}$$

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_1 \lor \cdots \lor \mathcal{D}_n$ of \mathcal{D} .
- $\rho(\mathcal{D}) \supseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho((\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_n)^*)$ to show.
- Let φ state flow for a transition $(\mathbf{v}, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.
- Finite number, *m*, of switches between \mathcal{D}_i , say $\mathcal{D}_{i_1}, \mathcal{D}_{i_2}, \dots, \mathcal{D}_{i_m}$.
- Transition (v, ω) belonging to φ can be simulated piecewise by m repetitions of D₁ ∪ ... ∪ D_n:
- Each piece selects the respective part \mathcal{D}_{i_i} .

$$\begin{array}{l} \vdash [\mathcal{E}]\phi \\ \vdash [\mathcal{D}]\phi \end{array} \text{ where } ``\mathcal{D} \to \mathcal{E}'' \text{ in } \mathsf{FOL}_{\mathbb{R}} \\ \\ \vdash \langle \mathcal{D} \rangle \phi \\ \vdash \langle \mathcal{E} \rangle \phi \end{array}$$

Proof (locally sound).

Immediate consequence of diff.trafo. and semantics of modalities.

$$\frac{\vdash [\mathcal{D}]\chi \vdash [\mathcal{D} \land \chi]\phi}{\vdash [\mathcal{D}]\phi}$$

Proof (locally sound).

• Left premiss \Rightarrow every flow φ that satisfies \mathcal{D} also satisfies χ all along the flow, i.e., $\varphi \models \chi$.

$$\frac{\vdash [\mathcal{D}]\chi \quad \vdash [\mathcal{D} \land \chi]\phi}{\vdash [\mathcal{D}]\phi}$$

Proof (locally sound).

• Left premiss \Rightarrow every flow φ that satisfies \mathcal{D} also satisfies χ all along the flow, i.e., $\varphi \models \chi$.

• Thus,
$$\varphi \models \mathcal{D}$$
 implies $\varphi \models \mathcal{D} \land \chi$
$$\frac{\vdash [\mathcal{D}]\chi \quad \vdash [\mathcal{D} \land \chi]\phi}{\vdash [\mathcal{D}]\phi}$$

Proof (locally sound).

• Left premiss \Rightarrow every flow φ that satisfies \mathcal{D} also satisfies χ all along the flow, i.e., $\varphi \models \chi$.

• Thus,
$$arphi \models \mathcal{D}$$
 implies $arphi \models \mathcal{D} \land \chi$

• Right premiss entails the conclusion.

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x_{1}^{\prime} = \theta_{1} \land \ldots \land x_{n}^{\prime} = \theta_{n} \land \chi \right)] F \end{array}$$

Proof (locally sound).

• Let v satisfy premiss and antecedent of conclusion.

$$\begin{array}{c} \vdash \forall^{\alpha}\forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F_{x_{1}^{\prime}}^{\prime\theta_{1}} \ldots \overset{\theta_{n}}{\cdot}\right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x_{1}^{\prime} = \theta_{1} \land \ldots \land x_{n}^{\prime} = \theta_{n} \land \chi\right)] F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \models G$.

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x_{1}^{\prime} = \theta_{1} \land \ldots \land x_{n}^{\prime} = \theta_{n} \land \chi \right)] F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \models G$.
- F continuous invariant if, say, each conjunct of G is.

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x_{1}^{\prime} = \theta_{1} \land \ldots \land x_{n}^{\prime} = \theta_{n} \land \chi \right)] F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \models G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \ge 0$ (accordingly for c > 0).

$$\begin{array}{c} \vdash \forall^{\alpha}\forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot}\right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi\right)] F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \models G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \ge 0$ (accordingly for c > 0).
- Let $\varphi : [0, r] \to \text{States flow with } \varphi \models \exists y (x' = \theta \land \chi) \text{ and } \varphi(0) = v.$

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x_{1}^{\prime} = \theta_{1} \land \ldots \land x_{n}^{\prime} = \theta_{n} \land \chi \right)] F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \models G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \ge 0$ (accordingly for c > 0).
- Let $\varphi : [0, r] \to \text{States flow with } \varphi \models \exists y (x' = \theta \land \chi) \text{ and } \varphi(0) = v.$
- $\Rightarrow \varphi \models \exists y \chi$, thus $v \models F$, i.e., $c \ge 0$ holds at v.

$$\begin{array}{c} \vdash \forall^{\alpha}\forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot}\right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi\right)] F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \models G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \ge 0$ (accordingly for c > 0).
- Let $\varphi : [0, r] \to \text{States flow with } \varphi \models \exists y (x' = \theta \land \chi) \text{ and } \varphi(0) = v.$
- $\Rightarrow \varphi \models \exists y \chi$, thus $v \models F$, i.e., $c \ge 0$ holds at v.
 - Assume duration r > 0 (otherwise $v \models c \ge 0$ already holds).

$$\begin{array}{c} \vdash \forall^{\alpha}\forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot}\right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi\right)] F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \models G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \ge 0$ (accordingly for c > 0).
- Let $\varphi : [0, r] \to \text{States flow with } \varphi \models \exists y (x' = \theta \land \chi) \text{ and } \varphi(0) = v.$
- $\Rightarrow \varphi \models \exists y \chi$, thus $v \models F$, i.e., $c \ge 0$ holds at v.
 - Assume duration r > 0 (otherwise $v \models c \ge 0$ already holds).
 - Show $\varphi \models c \ge 0$.

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x_{1}^{\prime} = \theta_{1} \land \ldots \land x_{n}^{\prime} = \theta_{n} \land \chi \right)] F \end{array}$$

Proof (locally sound).

• By contradiction suppose there was a $\zeta \in [0, r]$ where $\varphi(\zeta) \models c < 0$.

$$\frac{\vdash \forall^{\alpha} \forall y_{1} \dots \forall y_{k} (\chi \to F'^{\theta_{1}}_{x'_{1}} \dots \overset{\theta_{n}}{\cdot \cdot \cdot x'_{n}})}{[\exists y_{1} \dots \exists y_{k} \chi]F \vdash [\exists y_{1} \dots \exists y_{k} (x'_{1} = \theta_{1} \land \dots \land x'_{n} = \theta_{n} \land \chi)]F}$$

- By contradiction suppose there was a $\zeta \in [0, r]$ where $\varphi(\zeta) \models c < 0$.
- $\Rightarrow h: [0, r] \to \mathbb{R}; h(t) = \llbracket c \rrbracket_{\varphi(t)} \text{ satisfies } h(0) \ge 0 > h(\zeta), \\ \text{because } v \models c \ge 0 \text{ by antecedent.}$

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi \right)] F \end{array}$$

- By contradiction suppose there was a $\zeta \in [0, r]$ where $\varphi(\zeta) \models c < 0$.
- $\Rightarrow h: [0, r] \to \mathbb{R}; h(t) = \llbracket c \rrbracket_{\varphi(t)} \text{ satisfies } h(0) \ge 0 > h(\zeta),$ because $v \models c \ge 0$ by antecedent.
 - φ is of order of c': $\operatorname{ord}_{x} \varphi \geq 1$, $\operatorname{ord}_{z} \varphi = \infty$ for unchanged z.

$$\begin{array}{c} \vdash \forall^{\alpha}\forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot}\right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi\right)] F \end{array}$$

- By contradiction suppose there was a $\zeta \in [0, r]$ where $\varphi(\zeta) \models c < 0$.
- $\Rightarrow h: [0, r] \to \mathbb{R}; h(t) = \llbracket c \rrbracket_{\varphi(t)} \text{ satisfies } h(0) \ge 0 > h(\zeta), \\ \text{because } v \models c \ge 0 \text{ by antecedent.}$
 - φ is of order of c': $\operatorname{ord}_x \varphi \ge 1$, $\operatorname{ord}_z \varphi = \infty$ for unchanged z.
 - By α-renaming, c' cannot contain quantified variables y, hence, φ is not required to be of any order in y.

$$\begin{array}{c} \vdash \forall^{\alpha}\forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot}\right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi\right)] F \end{array}$$

- By contradiction suppose there was a $\zeta \in [0, r]$ where $\varphi(\zeta) \models c < 0$.
- $\Rightarrow h: [0, r] \to \mathbb{R}; h(t) = \llbracket c \rrbracket_{\varphi(t)} \text{ satisfies } h(0) \ge 0 > h(\zeta), \\ \text{because } v \models c \ge 0 \text{ by antecedent.}$
 - φ is of order of c': $\operatorname{ord}_x \varphi \ge 1$, $\operatorname{ord}_z \varphi = \infty$ for unchanged z.
 - By α-renaming, c' cannot contain quantified variables y, hence, φ is not required to be of any order in y.
 - Value of c defined along φ , as χ guards against zeros division.

$$\begin{array}{c} \vdash \forall^{\alpha}\forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot}\right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi\right)] F \end{array}$$

- By contradiction suppose there was a $\zeta \in [0, r]$ where $\varphi(\zeta) \models c < 0$.
- $\Rightarrow h: [0, r] \to \mathbb{R}; h(t) = \llbracket c \rrbracket_{\varphi(t)} \text{ satisfies } h(0) \ge 0 > h(\zeta), \\ \text{because } v \models c \ge 0 \text{ by antecedent.}$
 - φ is of order of c': $\operatorname{ord}_x \varphi \ge 1$, $\operatorname{ord}_z \varphi = \infty$ for unchanged z.
 - By α-renaming, c' cannot contain quantified variables y, hence, φ is not required to be of any order in y.
 - Value of c defined along φ , as χ guards against zeros division.
 - Thus, by derivation lemma, h is continuous on [0, r] and differentiable at every ξ ∈ (0, r).

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi \right)] F \end{array}$$

Proof (locally sound).

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underline{\zeta-0})=h(\zeta)-h(0)<0$$

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi \right)] F \end{array}$$

Proof (locally sound).

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0$$

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi \right)] F \end{array}$$

Proof (locally sound).

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0$$

$$0 > \frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi) \stackrel{deriv.lem}{=} \llbracket c' \rrbracket_{\tilde{\varphi}(\xi)}$$

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F'^{\theta_{1}}_{x'_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x'_{1} = \theta_{1} \land \ldots \land x'_{n} = \theta_{n} \land \chi \right)] F \end{array}$$

Proof (locally sound).

• Mean value theorem \Rightarrow there is $\xi \in (0, \zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi) \cdot (\underbrace{\zeta - 0}_{\geq 0}) = h(\zeta) - h(0) < 0$$
$$0 > \frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi) \stackrel{deriv,lem}{=} \llbracket c' \rrbracket_{\bar{\varphi}(\xi)} \stackrel{diff.subst}{=} \llbracket c'^{\theta}_{x'} \rrbracket_{\bar{\varphi}(\xi)_{y}^{u}}$$
because $\varphi \models \exists y \, (x' = \theta \land \chi)$ so that $\bar{\varphi}(\xi)_{y}^{u} \models x' = \theta \land \chi$ for

some $u \in \mathbb{R}$ and because y' does not occur and $y \notin c$.

$$\begin{array}{c} \vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k} \left(\chi \rightarrow F_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots \overset{\theta_{n}}{\cdot} \right) \\ \hline [\exists y_{1} \ldots \exists y_{k} \chi] F \vdash [\exists y_{1} \ldots \exists y_{k} \left(x_{1}^{\prime} = \theta_{1} \land \ldots \land x_{n}^{\prime} = \theta_{n} \land \chi \right)] F \end{array}$$

Proof (locally sound).

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0$$

$$0 > \frac{\mathsf{d}h(t)}{\mathsf{d}t}(\xi) \stackrel{\textit{deriv.lem}}{=} \llbracket c' \rrbracket_{\bar{\varphi}(\xi)} \stackrel{\textit{diff.subst}}{=} \llbracket c'_{\times'}^{\theta} \rrbracket_{\bar{\varphi}(\xi)_{y}^{u}}$$

because $\varphi \models \exists y (x' = \theta \land \chi)$ so that $\overline{\varphi}(\xi)_y^u \models x' = \theta \land \chi$ for some $u \in \mathbb{R}$ and because y' does not occur and $y \notin c$.

Contradiction: by premiss φ ⊨ ∀y (χ → c'^θ_{x'} ≥ 0) as ∀^α comprises all changed variables.

André Platzer (CMU)

$$\frac{\vdash \forall^{\alpha} \forall y_{1} \dots \forall y_{k} (\chi \to F'^{\theta_{1}}_{x'_{1}} \dots \overset{\theta_{n}}{\cdot \cdot \cdot x'_{n}})}{[\exists y_{1} \dots \exists y_{k} \chi]F \vdash [\exists y_{1} \dots \exists y_{k} (x'_{1} = \theta_{1} \land \dots \land x'_{n} = \theta_{n} \land \chi)]F}$$

Proof (locally sound).

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0$$

$$0 > \frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi) \stackrel{\textit{deriv.lem}}{=} \llbracket c' \rrbracket_{\bar{\varphi}(\xi)} \stackrel{\textit{diff.subst}}{=} \llbracket c'^{\theta}_{x'} \rrbracket_{\bar{\varphi}(\xi)_{y}^{u}}$$

because $\varphi \models \exists y (x' = \theta \land \chi)$ so that $\overline{\varphi}(\xi)_y^u \models x' = \theta \land \chi$ for some $u \in \mathbb{R}$ and because y' does not occur and $y \notin c$.

Contradiction: by premiss φ ⊨ ∀y (χ → c'^θ_{x'} ≥ 0) as ∀^α comprises all changed variables. For φ(ξ)^u_y ⊨ χ, we have φ(ξ)^u_y ⊨ c'^θ_{x'} ≥ 0.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \, (\neg F \land \chi \to (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \dots _{x_{n}'}^{\theta_{n}}) \\ \hline \\ \hline \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi) \rangle F \end{array}$$

0

~

Proof (locally sound, quantifier free case).

• Let v satisfy premiss and antecedent of conclusion.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \, (\neg F \land \chi \to (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \cdots _{x_{n}'}^{\theta_{n}}) \\ \hline \\ \hline \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi) \rangle F \end{array}$$

- Let v satisfy premiss and antecedent of conclusion.
- After α -renaming, ε fresh, thus $v \models \forall^{\alpha} (\neg F \land \chi \rightarrow (F' \ge \varepsilon)^{\theta}_{x'})$.

ſΞv

- Let v satisfy premiss and antecedent of conclusion.
- After α -renaming, ε fresh, thus $v \models \forall^{\alpha} (\neg F \land \chi \rightarrow (F' \ge \varepsilon)^{\theta}_{x'})$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem ⇒ there is a global solution of arbitrary duration r ≥ 0.

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_1, y_k \, (\neg F \land \chi \to (F' \ge \varepsilon)_{x_1'}^{\theta_1} \cdots _{x_n'}^{\theta_n})$$

 $[\exists y_1, y_k (x'_1 = \theta_1 \land, \land x'_n = \theta_n \land \sim F)]\chi \vdash \langle \exists y_1, y_k (x'_1 = \theta_1 \land, \land x'_n = \theta_n \land \chi)\rangle F$

- Let v satisfy premiss and antecedent of conclusion.
- After α -renaming, ε fresh, thus $\mathbf{v} \models \forall^{\alpha} (\neg F \land \chi \to (F' \ge \varepsilon)^{\theta}_{\mathbf{x}'})$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem ⇒ there is a global solution of arbitrary duration r ≥ 0.
- Let $\varphi \models x' = \theta$ start in v of some duration $r \ge 0$.

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_1, y_k \, (\neg F \land \chi \to (F' \ge \varepsilon)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n})$$

 $\overline{[\exists y_1, y_k (x'_1 = \theta_1 \land, \land x'_n = \theta_n \land \sim F)]\chi \vdash \langle \exists y_1, y_k (x'_1 = \theta_1 \land, \land x'_n = \theta_n \land \chi)\rangle F}$

- Let v satisfy premiss and antecedent of conclusion.
- After α -renaming, ε fresh, thus $v \models \forall^{\alpha} (\neg F \land \chi \rightarrow (F' \ge \varepsilon)^{\theta}_{x'})$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem ⇒ there is a global solution of arbitrary duration r ≥ 0.
- Let $\varphi \models x' = \theta$ start in v of some duration $r \ge 0$.
- If there is ζ with φ(ζ) ⊨ F, then by antecedent, until (including, as ~F contains closure of ¬F) "first" ζ, χ holds during φ.

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_1, y_k \, (\neg F \land \chi \to (F' \ge \varepsilon)_{x_1'}^{\theta_1} \cdots _{x_n'}^{\theta_n})$$

 $\overline{[\exists y_1, y_k (x'_1 = \theta_1 \land, \land x'_n = \theta_n \land \sim F)]\chi \vdash \langle \exists y_1, y_k (x'_1 = \theta_1 \land, \land x'_n = \theta_n \land \chi)\rangle F}$

- Let v satisfy premiss and antecedent of conclusion.
- After α -renaming, ε fresh, thus $v \models \forall^{\alpha} (\neg F \land \chi \rightarrow (F' \ge \varepsilon)^{\theta}_{x'})$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem ⇒ there is a global solution of arbitrary duration r ≥ 0.
- Let $\varphi \models x' = \theta$ start in v of some duration $r \ge 0$.
- If there is ζ with φ(ζ) ⊨ F, then by antecedent, until (including, as ~F contains closure of ¬F) "first" ζ, χ holds during φ.
- Hence, restriction of φ to $[0, \zeta]$ is flow for $v \models \langle x' = \theta \land \chi \rangle F$.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \, (\neg F \land \chi \to (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \cdots_{x_{n}'}^{\theta_{n}}) \\ \hline \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi) \rangle F \end{array}$$

~

Proof (locally sound, quantified case).

• If there is no such ζ , extending φ by larger r will make F true:

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \, (\neg F \land \chi \to (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \cdots_{x_{n}'}^{\theta_{n}}) \\ \hline \\ \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi) \rangle F \end{array}$$

- If there is no such ζ , extending φ by larger r will make F true:
- Thus φ ⊨ ¬F ∧ χ and, by premiss, φ ⊨ F'^θ_{x'} ≥ ε, because ∀^α comprises all changed variables.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \, (\neg F \land \chi \to (F' \ge \varepsilon)_{x_{1}'}^{\theta_{1}} \cdots _{x_{n}'}^{\theta_{n}}) \\ \hline \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi) \rangle F \end{array}$$

- If there is no such ζ , extending φ by larger r will make F true:
- Thus φ ⊨ ¬F ∧ χ and, by premiss, φ ⊨ F'^θ_{x'} ≥ ε, because ∀^α comprises all changed variables.
- $F'^{\theta}_{x'} \geq \varepsilon$ is a conjunction.

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \left(\neg F \land \chi \to \left(F' \ge \varepsilon \right)_{x_{1}'}^{\theta_{1}} \cdots_{x_{n}'}^{\theta_{n}} \right) \\ \overline{\exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F \right) } \chi \vdash \langle \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi \right) \rangle F$$

- If there is no such ζ , extending φ by larger r will make F true:
- Thus φ ⊨ ¬F ∧ χ and, by premiss, φ ⊨ F'^θ_{x'} ≥ ε, because ∀^α comprises all changed variables.
- $F'^{\theta}_{x'} \geq \varepsilon$ is a conjunction.
- Consider one of its conjuncts c^{'θ}_{x'} ≥ ε belonging to c ≥ 0 (others similar).

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \left(\neg F \land \chi \to \left(F' \ge \varepsilon \right)_{x_{1}'}^{\theta_{1}} \cdots_{x_{n}'}^{\theta_{n}} \right) \\ \overline{\exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F \right) } \chi \vdash \langle \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi \right) \rangle F$$

- If there is no such ζ , extending φ by larger r will make F true:
- Thus φ ⊨ ¬F ∧ χ and, by premiss, φ ⊨ F'^θ_{x'} ≥ ε, because ∀^α comprises all changed variables.
- $F'^{\theta}_{x'} \geq \varepsilon$ is a conjunction.
- Consider one of its conjuncts c^{'θ}_{x'} ≥ ε belonging to c ≥ 0 (others similar).
- Again, φ of the order of c' and value of c defined along φ , because $\varphi \models \chi$ and χ guards against zeros.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \, (\neg F \land \chi \to (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \cdots _{x_{n}'}^{\theta_{n}}) \\ \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi) \rangle F \end{array}$$

Proof (locally sound, quantified case).

By mean-value theorem, derivation lemma & diff.subst., we conclude for each ζ ∈ [0, r] that for some ξ ∈ (0, ζ)

$$\llbracket c \rrbracket_{\varphi(\zeta)} - \llbracket c \rrbracket_{\varphi(0)} = \llbracket {c'}_{x'}^{ heta} \rrbracket_{\overline{\varphi}(\xi)} (\zeta - 0)$$

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \, (\neg F \land \chi \to (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \cdots _{x_{n}'}^{\theta_{n}}) \\ \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1}, y_{k} \, (x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi) \rangle F \end{array}$$

Proof (locally sound, quantified case).

By mean-value theorem, derivation lemma & diff.subst., we conclude for each ζ ∈ [0, r] that for some ξ ∈ (0, ζ)

$$\llbracket c \rrbracket_{\varphi(\zeta)} - \llbracket c \rrbracket_{\varphi(0)} = \llbracket c'^{\theta}_{x'} \rrbracket_{\bar{\varphi}(\xi)} (\zeta - 0) \geq \zeta \llbracket \varepsilon \rrbracket_{\varphi(0)}$$

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \left(\neg F \land \chi \rightarrow \left(F' \geq \varepsilon \right)_{x_{1}'}^{\theta_{1}} \cdots _{x_{n}'}^{\theta_{n}} \right) \\ \hline \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F \right)] \chi \vdash \langle \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi \right) \rangle F \end{array}$$

Proof (locally sound, quantified case).

By mean-value theorem, derivation lemma & diff.subst., we conclude for each ζ ∈ [0, r] that for some ξ ∈ (0, ζ)

$$\llbracket c \rrbracket_{\varphi(\zeta)} - \llbracket c \rrbracket_{\varphi(0)} = \llbracket {c'}^{\theta}_{x'} \rrbracket_{\bar{\varphi}(\xi)} (\zeta - 0) \geq \zeta \llbracket \varepsilon \rrbracket_{\varphi(0)}$$

• As $\llbracket \varepsilon \rrbracket_{\varphi(0)} > 0$ we have for all $\zeta > - \frac{\llbracket c \rrbracket_{\varphi(0)}}{\llbracket \varepsilon \rrbracket_{\varphi(0)}}$ that $\varphi(\zeta) \models c \ge 0$ and $\varphi(r) \models c \ge 0$, even $\varphi(r) \models c > 0$.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1}, y_{k} \left(\neg F \land \chi \rightarrow \left(F' \geq \varepsilon \right)_{x_{1}'}^{\theta_{1}} \cdots _{x_{n}'}^{\theta_{n}} \right) \\ \hline \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \sim F \right)] \chi \vdash \langle \exists y_{1}, y_{k} \left(x_{1}' = \theta_{1} \land, \land x_{n}' = \theta_{n} \land \chi \right) \rangle F \end{array}$$

Proof (locally sound, quantified case).

By mean-value theorem, derivation lemma & diff.subst., we conclude for each ζ ∈ [0, r] that for some ξ ∈ (0, ζ)

$$\llbracket c \rrbracket_{arphi(\zeta)} - \llbracket c \rrbracket_{arphi(0)} = \llbracket {c'}^ heta_{x'}^ heta \rrbracket_{ar arphi(\xi)} (\zeta - 0) \geq \zeta \llbracket arepsilon \rrbracket_{arphi(0)}$$

- As $\llbracket \varepsilon \rrbracket_{\varphi(0)} > 0$ we have for all $\zeta > \frac{\llbracket c \rrbracket_{\varphi(0)}}{\llbracket \varepsilon \rrbracket_{\varphi(0)}}$ that $\varphi(\zeta) \models c \ge 0$ and $\varphi(r) \models c \ge 0$, even $\varphi(r) \models c > 0$.
- By extending r, all literals c ≥ 0 of one conjunct of F are true, which concludes the proof, because, until F finally holds, φ ⊨ χ is implied by antecedent (above).

André Platzer (CMU)
$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1} \dots y_{k} \left(\neg F \land \chi \to (F' \ge \varepsilon)_{x_{1}'}^{\theta_{1}} \dots _{x_{n}'}^{\theta_{n}} \right) \\ \overline{[\exists y_{1} \dots y_{k} \left(x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F \right)] \chi} \vdash \langle \exists y_{1} \dots y_{k} \left(x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \right)$$

Proof (locally sound, quantified case).

• With quantifiers ∃y we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_{1} \dots y_{k} \, (\neg F \land \chi \to (F' \ge \varepsilon)_{x_{1}'}^{\theta_{1}} \dots x_{n}') \\ \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F) \\ \exists \varphi_{1} \dots \varphi_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \to F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \to F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \to F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \to F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \to F)]\chi \vdash \langle \exists y_{1} \dots y_{k} \, (x_{1}' = \theta_{1} \land \dots \land X_{n}' = \theta_{n} \land \to F)]\chi \vdash \langle \exists y_{1} \dots \land \to F)$$

- With quantifiers ∃y we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_1 \dots y_k \, (\neg F \land \chi \to (F' \ge \varepsilon)_{x'_1}^{\theta_1} \dots x'_n)$$

$$\exists y_1 \dots y_k \, (x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \sim F)]\chi \vdash \langle \exists y_1 \dots y_k \, (x'_1 = \theta_1 \land \dots \land x'_n = \theta_n)\rangle$$

- With quantifiers ∃y we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_y^u \models \chi$.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \ \forall^{\alpha} \forall y_{1} \dots y_{k} \left(\neg F \land \chi \rightarrow (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \dots x_{n}' \right) \\ \hline \exists y_{1} \dots y_{k} \left(x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F \right)] \chi \vdash \langle \exists y_{1} \dots y_{k} \left(x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \right) \end{array}$$

- With quantifiers ∃y we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_y^u \models \chi$.
- Hence, v_v^u satisfies assumptions of quantifier-free case.

$$\begin{array}{c} \vdash \exists \varepsilon > 0 \ \forall^{\alpha} \forall y_{1} \dots y_{k} \left(\neg F \land \chi \rightarrow (F' \geq \varepsilon)_{x_{1}'}^{\theta_{1}} \dots x_{n}' \right) \\ \hline \exists y_{1} \dots y_{k} \left(x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \land \sim F \right)] \chi \vdash \langle \exists y_{1} \dots y_{k} \left(x_{1}' = \theta_{1} \land \dots \land x_{n}' = \theta_{n} \right) \end{array}$$

- With quantifiers ∃y we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_y^u \models \chi$.
- Hence, v_v^u satisfies assumptions of quantifier-free case.

• Thus,
$$v_y^u \models \langle x' = \theta \land \chi \rangle F$$
,

$$\vdash \exists \varepsilon > 0 \,\forall^{\alpha} \forall y_1 \dots y_k \, (\neg F \land \chi \to (F' \ge \varepsilon)_{x'_1}^{\varphi_1} \dots x'_n) \\ \exists y_1 \dots y_k \, (x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \sim F)] \chi \vdash \langle \exists y_1 \dots y_k \, (x'_1 = \theta_1 \land \dots \land x'_n = \theta_n) \rangle \\ \downarrow \forall \varphi_1 \dots \varphi_n \langle \varphi_1 \otimes \varphi_1 \otimes \varphi_n \rangle = \varphi_1 \land \varphi_1 \otimes \varphi_1 \otimes \varphi_n \rangle$$

Proof (locally sound, quantified case).

- With quantifiers ∃y we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_y^u \models \chi$.
- Hence, v_v^u satisfies assumptions of quantifier-free case.

• Thus,
$$v_y^u \models \langle x' = \theta \land \chi \rangle F$$
,

Hence v ⊨ (∃y (x' = θ ∧ χ))F using u constantly as the value for the quantified variable y during the evolution.

\mathcal{R} Outline

1

Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2 Soundness
- 3 Restricting Differential Invariants

Deductive Power

$$\frac{\vdash (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash (F \land \chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash (F \land \chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

Example (Restrictions)

$$\frac{\vdash \forall x \left(x^2 \leq 0 \rightarrow 2x \cdot 1 \leq 0\right)}{x^2 \leq 0 \vdash [x'=1]x^2 \leq 0}$$

$$\frac{\vdash (\chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

$$\frac{\vdash (F \land \chi \to F')}{\chi \to F \vdash [x' = \theta \land \chi]F}$$

Example (Restrictions)

$$\frac{\vdash \forall x \left(x^2 \leq \mathbf{0} \to 2x \cdot 1 \leq \mathbf{0}\right)}{x^2 \leq \mathbf{0} \vdash [x'=1]x^2 \leq \mathbf{0}}$$

Example (Restrictions are unsound nonsense!)

$$\frac{\vdash \forall x \left(x^2 \leq \mathbf{0} \to 2x \cdot 1 \leq \mathbf{0}\right)}{x^2 \leq \mathbf{0} \vdash [x'=1]x^2 \leq \mathbf{0}}$$

$$\frac{\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to F'^{\theta_1}_{x'_1} \dots \theta_n^{\theta_n} \right)}{[\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F} \quad F \text{ open}$$

0

locally sound if F open.

• Proof similar to diff.inv.

$$\frac{\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to F'^{\theta_1}_{x'_1} \dots ^{\theta_n}_{x'_n} \right)}{[\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F} \quad F \text{ open}$$

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \ge 0 \ge h(\zeta)$,

$$\frac{\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to F'^{\theta_1}_{x'_1} \dots ^{\theta_n}_{x'_n} \right)}{[\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F} \quad F \text{ open}$$

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \ge 0 \ge h(\zeta)$,
- which does not lead to a contradiction.

$$\frac{\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to F'^{\theta_1}_{x'_1} \dots ^{\theta_n}_{x'_n} \right)}{[\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F} \quad F \text{ open}$$

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \ge 0 \ge h(\zeta)$,
- which does not lead to a contradiction.
- F open \Rightarrow distance to ∂F is positive in $\varphi(0)$

$$\frac{\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to F'^{\theta_1}_{x'_1} \dots ^{\theta_n}_{x'_n} \right)}{[\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F} \quad F \text{ open}$$

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \ge 0 \ge h(\zeta)$,
- which does not lead to a contradiction.
- F open \Rightarrow distance to ∂F is positive in $\varphi(0)$
- Thus $h(0) > 0 \ge h(\zeta)$, and the contradiction arises accordingly.

$$\vdash \forall y_1 \dots \forall y_k (F \land \chi \to (F' > 0)_{x'_1}^{\theta_1} \dots_{x'_n}^{\theta_n}) \\ \overline{[\exists y_1 \dots \exists y_k \chi]F \vdash [\exists y_1 \dots \exists y_k (x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi)]F}$$

locally sound.

• Repeating argument for diff.inv., assume $F \equiv c \ge 0$.

\mathcal{R} Restricting Differential Invariants (Soundly!)

$$\begin{array}{c} \vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to (F' > 0)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \hline [\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F \end{array}$$

- Repeating argument for diff.inv., assume $F \equiv c \ge 0$.
- By contradiction suppose there was a $\iota \in [0, r]$ where $\varphi(\iota) \models c < 0$.

$$\begin{array}{c} \vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to (F' > 0)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \hline [\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F \end{array}$$

- Repeating argument for diff.inv., assume $F \equiv c \ge 0$.
- By contradiction suppose there was a $\iota \in [0, r]$ where $\varphi(\iota) \models c < 0$.
- Let $\zeta \in [0, r]$ infimum of these ι ,

\mathcal{R} Restricting Differential Invariants (Soundly!)

$$\begin{array}{c} \vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to (F' > 0)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \hline [\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F \end{array}$$

- Repeating argument for diff.inv., assume $F \equiv c \ge 0$.
- By contradiction suppose there was a $\iota \in [0, r]$ where $\varphi(\iota) \models c < 0$.
- Let $\zeta \in [0, r]$ infimum of these ι ,
- Hence, $\varphi(\zeta) \models c = 0$ by continuity.

\mathcal{R} Restricting Differential Invariants (Soundly!)

$$\begin{array}{c} \vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to (F' > 0)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \hline [\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F \end{array}$$

- Repeating argument for diff.inv., assume $F \equiv c \ge 0$.
- By contradiction suppose there was a $\iota \in [0, r]$ where $\varphi(\iota) \models c < 0$.
- Let $\zeta \in [0, r]$ infimum of these ι ,
- Hence, $\varphi(\zeta) \models c = 0$ by continuity.
- $\Rightarrow h: [0, r] \to \mathbb{R}; h(t) = \llbracket c \rrbracket_{\varphi(t)} \text{ satisfies } h(0) \ge 0 \ge h(\zeta), \\ \text{because } v \models c \ge 0 \text{ by antecedent.}$

$$\begin{array}{c} \vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to (F' > 0)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \hline [\exists y_1 \dots \exists y_k \chi] F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F \end{array}$$

- Repeating argument for diff.inv., assume $F \equiv c \ge 0$.
- By contradiction suppose there was a $\iota \in [0, r]$ where $\varphi(\iota) \models c < 0$.
- Let $\zeta \in [0, r]$ infimum of these ι ,
- Hence, $\varphi(\zeta) \models c = 0$ by continuity.
- $\Rightarrow h: [0, r] \to \mathbb{R}; h(t) = \llbracket c \rrbracket_{\varphi(t)} \text{ satisfies } h(0) \ge 0 \ge h(\zeta),$ because $v \models c \ge 0$ by antecedent.
 - Repeating argument with derivation lemma, h continuous on [0, r] and differentiable at every ξ ∈ (0, r) with a derivative of
 ^{dh(t)}/_{dt}(ξ) = [[c']]_{φ(ξ)} ^{diff.subst.} [[c'^θ_{x'}]]_{φ(ξ)}, as φ ⊨ x' = θ.

$$\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to \left(F' > 0 \right)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \overline{[\exists y_1 \dots \exists y_k \chi]} F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F$$

locally sound.

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)$$

$$\vdash \forall y_1 \dots \forall y_k (F \land \chi \to (F' > 0)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n}) \\ \overline{[\exists y_1 \dots \exists y_k \chi]}F \vdash [\exists y_1 \dots \exists y_k (x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi)]F$$

locally sound.

• Mean value theorem \Rightarrow there is $\xi \in (0, \zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)\leq 0$$

$$\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to \left(F' > 0 \right)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \overline{[\exists y_1 \dots \exists y_k \chi]} F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F$$

locally sound.

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)\leq 0$$

$$rac{{\mathrm d} h(t)}{{\mathrm d} t}(\xi) = \llbracket {c'}^ heta_{ imes'}
rbrace_{ar arphi(\xi)} \leq 0$$

$$\vdash \forall y_1 \dots \forall y_k \left(F \land \chi \to \left(F' > 0 \right)_{x'_1}^{\theta_1} \dots _{x'_n}^{\theta_n} \right) \\ \overline{[\exists y_1 \dots \exists y_k \chi]} F \vdash [\exists y_1 \dots \exists y_k \left(x'_1 = \theta_1 \land \dots \land x'_n = \theta_n \land \chi \right)] F$$

locally sound.

• Mean value theorem \Rightarrow there is $\xi \in (0,\zeta)$ such that

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t}(\xi)\cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)\leq 0$$

$$\frac{\mathsf{d}h(t)}{\mathsf{d}t}(\xi) = \llbracket {c'}^{\theta}_{x'} \rrbracket_{\bar{\varphi}(\xi)} \leq 0$$

Contradiction: by premiss φ
 (ξ) ⊨ c'^θ_{x'} > 0, as the flow satisfies φ ⊨ χ and φ(ξ) ⊨ c ≥ 0, because ζ > ξ is the infimum of the counterexamples ι with φ(ι) ⊨ c < 0.

Example (Any differential invariant restriction rule)

$$x > \frac{1}{4} \vdash [x' = x^3]x > \frac{1}{4}$$

Example (Any differential invariant restriction rule)

$$\frac{\frac{}{\vdash \forall x \left(x > \frac{1}{4} \rightarrow x^3 > 0\right)}{x > \frac{1}{4} \vdash [x' = x^3]x > \frac{1}{4}}$$

Example (Any differential invariant restriction rule)

$$\frac{\overset{*}{\vdash} \forall x \left(x > \frac{1}{4} \rightarrow x^3 > 0\right)}{x > \frac{1}{4} \vdash [x' = x^3]x > \frac{1}{4}}$$

\mathcal{R} Outline

1

Verification Calculus for Differential-algebraic Dynamic Logic d ${\cal L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction & Differential Elimination
- Proof Rules
- 2 Soundness
- 3 Restricting Differential Invariants

Deductive Power

Which formulas are best as differential invariants?

Does it make a difference if we have propositional operators?

Does it make a difference if we have propositional operators?

Proposition (Equational deductive power)

The deductive power of differential induction with atomic equations is identical to the deductive power of differential induction with propositional combinations of polynomial equations: Formulas are provable with propositional combinations of equations as differential invariants iff they are provable with only atomic equations as differential invariants.

"differential induction for $'=' \equiv$ differential induction for logic of '='"

Proof.

• Assume differential invariant F is in NNF.
- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

- Assume differential invariant F is in NNF.
- $F\equiv p_1=p_2 \lor q_1=q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

- Assume differential invariant F is in NNF.
- $F\equiv p_1=p_2 \lor q_1=q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \land q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2)$

- Assume differential invariant F is in NNF.
- $F\equiv p_1=p_2 \lor q_1=q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0$$

•
$$F' \equiv p'_1 = p'_2 \land q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2)$

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2)$

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2) = 0$

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2) = 0$

•
$$F \equiv p_1 = p_2 \wedge q_1 = q_2$$
 equivalent to $(p_1 - p_2)^2 + (q_1 - q_2)^2 = 0$.

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2) = 0$

•
$$F \equiv p_1 = p_2 \wedge q_1 = q_2$$
 equivalent to $(p_1 - p_2)^2 + (q_1 - q_2)^2 = 0$.

•
$$F' \equiv p'_1 = p'_2 \land q'_1 = q'_2$$
 implies
 $2(p_1 - p_2)(p'_1 - p'_2) + 2(q_1 - q_2)(q'_1 - q'_2)$

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2) = 0$

•
$$F \equiv p_1 = p_2 \wedge q_1 = q_2$$
 equivalent to $(p_1 - p_2)^2 + (q_1 - q_2)^2 = 0$.

•
$$F' \equiv p'_1 = p'_2 \land q'_1 = q'_2$$
 implies
 $2(p_1 - p_2)(p'_1 - p'_2) + 2(q_1 - q_2)(q'_1 - q'_2)$

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2) = 0$

•
$$F \equiv p_1 = p_2 \land q_1 = q_2$$
 equivalent to $(p_1 - p_2)^2 + (q_1 - q_2)^2 = 0$.

•
$$F' \equiv p'_1 = p'_2 \land q'_1 = q'_2$$
 implies
 $2(p_1 - p_2)(p'_1 - p'_2) + 2(q_1 - q_2)(q'_1 - q'_2)$

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2) = 0$

•
$$F \equiv p_1 = p_2 \land q_1 = q_2$$
 equivalent to $(p_1 - p_2)^2 + (q_1 - q_2)^2 = 0$.

•
$$F' \equiv p'_1 = p'_2 \land q'_1 = q'_2$$
 implies
 $2(p_1 - p_2)(p'_1 - p'_2) + 2(q_1 - q_2)(q'_1 - q'_2) = 0$

- Assume differential invariant F is in NNF.
- $F \equiv p_1 = p_2 \lor q_1 = q_2$ equivalent to

•
$$(p_1 - p_2)(q_1 - q_2) = 0.$$

•
$$F' \equiv p'_1 = p'_2 \wedge q'_1 = q'_2$$
 implies
 $((p_1 - p_2)(q_1 - q_2))' = (p'_1 - p'_2)(q_1 - q_2) + (p_1 - p_2)(q'_1 - q'_2) = 0$

•
$$F \equiv p_1 = p_2 \wedge q_1 = q_2$$
 equivalent to $(p_1 - p_2)^2 + (q_1 - q_2)^2 = 0$.

•
$$F' \equiv p'_1 = p'_2 \land q'_1 = q'_2$$
 implies
 $2(p_1 - p_2)(p'_1 - p'_2) + 2(q_1 - q_2)(q'_1 - q'_2) = 0$

• $F \equiv \neg(p_1 = p_2)$ does not qualify as differential invariant.

Does it make a difference if we have propositional operators?

Does it make a difference if we have propositional operators?

Theorem (Deductive power)

The deductive power of differential induction with arbitrary formulas exceeds the deductive power of differential induction with atomic formulas: All DAL formulas that are provable using atomic differential invariants are provable using general differential invariants, but not vice versa!

"differential induction for atomic formulas < general differential induction"

 $\overline{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$

$$\frac{\vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

$$\frac{x}{\begin{array}{c} \vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0) \\ x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0) \end{array}}$$

$$\frac{\stackrel{\uparrow}{\vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Suppose single polynomial p(x, y) such that p(x, y) > 0 is a differential invariant. The we have valid formulas:

*

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Suppose single polynomial p(x, y) such that p(x, y) > 0 is a differential invariant. The we have valid formulas:

Q $x > 0 \land y > 0 \rightarrow p(x, y) > 0$, as differential invariants hold in prestate

*

$$\frac{\neg \forall x \,\forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

- Suppose single polynomial p(x, y) such that p(x, y) > 0 is a differential invariant. The we have valid formulas:
 - **(** $x > 0 \land y > 0 \rightarrow p(x, y) > 0$, as differential invariants hold in prestate
 - ② $p(x, y) > 0 \rightarrow x > 0 \land y > 0$, as differential invariant implies postcondition

*

$$\frac{ \vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

- Suppose single polynomial p(x, y) such that p(x, y) > 0 is a differential invariant. The we have valid formulas:
 - **(** $x > 0 \land y > 0 \rightarrow p(x, y) > 0$, as differential invariants hold in prestate
 - ② $p(x, y) > 0 \rightarrow x > 0 \land y > 0$, as differential invariant implies postcondition
- Hence $x > 0 \land y > 0 \leftrightarrow p(x, y) > 0$ valid.

*

$$\overline{\frac{\vdash \forall x \,\forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}}$$

- Suppose single polynomial p(x, y) such that p(x, y) > 0 is a differential invariant. The we have valid formulas:
 - **(** $x > 0 \land y > 0 \rightarrow p(x, y) > 0$, as differential invariants hold in prestate
 - ② $p(x, y) > 0 \rightarrow x > 0 \land y > 0$, as differential invariant implies postcondition
- Hence $x > 0 \land y > 0 \leftrightarrow p(x, y) > 0$ valid.
- Thus, p satisfies:

 $p(x,y) \ge 0$ for $x \ge 0, y \ge 0$, and, otherwise, $p(x,y) \le 0$ (QS)

$$\frac{\neg \forall x \,\forall y \,(x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Assume p minimal total degree with property

 $p(x,y) \ge 0$ for $x \ge 0, y \ge 0$, and, otherwise, $p(x,y) \le 0$ (QS)

• p(x,0) is univariate polynomial in x with zeros at all x > 0

- $\Rightarrow p(x,0) = 0$ is the zero polynomial
- \Rightarrow y divides p(x, y).
 - Accordingly, p(0, y) = 0 for all y, hence x divides p(x, y).
 - Thus, xy divides p.

$$\frac{\neg \forall x \,\forall y \,(x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Assume p minimal total degree with property

 $p(x,y) \ge 0$ for $x \ge 0, y \ge 0$, and, otherwise, $p(x,y) \le 0$ (QS)

• p(x,0) is univariate polynomial in x with zeros at all x > 0

- $\Rightarrow p(x,0) = 0$ is the zero polynomial
- \Rightarrow y divides p(x, y).
 - Accordingly, p(0, y) = 0 for all y, hence x divides p(x, y).
 - Thus, *xy* divides *p*.
 - $\frac{-p(-x,-y)}{xy}$ satisfies (QS) with smaller total degree than p, contradiction! André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving

$$\frac{x}{\begin{array}{c} \vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0) \\ x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0) \end{array}}$$

Proof (Single differential induction step).

$$\frac{\overset{*}{\vdash} \forall x \forall y (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• There is no polynomial p such that $x > 0 \land y > 0 \leftrightarrow p(x, y) = 0$,

$$\frac{x}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

- There is no polynomial p such that $x > 0 \land y > 0 \leftrightarrow p(x, y) = 0$,
- because only zero polynomial is zero on the full quadrant $(0,\infty)^2$.

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

- There is no polynomial p such that $x > 0 \land y > 0 \leftrightarrow p(x, y) = 0$,
- because only zero polynomial is zero on the full quadrant $(0,\infty)^2$.
- x > 0 ∧ y > 0 ↔ p(x, y) ≥ 0 is impossible for continuity reasons that imply p(0, 0) = 0, which is a contradiction.

- There is no polynomial p such that $x > 0 \land y > 0 \leftrightarrow p(x, y) = 0$,
- because only zero polynomial is zero on the full quadrant $(0,\infty)^2$.
- x > 0 ∧ y > 0 ↔ p(x, y) ≥ 0 is impossible for continuity reasons that imply p(0, 0) = 0, which is a contradiction.
- Same argument for any other sign condition that characterizes one quadrant of R² uniquely.

- There is no polynomial p such that $x > 0 \land y > 0 \leftrightarrow p(x, y) = 0$,
- because only zero polynomial is zero on the full quadrant $(0,\infty)^2$.
- x > 0 ∧ y > 0 ↔ p(x, y) ≥ 0 is impossible for continuity reasons that imply p(0, 0) = 0, which is a contradiction.
- Same argument for any other sign condition that characterizes one quadrant of R² uniquely.
- So far, argument independent of actual dynamics

- There is no polynomial p such that $x > 0 \land y > 0 \leftrightarrow p(x, y) = 0$,
- because only zero polynomial is zero on the full quadrant $(0,\infty)^2$.
- x > 0 ∧ y > 0 ↔ p(x, y) ≥ 0 is impossible for continuity reasons that imply p(0, 0) = 0, which is a contradiction.
- \bullet Same argument for any other sign condition that characterizes one quadrant of \mathbb{R}^2 uniquely.
- So far, argument independent of actual dynamics
- Thus, still valid in the presence of arbitrary differential weakening.

Proof (Nested differential induction + strengthening).

$$\frac{\stackrel{\uparrow}{\vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

Proof (Nested differential induction + strengthening).

$$\frac{x}{\begin{array}{c} \vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0) \\ x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0) \end{array}}$$

 \bullet Inductively, strengthening χ needs to be a differential invariant:

Proof (Nested differential induction + strengthening).

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

 \bullet Inductively, strengthening χ needs to be a differential invariant: xy>0

$$x > 0$$
 $y > 0$

Proof (Nested differential induction + strengthening).

$$\frac{\frac{1}{\vdash \forall x \, \forall y \, (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0)}}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant: xy > 0

$$\begin{aligned} x' &= xy > 0 \\ x &> 0 \end{aligned} \qquad y > 0 \end{aligned}$$

Proof (Nested differential induction + strengthening).

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant: xy > 0 x' = xy > 0 y' = xy > 0 x > 0y > 0
$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant: xy > 0

$$x' = xy > 0 \qquad \qquad y' = xy > 0 \\ x > 0 \qquad \qquad y > 0$$

• Differential invariance of xy > 0 needs $xy > 0 \rightarrow (xy)'_{x' y'}^{xy xy}$

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant: $\chi\chi > 0$

$$x' = xy > 0$$

$$x' = xy > 0$$

$$y' = xy > 0$$

$$y > 0$$

$$y > 0$$

• Differential invariance of xy > 0 needs $xy > 0 \rightarrow (xy)'_{x' \ y'}^{xy \ xy} = (x'y + yx')_{x' \ y'}^{xy \ xy}$

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant: xy > 0

$$x' = xy > 0 \qquad \qquad y' = xy > 0$$
$$x > 0 \qquad \qquad y > 0$$

• Differential invariance of xy > 0 needs $xy > 0 \rightarrow (xy)'_{x'y'}^{xy xy} = (x'y + yx')_{x'y'}^{xy xy} = xyy + yxy$

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant: $\chi\chi > 0$

$$x' = xy > 0$$

$$x > 0$$

$$y' = xy > 0$$

$$y > 0$$

$$y > 0$$

• Differential invariance of xy > 0 needs $xy > 0 \rightarrow (xy)'_{x' y'}^{xy xy} = (x'y + yx')_{x' y'}^{xy xy} = xyy + yxy = (y + x)xy$

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant:

$$xy > 0$$

$$x' = xy > 0$$

$$y' = xy > 0$$

$$x > 0$$

$$y > 0$$

• Differential invariance of xy > 0 needs $xy > 0 \rightarrow (xy)'_{x' y'}^{xy xy} = (x'y + yx')_{x' y'}^{xy xy} = xyy + yxy = (y + x)xy > 0$

$$\frac{\frac{1}{\left| \begin{array}{c} \forall x \ \forall y \ (x > 0 \land y > 0 \rightarrow xy > 0 \land xy > 0 \right|}}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant:

$$x' = xy > 0$$

$$x' = xy > 0$$

$$y' = xy > 0$$

$$y > 0$$

$$y > 0$$

 Differential invariance of xy > 0 needs xy > 0 → (xy)'^{xy xy}_{x' y'} = (x'y + yx')^{xy xy}_{x' y'} = xyy + yxy = (y + x)xy > 0
 xy > 0 → (y + x)xy > 0

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant:

$$xy > 0$$

$$x' = xy > 0$$

$$y' = xy > 0$$

$$y > 0$$

$$y > 0$$

 Differential invariance of xy > 0 needs xy > 0 → (xy)'^{xy xy}_{x' y'} = (x'y + yx')^{xy xy}_{x' y'} = xyy + yxy = (y + x)xy > 0
 xy > 0 → (y + x)xy > 0 ≡ x ≥ 0 ∨ y ≥ 0

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

• Inductively, strengthening χ needs to be a differential invariant:

$$x' = xy > 0$$

$$x' = xy > 0$$

$$y' = xy > 0$$

$$y > 0$$

$$y > 0$$

Differential invariance of xy > 0 needs xy > 0 → (xy)'^{xy xy}_{x' y'} = (x'y + yx')^{xy xy}_{x' y'} = xyy + yxy = (y + x)xy > 0
xy > 0 → (y + x)xy > 0 ≡ x ≥ 0 ∨ y ≥ 0 ≡ ¬(-x > 0 ∧ -y > 0)

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

 \bullet Inductively, strengthening χ needs to be a differential invariant:

$$x' = xy > 0$$

$$x' = xy > 0$$

$$y' = xy > 0$$

$$y > 0$$

$$y > 0$$

- Differential invariance of xy > 0 needs $xy > 0 \rightarrow (xy)_{x'y'y'}^{xy xy} = (x'y + yx')_{x'y'}^{xy xy} = xyy + yxy = (y + x)xy > 0$
- $xy > 0 \rightarrow (y+x)xy > 0 \equiv x \ge 0 \lor y \ge 0 \equiv \neg(-x > 0 \land -y > 0)$
- not provable by atomic differential induction/weakening (see above).

$$\frac{1}{x > 0 \land y > 0 \vdash [x' = xy \land y' = xy](x > 0 \land y > 0)}$$

Inductively, strengthening χ needs to be a differential invariant: •

$$x' = xy > 0$$

$$x' = xy > 0$$

$$y' = xy > 0$$

$$y > 0$$

$$y > 0$$

- Differential invariance of xy > 0 needs • $xy > 0 \rightarrow (xy)'_{x'} xy = (x'y + yx')_{x'} xy = xyy + yxy = (y + x)xy > 0$
- $xy > 0 \to (y + x)xy > 0 \equiv x \ge 0 \lor y \ge 0 \equiv \neg(-x > 0 \land -y > 0)$
- not provable by atomic differential induction/weakening (see above).
- Circular dependencies for strengthening by x > 0, y > 0, xy > 0, André Platzer (CMU)

\mathcal{R} Landscape

André Platzer (CMU)

15-819/12: Differential-algebraic Dynamic Proving