15-819/18-879: Hybrid Systems Analysis \& Theorem Proving

12: Differential-algebraic Dynamic Logic \& Differential Induction

André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness
(3) Restricting Differential Invariants

4 Deductive Power

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules

Soundness
Restricting Differential Invariants
Deductive Power

\mathbb{P} Differential-algebraic Dynamic Logic

differential-algebraic dynamic logic
$\mathrm{DAL}=\mathrm{FOL}_{\mathbb{R}}+\mathrm{ML}$

\mathbb{P} Differential-algebraic Dynamic Logic

differential-algebraic dynamic logic
$D A L=F O L_{\mathbb{R}}+D L$

\mathbb{P} Differential-algebraic Dynamic Logic

 differential-algebraic dynamic logic$D A L=F O L_{\mathbb{R}}+D L+D A P$

\mathbb{P} Differential-algebraic Dynamic Logic

differential-algebraic dynamic logic

$D A L=F O L_{\mathbb{R}}+D L+D A P$

$$
\left[d_{1}:=-d_{2} ; d_{1}^{\prime} \leq-\omega d_{2} \wedge d_{2}^{\prime} \leq \omega d_{1} \vee d_{1}^{\prime} \leq 4\right]\|d\| \geq 1
$$

Differential-algebraic Dynamic Logic

differential-algebraic dynamic logic

$D A L=F O L_{\mathbb{R}}+D L+D A P$

$$
[\underbrace{d_{1}:=-d_{2} ; d_{1}^{\prime} \leq-\omega d_{2} \wedge d_{2}^{\prime} \leq \omega d_{1} \vee d_{1}^{\prime} \leq 4}]\|d\| \geq 1
$$

differential-algebraic program
$=$ first-order completion of
hybrid programs

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness
(3) Restricting Differential Invariants
(4) Deductive Power

"Definition" (Differential Invariant)

"Property that remains true in the direction of the dynamics"

"Definition" (Differential Invariant)

"Property that remains true in the direction of the dynamics"

\mathbb{P} Verification by Discrete and Differential Induction

Definition (Discrete Invariant F)

$$
\begin{aligned}
& \begin{array}{l}
F \\
\forall^{\alpha}(F \rightarrow \phi) \\
\forall^{\alpha}(F \rightarrow[\alpha] F)
\end{array} \\
& \left.\hline \text { [}+\alpha^{*}\right] \phi
\end{aligned}
$$

\mathbb{A} Verification by Discrete and Differential Induction

Definition (Discrete Invariant F)

$$
\begin{aligned}
& \begin{array}{l}
\forall^{\alpha}(F \rightarrow \phi) \\
\forall^{\alpha}(F \rightarrow[\alpha] F)
\end{array} \\
& \left.\hline \text { [} \alpha^{*}\right] \phi
\end{aligned}
$$

Definition (Differential Invariant F)

$$
\begin{aligned}
& F_{\left.x^{\prime}=\theta\right] \phi}^{\forall^{\alpha}(F \rightarrow \phi)} \\
& \forall^{\alpha}\left(F^{\prime}\right)
\end{aligned}
$$

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

\mathbb{A} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\frac{\vdash \forall^{\alpha}\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\frac{\vdash \forall^{\alpha}\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

$$
\frac{\vdash \forall^{\alpha}\left(\neg F \wedge \chi \rightarrow F_{\gg}^{\prime}\right)}{\left[x^{\prime}=\theta \wedge \neg F\right] \chi \vdash\left\langle x^{\prime}=\theta \wedge \chi\right\rangle F}
$$

P
 Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L} - Motivation for Differential Induction

- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness
(3) Restricting Differential Invariants

4 Deductive Power

\mathbb{P} Goal for Differential Induction Principle

$$
\sigma_{1} \mapsto \mathbb{F} \mathbb{I}_{\sigma_{1}}
$$

\mathbb{A} Goal for Differential Induction Principle

$$
\begin{aligned}
& \sigma_{1} \stackrel{\mapsto}{\sigma_{2}} \stackrel{\mathbb{F} \mathbb{I}_{\sigma_{1}}}{\left[F F \mathbb{\sigma}_{2}\right.}
\end{aligned}
$$

\mathbb{P} Goal for Differential Induction Principle

$$
\begin{aligned}
& \sigma_{1} \mapsto \llbracket F \rrbracket_{\sigma_{1}} \\
& \sigma_{2} \mapsto \llbracket F \mathbb{I}_{\sigma_{2}}
\end{aligned}
$$

In the limit:

$$
\frac{\mathrm{d} \llbracket F \rrbracket_{\sigma}}{\mathrm{d} \sigma}
$$

Goal for Differential Induction Principle

$$
\begin{aligned}
& \sigma_{1} \mapsto \mathbb{I} \stackrel{\left[F \|_{\sigma_{1}}\right.}{\sigma_{2}} \mapsto \mathbb{I F \mathbb { J } _ { 2 }}
\end{aligned}
$$

In the limit:

$$
\frac{\mathrm{d} \llbracket F \rrbracket_{\sigma(t)}}{\mathrm{d} t}
$$

where $\frac{\mathrm{d} \sigma(t)}{\mathrm{d} t}$ is according to ODE

\mathbb{P} Goal for Differential Induction Principle

$$
\begin{aligned}
& \sigma_{1} \stackrel{\leftrightarrow}{\sigma_{1}} \stackrel{\mathbb{F} \mathbb{I}_{\sigma_{1}}}{\sigma_{2}} \mathbb{\|} F \mathbb{J}_{2}
\end{aligned}
$$

In the limit:

$$
\frac{\mathrm{d} \llbracket F \rrbracket_{\sigma(t)}}{\mathrm{d} t}(\zeta)=\llbracket F^{\prime} \rrbracket_{\bar{\sigma}(\zeta)}
$$

where $\frac{\mathrm{d} \sigma(t)}{\mathrm{d} t}$ is according to ODE

Goal for Differential Induction Principle

$$
\begin{array}{lll}
\sigma_{1} & \longmapsto & \llbracket F \rrbracket_{\sigma_{1}} \\
\sigma_{2} & \longmapsto & \llbracket F \rrbracket_{\sigma_{2}}
\end{array}
$$

In the limit:

$$
\frac{\mathrm{d} \llbracket F \rrbracket_{\sigma(t)}}{\mathrm{d} t}(\zeta)=\llbracket F^{\prime} \rrbracket_{\bar{\sigma}(\zeta)}
$$

where $\frac{\mathrm{d} \sigma(t)}{\mathrm{d} t}$ is according to ODE

Goal (Derivation lemma)

Valuation is a differential homomorphism

Derivations and Differentiation

Definition (Syntactic total derivation $\left.D: \operatorname{Trm}\left(\Sigma \cup \Sigma^{\prime}\right) \rightarrow \operatorname{Trm}\left(\Sigma \cup \Sigma^{\prime}\right)\right)$

$$
\begin{aligned}
D(r) & =0 \\
D\left(x^{(n)}\right) & =x^{(n+1)} \\
D(a+b) & =D(a)+D(b) \\
D(a \cdot b) & =D(a) \cdot b+a \cdot D(b) \\
D(a / b) & =(D(a) \cdot b-a \cdot D(b)) / b^{2}
\end{aligned}
$$

$$
D(F) \equiv \bigwedge_{i=1}^{m} D\left(F_{i}\right)
$$

$\left\{F_{1}, \ldots, F_{m}\right\}$ all literals of F

$$
D(a \geq b) \equiv D(a) \geq D(b)
$$ accordingly for $<,>, \leq,=$

Derivations and Differentiation

Lemma (Derivation lemma)

Valuation is differential homomorphism: for all flows φ of duration $r>0$ along which θ is defined, all $\zeta \in[0, r]$

$$
\frac{\mathrm{d} \llbracket \theta \rrbracket_{\varphi(t)}}{\mathrm{d} t}(\zeta)=\llbracket D(\theta) \rrbracket_{\bar{\varphi}(\zeta)}
$$

Lemma (Differential substitution principle)
If $\varphi \models x_{i}^{\prime}=\theta_{i} \wedge \chi$, then $\varphi \models \mathcal{D} \leftrightarrow\left(\chi \rightarrow \mathcal{D}_{x_{i}^{\prime}}^{\theta_{i}}\right)$ for all \mathcal{D}.

Definition (Differential Invariant)

$$
\left(\chi \rightarrow F^{\prime}\right) \equiv \chi \rightarrow D(F)_{x_{i}^{\prime}}^{\theta_{i}} \quad \text { for }\left[x_{i}^{\prime}=\theta_{i} \wedge \chi\right] F
$$

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- If θ is a variable x, immediate by $\bar{\varphi}(\zeta)$:

$$
\frac{\mathrm{d} \llbracket x \rrbracket_{\varphi(t)}}{\mathrm{d} t}(\zeta)=\frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(\zeta)=\bar{\varphi}(\zeta)\left(x^{\prime}\right)=\llbracket D(x) \rrbracket_{\bar{\varphi}(\zeta)}
$$

Derivative exists as φ of order 1 in x, thus, continuously differentiable for x.

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- If θ is of the form $a+b$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a+b \rrbracket_{\varphi(t)}\right)(\zeta)
$$

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- If θ is of the form $a+b$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a+b \rrbracket_{\varphi(t)}\right)(\zeta) \\
= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}+\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \quad \llbracket \cdot \rrbracket_{V} \text { homomorph for }+
\end{aligned}
$$

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- If θ is of the form $a+b$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a+b \rrbracket_{\varphi(t)}\right)(\zeta) \\
&= \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}+\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
&= \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}\right)(\zeta)+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
& \frac{\mathrm{d}}{\mathrm{~d} t} \text { is a (linear) derivation }
\end{aligned}
$$

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- If θ is of the form $a+b$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a+b \rrbracket_{\varphi(t)}\right)(\zeta) \\
= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}+\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}\right)(\zeta)+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
= & \frac{\mathrm{d}}{\mathrm{~d} t} \text { is a (linear) derivation } \\
\llbracket D(a) \rrbracket_{\bar{\varphi}(\zeta)}+\llbracket D(b) \rrbracket_{\bar{\varphi}(\zeta)} & \text { by induction hypothesis }
\end{aligned}
$$

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- If θ is of the form $a+b$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a+b \rrbracket_{\varphi(t)}\right)(\zeta) \\
&= \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}+\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
&= \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}\right)(\zeta)+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
&= \frac{\mathrm{d}}{\mathrm{~d} t} \text { is a (linear) derivation } \\
&= \llbracket D(a) \rrbracket_{\bar{\varphi}(\zeta)}+\llbracket D(b) \rrbracket_{\bar{\varphi}(\zeta)} \\
& \text { homomorph for }+ \\
& \text { by induction hypothesis } \\
& \text { 【. }+D(b) \rrbracket_{\bar{\varphi}(\zeta)}
\end{aligned}
$$

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- If θ is of the form $a+b$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a+b \rrbracket_{\varphi(t)}\right)(\zeta) \\
= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}+\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket a \rrbracket_{\varphi(t)}\right)(\zeta)+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\llbracket b \rrbracket_{\varphi(t)}\right)(\zeta) \\
= & \frac{\mathrm{d}}{\mathrm{~d} t} \text { is a (linear) derivation } \\
= & \llbracket D(a) \rrbracket_{\bar{\varphi}(\zeta)}+\llbracket D(b) \rrbracket_{\bar{\varphi}(\zeta)} \\
= & \text { by induction hypothesis } \\
= & \llbracket D(a)+D(b) \rrbracket_{\bar{\varphi}(\zeta)}
\end{aligned}
$$

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- The case where θ is of the form $a \cdot b$ or $a-b$ is accordingly, using Leibniz product rule or subtractiveness of $D()$, respectively.

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- The case where θ is of the form $a \cdot b$ or $a-b$ is accordingly, using Leibniz product rule or subtractiveness of $D()$, respectively.
- The case where θ is of the form a / b uses quotient rule and further depends on the assumption that $b \neq 0$ along φ. This holds as the value of θ is assumed to be defined all along state flow φ.

Derivation Lemma: Proof

Proof (differential symbols fit to analytic derivatives in $\bar{\varphi}(\zeta)$).

- The case where θ is of the form $a \cdot b$ or $a-b$ is accordingly, using Leibniz product rule or subtractiveness of $D()$, respectively.
- The case where θ is of the form a / b uses quotient rule and further depends on the assumption that $b \neq 0$ along φ. This holds as the value of θ is assumed to be defined all along state flow φ.
- The values of numbers $r \in \mathbb{Q}$ do not change during a state flow (in fact, they are not affected by the state at all), hence their derivative is $D(r)=0$.

Differential Substitution Principle: Proof

Lemma (Differential substitution principle)

If $\varphi=x_{i}^{\prime}=\theta_{i} \wedge \chi$, then $\varphi \models \mathcal{D} \leftrightarrow\left(\chi \rightarrow \mathcal{D}_{x_{i}^{\prime}}^{\theta_{i}}\right)$ for all \mathcal{D}.

Proof.

Using substitution lemma for FOL on the basis of $\llbracket x_{i}^{\prime} \rrbracket_{\bar{\varphi}(\zeta)}=\llbracket \theta_{i} \rrbracket_{\bar{\varphi}(\zeta)}$ and $\bar{\varphi}(\zeta) \models \chi$ at each time ζ in the domain of φ.

\mathbb{P} Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic $\mathrm{d} \mathcal{L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness
(3) Restricting Differential Invariants
(4) Deductive Power
\mathbb{P} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\frac{\vdash \forall^{\alpha}\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

$$
\frac{\vdash \forall^{\alpha}\left(\neg F \wedge \chi \rightarrow F_{\gg}^{\prime}\right)}{\left[x^{\prime}=\theta \wedge \neg F\right] \chi \vdash\left\langle x^{\prime}=\theta \wedge \chi\right\rangle F}
$$

P
 Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

\mathbb{A}
 Differential Invariant Example: Quartic Dynamics

$$
2 x \geq \frac{1}{4} \vdash\left[x^{\prime}=x^{2}+x^{4}\right] 2 x \geq \frac{1}{4}
$$

Differential Invariant Example: Quartic Dynamics

$$
\frac{\vdash \forall x\left(D(2 x) \geq D\left(\frac{1}{4}\right)\right)}{2 x \geq \frac{1}{4} \vdash\left[x^{\prime}=x^{2}+x^{4}\right] 2 x \geq \frac{1}{4}}
$$

Differential Invariant Example: Quartic Dynamics

$\frac{\vdash \forall x\left(2 x^{\prime} \geq 0\right)}{\vdash \forall x\left(D(2 x) \geq D\left(\frac{1}{4}\right)\right)} \frac{\vdash \forall \geq \frac{1}{4}}{2 x \geq\left[x^{\prime}=x^{2}+x^{4}\right] 2 x \geq \frac{1}{4}}$

Differential Invariant Example: Quartic Dynamics

$\frac{\vdash \forall x\left(2\left(x^{2}+x^{4}\right) \geq 0\right)}{\vdash \forall x\left(2 x^{\prime} \geq 0\right)}$
$\frac{\vdash \forall x\left(D(2 x) \geq D\left(\frac{1}{4}\right)\right)}{2 x \geq \frac{1}{4} \vdash\left[x^{\prime}=x^{2}+x^{4}\right] 2 x \geq \frac{1}{4}}$

Differential Invariant Example: Quartic Dynamics

$\frac{*}{\frac{\vdash \forall x\left(2\left(x^{2}+x^{4}\right) \geq 0\right)}{\vdash \forall x\left(2 x^{\prime} \geq 0\right)}} \frac{\vdash \forall x\left(D(2 x) \geq D\left(\frac{1}{4}\right)\right)}{2 x \geq \frac{1}{4} \vdash\left[x^{\prime}=x^{2}+x^{4}\right] 2 x \geq \frac{1}{4}}$

$\not x$
 Differential Invariant Example: Linear vs Angular Speed

$$
\vdash \forall v\left(d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}\right)
$$

$$
\mathcal{F}(\omega) \equiv d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}
$$

R
 Differential Invariant Example: Linear vs Angular Speed

$$
\begin{aligned}
& \vdash d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2} \\
& \vdash \forall v\left(d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}\right)
\end{aligned}
$$

$$
\mathcal{F}(\omega) \equiv d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}
$$

Differential Invariant Example: Linear vs Angular Speed

$$
\begin{aligned}
\hline \frac{d_{1}^{2}+d_{2}^{2}=v^{2} \vdash[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}}{} & \vdash d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2} \\
& \vdash \forall v\left(d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}\right)
\end{aligned}
$$

$$
\mathcal{F}(\omega) \equiv d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}
$$

Differential Invariant Example: Linear vs Angular Speed

$$
\begin{gathered}
\hline \stackrel{\forall x_{1}, x_{2} \forall d_{1}, d_{2} \forall \omega\left(2 d_{1} d_{1}^{\prime}+2 d_{2} d_{2}^{\prime}=0\right)}{\frac{d_{1}^{2}+d_{2}^{2}=v^{2} \vdash[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}}{\vdash}+d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}} \\
\hline \vdash \forall v\left(d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}\right) \\
\\
\mathcal{F}(\omega) \equiv d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}
\end{gathered}
$$

Differential Invariant Example: Linear vs Angular Speed

$$
\begin{gathered}
\qquad \forall \forall x_{1}, x_{2} \forall d_{1}, d_{2} \forall \omega\left(2 d_{1}\left(-\omega d_{2}\right)+2 d_{2} \omega d_{1}=0\right) \\
\hline \vdash \forall x_{1}, x_{2} \forall d_{1}, d_{2} \forall \omega\left(2 d_{1} d_{1}^{\prime}+2 d_{2} d_{2}^{\prime}=0\right) \\
\hline d_{1}^{2}+d_{2}^{2}=v^{2} \vdash[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2} \\
\vdash d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2} \\
\vdash \forall v\left(d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}\right) \\
\\
\mathcal{F}(\omega) \equiv d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}
\end{gathered}
$$

Differential Invariant Example: Linear vs Angular Speed

\mathbb{A} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\begin{aligned}
d_{1} \geq d_{2} \rightarrow & {\left[x:=a^{2}+1\right.} \\
& d_{1}^{\prime}=-\omega d_{2}, d_{2}^{\prime}=\omega d_{1} \\
&] d_{1} \geq d_{2}
\end{aligned}
$$

\mathbb{A} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\begin{aligned}
d_{1} \geq d_{2} \rightarrow & {\left[x:=a^{2}+1\right.} \\
& \left(d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}\right) \vee\left(d_{1}^{\prime} \leq 2 d_{1}\right) \\
&] d_{1} \geq d_{2}
\end{aligned}
$$

\mathbb{A} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\begin{aligned}
d_{1} \geq d_{2} \rightarrow & {\left[x:=a^{2}+1\right.} \\
& \exists \omega\left(\omega \leq 1 \wedge d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}\right) \vee\left(d_{1}^{\prime} \leq 2 d_{1}\right) \\
&] d_{1} \geq d_{2}
\end{aligned}
$$

\mathbb{A} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\begin{aligned}
d_{1} \geq d_{2} \rightarrow & {\left[x:=a^{2}+1\right.} \\
& \exists \omega\left(\omega \leq 1 \wedge d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}\right) \vee\left(d_{1}^{\prime} \leq 2 d_{1}\right) \\
&] d_{1} \geq d_{2}
\end{aligned}
$$

- quantified nondeterminism/disturbance
\mathbb{A} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\begin{aligned}
d_{1} \geq d_{2} \rightarrow & {\left[x:=a^{2}+1\right.} \\
& \exists \omega\left(\omega \leq 1 \wedge d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}\right) \vee\left(d_{1}^{\prime} \leq 2 d_{1}\right) \\
&] d_{1} \geq d_{2}
\end{aligned}
$$

- quantified nondeterminism/disturbance

\mathbb{P} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\begin{aligned}
d_{1} \geq d_{2} \rightarrow & {\left[x>0 \rightarrow \exists a\left(a<5 \wedge x:=a^{2}+1\right) ;\right.} \\
& \exists \omega\left(\omega \leq 1 \wedge d_{1}^{\prime}=-\omega d_{2} \wedge d_{2}^{\prime}=\omega d_{1}\right) \vee\left(d_{1}^{\prime} \leq 2 d_{1}\right) \\
&] d_{1} \geq d_{2}
\end{aligned}
$$

- discrete quantified nondeterminism/disturbance

Restricting Differential Invariance

Restricting Differential Invariance

Restricting Differential Invariance

$$
\frac{\vdash \forall^{\alpha}\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

$$
\frac{\vdash \forall^{\alpha}\left(F \wedge \chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

Example (Restrictions)

$$
\frac{\vdash \forall x\left(x^{2} \leq 0 \rightarrow 2 x \cdot 1 \leq 0\right)}{x^{2} \leq 0 \vdash\left[x^{\prime}=1\right] x^{2} \leq 0}
$$

Restricting Differential Invariance

$$
\frac{\vdash \forall^{\alpha}\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

$$
\frac{\vdash \forall^{\alpha}\left(F \wedge \chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

Example (Restrictions)

$$
\frac{\vdash \forall x\left(x^{2} \leq 0 \rightarrow 2 x \cdot 1 \leq 0\right)}{x^{2} \leq 0 \vdash\left[x^{\prime}=1\right] x^{2} \leq 0}
$$

Restricting Differential Invariance

Example (Restrictions are unsound nonsense!)

$$
\frac{\vdash \forall x\left(x^{2} \leq 0 \rightarrow 2 x \cdot 1 \leq 0\right)}{x^{2} \leq 0 \vdash\left[x^{\prime}=1\right] x^{2} \leq 0}
$$

Differential Invariance of Negative Equations

Example (Negative equations)

Differential Invariance of Negative Equations

Example (Negative equations)

Differential Invariance of Negative Equations

Example (Negative equations are unsound nonsense!)

\mathbb{P} Disjunctive Differential Invariants

$$
F \wedge G^{\prime} \equiv
$$

$$
F \wedge G^{\prime} \equiv F^{\prime} \wedge G^{\prime}
$$

$$
\begin{aligned}
& F \wedge G^{\prime} \equiv F^{\prime} \wedge G^{\prime} \\
& F \vee G^{\prime} \equiv
\end{aligned}
$$

$$
\begin{aligned}
& F \wedge G^{\prime} \equiv F^{\prime} \wedge G^{\prime} \\
& F \vee G^{\prime} \equiv F^{\prime} \vee G^{\prime} ?
\end{aligned}
$$

$$
\begin{aligned}
& F \wedge G^{\prime} \equiv F^{\prime} \wedge G^{\prime} \\
& F \vee G^{\prime} \equiv F^{\prime} \vee G^{\prime} ?
\end{aligned}
$$

Example (Differential induction provable)

$$
d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}
$$

\mathbb{P} Disjunctive Differential Invariants

$$
\begin{aligned}
& F \wedge G^{\prime} \equiv F^{\prime} \wedge G^{\prime} \\
& F \vee G^{\prime} \equiv F^{\prime} \vee G^{\prime} ?
\end{aligned}
$$

Example (Differential induction provable)

$$
d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}
$$

Example (Thus provable)

$$
x_{1} \geq 0 \vee d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)]\left(x_{1} \geq 0 \vee d_{1}^{2}+d_{2}^{2}=v^{2}\right)
$$

\mathbb{P} Disjunctive Differential Invariants

$$
\begin{aligned}
& F \wedge G^{\prime} \equiv F^{\prime} \wedge G^{\prime} \\
& F \vee G^{\prime} \equiv F^{\prime} \vee G^{\prime} ?
\end{aligned}
$$

Example (Differential induction provable)

$$
d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}
$$

Example (Nonsense!)

$$
x_{1} \geq 0 \vee d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)]\left(x_{1} \geq 0 \vee d_{1}^{2}+d_{2}^{2}=v^{2}\right)
$$

\mathbb{P} Disjunctive Differential Invariants

$$
\begin{aligned}
& F \wedge G^{\prime} \equiv F^{\prime} \wedge G^{\prime} \\
& F \vee G^{\prime} \equiv F^{\prime} \wedge G^{\prime}!
\end{aligned}
$$

Example (Differential induction provable)

$$
d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)] d_{1}^{2}+d_{2}^{2}=v^{2}
$$

Example (Nonsense!)

$$
x_{1} \geq 0 \vee d_{1}^{2}+d_{2}^{2}=v^{2} \rightarrow[\exists \omega \mathcal{F}(\omega)]\left(x_{1} \geq 0 \vee d_{1}^{2}+d_{2}^{2}=v^{2}\right)
$$

\mathbb{P} Closure Properties of Differential Invariants

Lemma

Differential invariants are closed under conjunction and differentiation:
F diff. inv., G diff. inv. $\Rightarrow F \wedge G$ diff. inv. (of same system) F diff. inv. $\Rightarrow \quad F^{\prime}$ diff. inv. (of same system)

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(3) Soundness
(3) Restricting Differential Invariants
-

Deductive Power

R
 Differential Induction for Aircraft Roundabouts

$$
\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}
$$

\mathbb{P} Differential Induction for Aircraft Roundabouts

$$
\frac{\digamma \frac{\partial\|x-y\|^{2}}{\partial x_{1}} x_{1}^{\prime}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} y_{1}^{\prime}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} x_{2}^{\prime}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} y_{2}^{\prime} \geq \frac{\partial p^{2}}{\partial x_{1}} x_{1}^{\prime} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

R
 Differential Induction for Aircraft Roundabouts

$$
\frac{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} x_{1}^{\prime}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} y_{1}^{\prime}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} x_{2}^{\prime}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} y_{2}^{\prime} \geq \frac{\partial p^{2}}{\partial x_{1}} x_{1}^{\prime} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

R
 Differential Induction for Aircraft Roundabouts

$$
\frac{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

Differential Induction for Aircraft Roundabouts

$$
\frac{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0}{\stackrel{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}}
$$

\mathbb{P} Differential Induction for Aircraft Roundabouts

$$
\frac{\frac{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0}{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}}{\left.\stackrel{\vdash}{\vdash} x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

$$
\frac{\frac{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0}{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}}{\left.\stackrel{\vdash}{\vdash} x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

$. . \vdash\left[d_{1}^{\prime}=-\omega d_{2}, e_{1}^{\prime}=-\omega e_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, ..\right] d_{1}-e_{1}=-\omega\left(x_{2}-y_{2}\right)$

Differential Induction for Aircraft Roundabouts

$$
\frac{\vdash 2\left(x_{1}-y_{1}\right)\left(-\omega\left(x_{2}-y_{2}\right)\right)+2\left(x_{2}-y_{2}\right) \omega\left(x_{1}-y_{1}\right) \geq 0}{\stackrel{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0}{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}} \frac{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}{}
$$

$. . \vdash\left[d_{1}^{\prime}=-\omega d_{2}, e_{1}^{\prime}=-\omega e_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, ..\right] d_{1}-e_{1}=-\omega\left(x_{2}-y_{2}\right)$

Differential Induction for Aircraft Roundabouts

$$
\frac{\stackrel{\vdash 2}{ }\left(x_{1}-y_{1}\right)\left(-\omega\left(x_{2}-y_{2}\right)\right)+2\left(x_{2}-y_{2}\right) \omega\left(x_{1}-y_{1}\right) \geq 0}{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0} \frac{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

$\vdash \frac{\partial\left(d_{1}-e_{1}\right)}{\partial d_{1}} d_{1}^{\prime}+\frac{\partial\left(d_{1}-e_{1}\right)}{\partial e_{1}} e_{1}^{\prime}=-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial x_{2}} x_{2}^{\prime}-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial y_{2}} y_{2}^{\prime}$
$. . \vdash\left[d_{1}^{\prime}=-\omega d_{2}, e_{1}^{\prime}=-\omega e_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, ..\right] d_{1}-e_{1}=-\omega\left(x_{2}-y_{2}\right)$

Differential Induction for Aircraft Roundabouts

$$
\frac{\stackrel{\vdash 2}{ }\left(x_{1}-y_{1}\right)\left(-\omega\left(x_{2}-y_{2}\right)\right)+2\left(x_{2}-y_{2}\right) \omega\left(x_{1}-y_{1}\right) \geq 0}{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0} \frac{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

$\vdash \frac{\partial\left(d_{1}-e_{1}\right)}{\partial d_{1}} d_{1}^{\prime}+\frac{\partial\left(d_{1}-e_{1}\right)}{\partial e_{1}} e_{1}^{\prime}=-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial x_{2}} x_{2}^{\prime}-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial y_{2}} y_{2}^{\prime}$
$. . \vdash\left[d_{1}^{\prime}=-\omega d_{2}, e_{1}^{\prime}=-\omega e_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, ..\right] d_{1}-e_{1}=-\omega\left(x_{2}-y_{2}\right)$

Differential Induction for Aircraft Roundabouts

$$
\frac{\stackrel{\vdash 2}{ }\left(x_{1}-y_{1}\right)\left(-\omega\left(x_{2}-y_{2}\right)\right)+2\left(x_{2}-y_{2}\right) \omega\left(x_{1}-y_{1}\right) \geq 0}{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0} \frac{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}
$$

$\vdash \frac{\partial\left(d_{1}-e_{1}\right)}{\partial d_{1}}\left(-\omega d_{2}\right)+\frac{\partial\left(d_{1}-e_{1}\right)}{\partial e_{1}}\left(-\omega e_{2}\right)=-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial x_{2}} d_{2}-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial y_{2}} e_{2}$
$. . \vdash\left[d_{1}^{\prime}=-\omega d_{2}, e_{1}^{\prime}=-\omega e_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, ..\right] d_{1}-e_{1}=-\omega\left(x_{2}-y_{2}\right)$

$$
\frac{\frac{\vdash 2\left(x_{1}-y_{1}\right)\left(-\omega\left(x_{2}-y_{2}\right)\right)+2\left(x_{2}-y_{2}\right) \omega\left(x_{1}-y_{1}\right) \geq 0}{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0}}{\frac{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}}
$$

$\vdash-\omega d_{2}+\omega e_{2}=-\omega\left(d_{2}-e_{2}\right)$
$\vdash \frac{\partial\left(d_{1}-e_{1}\right)}{\partial d_{1}}\left(-\omega d_{2}\right)+\frac{\partial\left(d_{1}-e_{1}\right)}{\partial e_{1}}\left(-\omega e_{2}\right)=-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial x_{2}} d_{2}-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial y_{2}} e_{2}$
$. . \vdash\left[d_{1}^{\prime}=-\omega d_{2}, e_{1}^{\prime}=-\omega e_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, ..\right] d_{1}-e_{1}=-\omega\left(x_{2}-y_{2}\right)$

Differential Induction \& Differential Saturation

$$
\frac{\stackrel{\vdash 2}{ }\left(x_{1}-y_{1}\right)\left(-\omega\left(x_{2}-y_{2}\right)\right)+2\left(x_{2}-y_{2}\right) \omega\left(x_{1}-y_{1}\right) \geq 0}{\stackrel{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0}{\vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots}} \frac{\vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2}}{}
$$

Proposition (Differential saturation)

F differential invariant of $\left[x^{\prime}=\theta \wedge H\right] \phi$, then $\left[x^{\prime}=\theta \wedge H\right] \phi \quad$ iff $\quad\left[x^{\prime}=\theta \wedge H \wedge F\right] \phi$
$\vdash-\omega d_{2}+\omega e_{2}=-\omega\left(d_{2}-e_{2}\right)$
$\vdash \frac{\partial\left(d_{1}-e_{1}\right)}{\partial d_{1}}\left(-\omega d_{2}\right)+\frac{\partial\left(d_{1}-e_{1}\right)}{\partial e_{1}}\left(-\omega e_{2}\right)=-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial x_{2}} d_{2}-\frac{\partial \omega\left(x_{2}-y_{2}\right)}{\partial y_{2}} e_{2}$
$. . \vdash\left[d_{1}^{\prime}=-\omega d_{2}, e_{1}^{\prime}=-\omega e_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, ..\right] d_{1}-e_{1}=-\omega\left(x_{2}-y_{2}\right)$

$$
\begin{aligned}
& \frac{\vdash 2\left(x_{1}-y_{1}\right)\left(-\omega\left(x_{2}-y_{2}\right)\right)+2\left(x_{2}-y_{2}\right) \omega\left(x_{1}-y_{1}\right) \geq 0}{\vdash 2\left(x_{1}-y_{1}\right)\left(d_{1}-e_{1}\right)+2\left(x_{2}-y_{2}\right)\left(d_{2}-e_{2}\right) \geq 0} \\
& \vdash \frac{\partial\|x-y\|^{2}}{\partial x_{1}} d_{1}+\frac{\partial\|x-y\|^{2}}{\partial y_{1}} e_{1}+\frac{\partial\|x-y\|^{2}}{\partial x_{2}} d_{2}+\frac{\partial\|x-y\|^{2}}{\partial y_{2}} e_{2} \geq \frac{\partial p^{2}}{\partial x_{1}} d_{1} \ldots \\
& \vdash\left[x_{1}^{\prime}=d_{1}, d_{1}^{\prime}=-\omega d_{2}, x_{2}^{\prime}=d_{2}, d_{2}^{\prime}=\omega d_{1}, . .\right]\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq p^{2} \\
& \text { refine dynamics by differential saturation }
\end{aligned}
$$

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness
(3) Restricting Differential Invariants

4 Deductive Power
\mathbb{P} Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant)

F closed under total differentiation with respect to differential constraints

$$
\frac{\vdash\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

$$
\frac{\vdash\left(\neg F \wedge \chi \rightarrow F_{\gg}^{\prime}\right)}{\left[x^{\prime}=\theta \wedge \sim F\right] \chi \vdash\left\langle x^{\prime}=\theta \wedge \chi\right\rangle F}
$$

Differential Variants

Definition (Differential Variant)

F positive under total differentiation with respect to differential constraints

$$
\frac{\vdash\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

$$
\frac{\vdash\left(\neg F \wedge \chi \rightarrow F_{\gg}^{\prime}\right)}{\left[x^{\prime}=\theta \wedge \sim F\right] \chi \vdash\left\langle x^{\prime}=\theta \wedge \chi\right\rangle F}
$$

$$
\vdash \exists \varepsilon>0 \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$$
\overline{\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F}
$$ when Lipschitz-continuous and F without equalities

Differential Variants for Flight Progress

$$
\begin{gathered}
\qquad \frac{\vdash b>0}{\vdash \operatorname{QE}\left(\exists d\left(\left(\|d\|^{2} \leq b^{2}\right) \wedge\left(d_{1}>0 \wedge d_{2}>0\right)\right)\right)} \\
\frac{\vdash d_{1}>0 \wedge d_{2}>0}{\vdash \exists d \|^{2} \leq b^{2} \quad \frac{\vdash \exists \epsilon 0 \forall x_{1}, x_{2}\left(x_{1}<p_{1} \vee x_{2}<p_{2} \rightarrow d_{1} \geq \epsilon \wedge d_{2} \geq \epsilon\right)}{\vdash\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)}} \underset{\qquad \frac{\vdash d \|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)}{\vdash \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right)}}{\vdash \forall p \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right)} \\
\mathcal{F}(0) \equiv x_{1}^{\prime}=d_{1} \wedge x_{2}^{\prime}=d_{2} \\
F \equiv x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}
\end{gathered}
$$

Differential Variants for Flight Progress

$$
\begin{gathered}
\qquad \frac{\vdash b>0}{\vdash \mathrm{QE}\left(\exists d\left(\left(\|d\|^{2} \leq b^{2}\right) \wedge\left(d_{1}>0 \wedge d_{2}>0\right)\right)\right)} \\
\frac{\frac{\vdash d_{1}>0 \wedge d_{2}>0}{\vdash \exists \epsilon>0 \forall x_{1}, x_{2}\left(x_{1}<p_{1} \vee x_{2}<p_{2} \rightarrow d_{1} \geq \epsilon \wedge d_{2} \geq \epsilon\right)}}{\qquad \frac{\vdash d \|^{2} \leq b^{2} \quad}{\vdash\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)}} \underset{\qquad}{\vdash\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)} \\
\vdash \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
\vdash \forall p \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
\mathcal{F}(0)
\end{gathered} \begin{aligned}
& F x_{1}^{\prime}=d_{1} \wedge x_{2}^{\prime}=d_{2} \\
& F \equiv x_{1} \geq p_{1} \wedge x_{2} \geq p_{2} \\
& F^{\prime} \equiv x_{1}^{\prime} \geq 0 \wedge x_{2}^{\prime} \geq 0
\end{aligned}
$$

Differential Variants for Flight Progress

$$
\begin{gathered}
\frac{\vdash b>0}{\vdash \operatorname{QE}\left(\exists d\left(\left(\|d\|^{2} \leq b^{2}\right) \wedge\left(d_{1}>0 \wedge d_{2}>0\right)\right)\right)} \\
\frac{\qquad-d_{1}>0 \wedge d_{2}>0}{\vdash \exists \epsilon>0 \forall x_{1}, x_{2}\left(x_{1}<p_{1} \vee x_{2}<p_{2} \rightarrow d_{1} \geq \epsilon \wedge d_{2} \geq \epsilon\right)} \\
\hline \vdash b^{2} \quad \vdash\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right) \\
\vdash\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right) \\
\vdash \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
\vdash \forall p \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
\mathcal{F}(0) \equiv x_{1}^{\prime}=d_{1} \wedge x_{2}^{\prime}=d_{2} \\
F
\end{gathered}
$$

Differential Variants for Flight Progress

$$
\begin{gathered}
\frac{\vdash b>0}{\vdash \mathrm{QE}\left(\exists d\left(\left(\|d\|^{2} \leq b^{2}\right) \wedge\left(d_{1}>0 \wedge d_{2}>0\right)\right)\right)} \\
\frac{\qquad \| d_{1}>0 \wedge d_{2}>0}{\vdash \exists \epsilon>0 \forall x_{1}, x_{2}\left(x_{1}<p_{1} \vee x_{2}<p_{2} \rightarrow d_{1} \geq \epsilon \wedge d_{2} \geq \epsilon\right)} \\
\hline \vdash \| \mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right) \\
\vdash\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right) \\
\vdash \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
\vdash \forall p \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
\mathcal{F}(0) \equiv x_{1}^{\prime}=d_{1} \wedge x_{2}^{\prime}=d_{2} \\
F
\end{gathered}
$$

Differential Variants for Flight Progress

$$
\begin{aligned}
& \vdash b>0 \\
& \vdash \mathrm{QE}\left(\exists d\left(\left(\|d\|^{2} \leq b^{2}\right) \wedge\left(d_{1}>0 \wedge d_{2}>0\right)\right)\right) \\
& \vdash d_{1}>0 \wedge d_{2}>0 \\
& \vdash \exists \epsilon>0 \forall x_{1}, x_{2}\left(x_{1}<p_{1} \vee x_{2}<p_{2} \rightarrow d_{1} \geq \epsilon \wedge d_{2} \geq \epsilon\right) \\
& \vdash\|d\|^{2} \leq b^{2} \quad \vdash\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right) \\
& \vdash\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right) \\
& \vdash \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
& \vdash \forall p \exists d\left(\|d\|^{2} \leq b^{2} \wedge\langle\mathcal{F}(0)\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
& \mathcal{F}(0) \equiv x_{1}^{\prime}=d_{1} \wedge x_{2}^{\prime}=d_{2} \\
& F \equiv x_{1} \geq p_{1} \wedge x_{2} \geq p_{2} \\
& F^{\prime} \equiv d_{1} \geq 0 \wedge d_{2} \geq 0 \\
& F^{\prime} \geq \epsilon \equiv d_{1} \geq \epsilon \wedge d_{2} \geq \epsilon
\end{aligned}
$$

Differential Variants for Progress

Example (Progress)

$$
\frac{\vdash \forall x(x>0 \rightarrow-x<0)}{\vdash\left\langle x^{\prime}=-x\right\rangle x \leq 0}
$$

Differential Variants for Progress

Example (Progress)

$$
\frac{\vdash \forall x(x>0 \rightarrow-x<0)}{\vdash\left\langle x^{\prime}=-x\right\rangle x \leq 0}
$$

Differential Variants for Progress

Example (Unsound without minimal progress!)

$$
\begin{aligned}
& \vdash \forall x(y>0 \rightarrow-x<0) \\
& \hline \vdash\left\langle x^{\prime}=-x\right\rangle x>0
\end{aligned}
$$

Differential Variants for Progress

Example (Mixed dynamics)

$$
\frac{*}{\vdash \exists \varepsilon>0 \forall x \forall y(x<6 \rightarrow 1 \geq \varepsilon)} \frac{\vdash\left\langle x^{\prime}=1 \wedge y^{\prime}=1+y^{2}\right\rangle x \geq 6}{}
$$

Differential Variants for Progress

Example (Mixed dynamics)

$$
\frac{*}{\vdash \exists \varepsilon>0 \forall x \forall y(x<6 \rightarrow 1 \geq \varepsilon)}
$$

Differential Variants for Progress

Example (Unsound without Lipschitz-continuity!)

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness
(3) Restricting Differential Invariants

A Deductive Power

Verification of Differential-algebraic Dynamic Logic

$$
\overline{[x:=\theta] \phi}
$$

\mathbb{A}
 Verification of Differential-algebraic Dynamic Logic

$$
\overline{[x:=\theta] \phi}
$$

\mathbb{A} Verification of Differential-algebraic Dynamic Logic

$$
\frac{\phi_{x}^{\theta}}{[x:=\theta] \phi}
$$

\mathbb{A}
 Verification of Differential-algebraic Dynamic Logic

$$
\frac{\phi_{x}^{\theta}}{[x:=\theta] \phi}
$$

$$
\left\langle x^{\prime}=\theta\right\rangle \phi
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{\phi_{x}^{\theta}}{[x:=\theta] \phi}
$$

$$
\left\langle x^{\prime}=\theta\right\rangle \phi
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{\phi_{x}^{\theta}}{[x:=\theta] \phi}
$$

$$
\frac{\exists t \geq 0\left\langle x:=y_{x}(t)\right\rangle \phi}{\left\langle x^{\prime}=\theta\right\rangle \phi}
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{\phi_{x}^{\theta}}{[x:=\theta] \phi}
$$

$$
\exists t \geq 0\left\langle x:=y_{x}(t)\right\rangle \phi
$$

$$
\left.\overline{\left\langle x^{\prime}\right.}=\theta\right\rangle \phi
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{\phi_{x}^{\theta}}{[x:=\theta] \phi}
$$

$$
\exists t \geq 0\left\langle x:=y_{x}(t)\right\rangle \phi
$$

$$
\left.\overline{\left\langle x^{\prime}\right.}=\theta\right\rangle \phi
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{\phi_{x}^{\theta}}{[x:=\theta] \phi}
$$

$$
\frac{\exists t \geq 0\left\langle x:=y_{x}(t)\right\rangle \phi}{\left\langle x^{\prime}=\theta\right\rangle \phi}
$$

Verification of Differential-algebraic Dynamic Logic

$$
\begin{aligned}
& \frac{\phi_{x}^{\theta}}{[x:=\theta] \phi} \\
& \exists t \geq 0\left\langle x:=y_{x}(t)\right\rangle \phi \\
& \left\langle x^{\prime}=\theta\right\rangle \phi \\
& \bar{\chi} \equiv \forall 0 \leq s \leq t\left\langle x:=y_{x}(s)\right\rangle \chi
\end{aligned}
$$

Verification of Differential-algebraic Dynamic Logic

compositional semantics \Rightarrow compositional rules!

\mathbb{A}
 Verification of Differential-algebraic Dynamic Logic

$$
\overline{[\alpha \cup \beta] \phi}
$$

\mathbb{P} Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
\overline{[\alpha ; \beta] \phi}
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
\overline{[\alpha ; \beta] \phi}
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
\overline{[\alpha ; \beta] \phi}
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
\frac{[\alpha][\beta] \phi}{[\alpha ; \beta] \phi}
$$

\notin
 Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
[\alpha][\beta] \phi
$$

$$
\overline{[\alpha ; \beta] \phi}
$$

\notin
 Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
[\alpha][\beta] \phi
$$

$$
\overline{[\alpha ; \beta] \phi}
$$

$\vdash F$

$$
\vdash\left[\alpha^{*}\right] F
$$

\notin
 Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
[\alpha][\beta] \phi
$$

$$
\overline{[\alpha ; \beta] \phi}
$$

$\vdash F$

$$
\vdash\left[\alpha^{*}\right] F
$$

\notin
 Verification of Differential-algebraic Dynamic Logic

$$
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi}
$$

$$
\frac{\vdash F \quad \vdash(F \rightarrow[\alpha] F)}{\vdash\left[\alpha^{*}\right] F}
$$

$$
[\alpha][\beta] \phi
$$

$$
[Q: \beta] \notin
$$

Verification of Differential-algebraic Dynamic Logic

Verification of Differential-algebraic Dynamic Logic

$\vdash \exists v \varphi(v)$

$$
\vdash\left\langle\alpha^{*}\right\rangle \psi
$$

Verification of Differential-algebraic Dynamic Logic

$$
\frac{\vdash \exists v \varphi(v) \quad \vdash \forall v>0(\varphi(v) \rightarrow\langle\alpha\rangle \varphi(v-1))}{\vdash\left\langle\alpha^{*}\right\rangle \psi}
$$

$$
\alpha^{*}
$$

Verification of Differential-algebraic Dynamic Logic

$$
\begin{aligned}
& \vdash \exists v \varphi(v) \quad \vdash \forall v>0(\varphi(v) \rightarrow\langle\alpha\rangle \varphi(v-1)) \quad \vdash(\exists v \leq 0 \varphi(v) \rightarrow \psi) \\
& \vdash\left\langle\alpha^{*}\right\rangle \psi \\
& \exists v \varphi(v)
\end{aligned}
$$

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(3) Soundness
(3) Restricting Differential Invariants

D Deductive Power

Differential Transformation

Lemma (Differential transformation principle)

Let \mathcal{D} and \mathcal{E} be DA-constraints (same changed variables). If $\mathcal{D} \rightarrow \mathcal{E}$ is a tautology of (non-differential) first-order real arithmetic (that is, when considering $x^{(n)}$ as a new variable independent from $\left.x\right)$, then $\rho(\mathcal{D}) \subseteq \rho(\mathcal{E})$.

Differential Transformation

Lemma (Differential transformation principle)

Let \mathcal{D} and \mathcal{E} be DA-constraints (same changed variables). If $\mathcal{D} \rightarrow \mathcal{E}$ is a tautology of (non-differential) first-order real arithmetic (that is, when considering $x^{(n)}$ as a new variable independent from $\left.x\right)$, then $\rho(\mathcal{D}) \subseteq \rho(\mathcal{E})$.

- DA-constraints \mathcal{D} and \mathcal{E} are equivalent iff $\rho(\mathcal{D})=\rho(\mathcal{E})$.

Differential Transformation

Lemma (Differential transformation principle)

Let \mathcal{D} and \mathcal{E} be DA-constraints (same changed variables). If $\mathcal{D} \rightarrow \mathcal{E}$ is a tautology of (non-differential) first-order real arithmetic (that is, when considering $x^{(n)}$ as a new variable independent from $\left.x\right)$, then $\rho(\mathcal{D}) \subseteq \rho(\mathcal{E})$.

- DA-constraints \mathcal{D} and \mathcal{E} are equivalent iff $\rho(\mathcal{D})=\rho(\mathcal{E})$.
- Semantics of DA-programs is preserved when replacing DA-constraint equivalently in non-differential first-order real arithmetic.

\mathbb{A} Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{X}^{x^{\prime}}$ and $\mathcal{E} \equiv \psi_{X}^{x^{\prime}}$.

Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{X}^{x^{\prime}}$ and $\mathcal{E} \equiv \psi_{X}^{x^{\prime}}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.

Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{X}^{x^{\prime}}$ and $\mathcal{E} \equiv \psi_{X}^{x^{\prime}}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ.

Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{X}^{x^{\prime}}$ and $\mathcal{E} \equiv \psi_{X}^{x^{\prime}}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ.
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:

Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{X}^{x^{\prime}}$ and $\mathcal{E} \equiv \psi_{X}^{x^{\prime}}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ.
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in[0, r]$, we have $\bar{\varphi}(\zeta) \models \mathcal{D}$

Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{X}^{x^{\prime}}$ and $\mathcal{E} \equiv \psi_{X}^{x^{\prime}}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ.
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in[0, r]$, we have $\bar{\varphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,

Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{X}^{x^{\prime}}$ and $\mathcal{E} \equiv \psi_{X}^{x^{\prime}}$.
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ.
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in[0, r]$, we have $\bar{\varphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,
- because $\bar{\varphi}(\zeta) \models \phi_{X}^{x^{\prime}}$ implies $\bar{\varphi}(\zeta) \models \psi_{X}^{x^{\prime}}$ by validity of $\phi \rightarrow \psi$.

Differential Transformation: Proof

Proof.

- $\mathcal{D} \equiv \phi_{\underset{x}{x^{\prime}}}$ and $\mathcal{E} \equiv \psi_{\underset{x}{x^{\prime}} \text {. }}^{\text {. }}$
- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ.
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in[0, r]$, we have $\bar{\varphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,
- because $\bar{\varphi}(\zeta) \models \phi_{X}^{x^{\prime}}$ implies $\bar{\varphi}(\zeta)=\psi_{X}^{x^{\prime}}$ by validity of $\phi \rightarrow \psi$.
- \mathcal{D} and \mathcal{E} need same set of changed variables as unchanged variables z remain constant.

Differential Transformation: Proof

Proof.

- Let $\phi \rightarrow \psi$ be valid in (non-differential) real arithmetic.
- Let $(v, w) \in \rho(\mathcal{D})$ according to a state flow φ.
- Then φ is a state flow for \mathcal{E} that justifies $(v, w) \in \rho(\mathcal{E})$:
- For any $\zeta \in[0, r]$, we have $\bar{\varphi}(\zeta) \models \mathcal{D}$
- Hence $\bar{\varphi}(\zeta) \models \mathcal{E}$,
- because $\bar{\varphi}(\zeta) \models \phi_{X}^{x^{\prime}}$ implies $\bar{\varphi}(\zeta) \models \psi_{X}^{x^{\prime}}$ by validity of $\phi \rightarrow \psi$.
- \mathcal{D} and \mathcal{E} need same set of changed variables as unchanged variables z remain constant.
- Add $z^{\prime}=0$ as required.

Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic d \mathcal{L}

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness

3 Restricting Differential Invariants
-
Deductive Power

Differential Reduction

Lemma (Differential inequality elimination)

DA-constraints admit differential inequality elimination, i.e., to each DA-constraint \mathcal{D}, an equivalent DA-constraint without differential inequalities can be effectively associated that has no other free variables.

Proof.

Differential Reduction

Lemma (Differential inequality elimination)

DA-constraints admit differential inequality elimination, i.e., to each $D A$-constraint \mathcal{D}, an equivalent DA-constraint without differential inequalities can be effectively associated that has no other free variables.

Proof.

- Let \mathcal{E} like \mathcal{D} with all differential inequalities $\theta_{1} \leq \theta_{2}$ replaced by a quantified differential equation $\exists u\left(\theta_{1}=\theta_{2}-u \wedge u \geq 0\right)$ with a new variable u for the quantified disturbance (accordingly for $\geq,>,<$).

\mathbb{P} Differential Reduction

Lemma (Differential inequality elimination)

DA-constraints admit differential inequality elimination, i.e., to each $D A$-constraint \mathcal{D}, an equivalent $D A$-constraint without differential inequalities can be effectively associated that has no other free variables.

Proof.

- Let \mathcal{E} like \mathcal{D} with all differential inequalities $\theta_{1} \leq \theta_{2}$ replaced by a quantified differential equation $\exists u\left(\theta_{1}=\theta_{2}-u \wedge u \geq 0\right)$ with a new variable u for the quantified disturbance (accordingly for $\geq,>,<$).
- Diff. trafo: equivalence of \mathcal{D} and \mathcal{E} is a simple consequence of the corresponding equivalences in first-order real arithmetic.

Differential Equation Normalization

DA-constraint may become inhomogeneous: $\theta_{1} \leq x^{\prime} \leq \theta_{2}$ produces

$$
\exists u \exists v\left(x^{\prime}=\theta_{1}+u \wedge x^{\prime}=\theta_{2}-v \wedge u \geq 0 \wedge v \geq 0\right)
$$

Differential Equation Normalization

Lemma (Differential equation normalisation)

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D}, an equivalent $D A$-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)}=\theta$ where $\operatorname{ord}_{x} \theta<n$.

Differential Equation Normalization

Lemma (Differential equation normalisation)

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D}, an equivalent DA-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)}=\theta$ where $\operatorname{ord}_{x} \theta<n$.

Proof.

Differential Equation Normalization

Lemma (Differential equation normalisation)

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D}, an equivalent $D A$-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)}=\theta$ where $\operatorname{ord}_{x} \theta<n$.

Proof.

- For each differential symbol $x^{(n)} \in \Sigma^{\prime}$, introduce new non-differential variable $X_{n} \in \Sigma$.

Differential Equation Normalization

Lemma (Differential equation normalisation)

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D}, an equivalent $D A$-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)}=\theta$ where $\operatorname{ord}_{x} \theta<n$.

Proof.

- For each differential symbol $x^{(n)} \in \Sigma^{\prime}$, introduce new non-differential variable $X_{n} \in \Sigma$.
- Diff. trafo: equivalence of \mathcal{D} and $\exists X_{n}\left(x^{(n)}=X_{n} \wedge \mathcal{D}_{X^{(n)}}^{X_{n}}\right)$ is a simple consequence of the corresponding equivalence in $\mathrm{FOL}_{\mathbb{R}}$.

Differential Equation Normalization

Lemma (Differential equation normalisation)

DA-constraints admit differential equation normalisation, i.e., to each DA-constraint \mathcal{D}, an equivalent $D A$-constraint with at most one differential equation for each differential symbol can be effectively associated that has no other free variables. This differential equation is of the form $x^{(n)}=\theta$ where $\operatorname{ord}_{x} \theta<n$.

Proof.

- For each differential symbol $x^{(n)} \in \Sigma^{\prime}$, introduce new non-differential variable $X_{n} \in \Sigma$.
- Diff. trafo: equivalence of \mathcal{D} and $\exists X_{n}\left(x^{(n)}=X_{n} \wedge \mathcal{D}_{X^{(n)}}^{X_{n}}\right)$ is a simple consequence of the corresponding equivalence in $\mathrm{FOL}_{\mathbb{R}}$.
- Induction for all such $x^{(n)} \in \Sigma^{\prime}$ in \mathcal{D} gives desired result.

Recall aircraft progress property

$$
\forall p \exists d\left(\|d\|^{2} \leq b^{2} \wedge\left\langle x_{1}^{\prime}=d_{1} \wedge x_{2}^{\prime}=d_{2}\right\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right)
$$

Similar proof can be found for

$$
\begin{aligned}
& \forall p \exists d\left(\|d\|^{2} \leq b^{2} \wedge\left\langle x_{1}^{\prime} \geq d_{1} \wedge x_{2}^{\prime} \geq d_{2}\right\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right)\right) \\
\rightsquigarrow . . & \left\langle\exists u\left(x_{1}^{\prime}=d_{1}+u_{1} \wedge x_{2}^{\prime}=d_{2}+u_{2} \wedge u_{1} \geq 0 \wedge u_{2} \geq 0\right)\right\rangle\left(x_{1} \geq p_{1} \wedge x_{2} \geq p_{2}\right.
\end{aligned}
$$

The proof is identical to before, except that differential induction yields
$\forall x \forall u\left(\left(x_{1}<p_{1} \vee x_{2}<p_{2}\right) \wedge u_{1} \geq 0 \wedge u_{2} \geq 0 \rightarrow d_{1}+u_{1} \geq \varepsilon \wedge d_{2}+u_{2} \geq \varepsilon\right)$

\mathbb{P} Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic $\mathrm{d} \mathcal{L}$

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules

2) Soundness
(3) Restricting Differential Invariants
a Deductive Power

Admissibility

Definition (Admissible substitution)

An application of a substitution σ is admissible if no variable x that σ replaces by σx occurs in the scope of a quantifier or modality binding x or a (logical or state) variable of the replacement σx. A modality binds variable x iff its DA-program changes x, i.e., contains a DJ-constraint with $x:=\theta$ or a DA-constraint with x^{\prime}.

Admissibility

Definition (Admissible substitution)

An application of a substitution σ is admissible if no variable x that σ replaces by σx occurs in the scope of a quantifier or modality binding x or a (logical or state) variable of the replacement σx. A modality binds variable x iff its DA-program changes x, i.e., contains a DJ-constraint with $x:=\theta$ or a DA-constraint with x^{\prime}.

All substitutions in all rules need to be admissible!

Rule Schema Applications

Definition (Rules)

Any instance

$$
\frac{\Phi_{1} \vdash \Psi_{1} \ldots \Phi_{n} \vdash \Psi_{n}}{\Phi_{0} \vdash \Psi_{0}}
$$

of a rule can be applied as a proof rule in context:

$$
\frac{\left\ulcorner, \Phi_{1} \vdash \Psi_{1}, \Delta \quad \ldots \quad \Gamma, \Phi_{n} \vdash \Psi_{n}, \Delta\right.}{\Gamma, \Phi_{0} \vdash \Psi_{0}, \Delta}
$$

Γ, Δ are arbitrary finite sets of additional context formulas (including empty sets)

Rule Schema Applications

Definition (Rules)

Symmetric schemata can be applied on either side of the sequent: If

$$
\frac{\phi_{1}}{\phi_{0}}
$$

is an instance, then

$$
\frac{\Gamma \vdash \phi_{1}, \Delta}{\Gamma \vdash \phi_{0}, \Delta} \quad \text { and } \quad \frac{\Gamma, \phi_{1} \vdash \Delta}{\Gamma, \phi_{0} \vdash \Delta}
$$

can both be applied as proof rules of the $\mathrm{d} \mathcal{L}$ calculus, where Γ, Δ are arbitrary finite sets of context formulas

\mathbb{A} Verification of Differential-algebraic Dynamic Logic

 Propositional Rules10 propositional rules
$\frac{\vdash \phi}{\neg \phi \vdash}$
$\frac{\phi, \psi \vdash}{\phi \wedge \psi \vdash}$

$\frac{\phi \vdash}{\vdash \neg \phi}$
$\frac{\vdash \phi \quad \vdash \psi}{\vdash \phi \wedge \psi}$
$\frac{\vdash \phi, \psi}{\vdash \phi \vee \psi}$
$\frac{\phi \vdash \psi}{\vdash \phi \rightarrow \psi}$
$\frac{\vdash \phi \quad \psi \vdash}{\phi \rightarrow \psi \vdash}$
$\overline{\phi \vdash \phi}$
\mathbb{A} Verification of Differential-algebraic Dynamic Logic Dynamic Rules

$$
\begin{array}{lll}
\frac{\langle\alpha\rangle\langle\beta\rangle \phi}{\langle\alpha ; \beta\rangle \phi} & \frac{\exists x\langle\mathcal{J}\rangle \phi}{\langle\exists x \mathcal{J}\rangle \phi} & \frac{\chi \wedge \phi_{x_{1}}^{\theta_{1}} \ldots x_{x_{n}}^{\theta_{n}}}{\left\langle x_{1}:=\theta_{1} \wedge \ldots \wedge x_{n}:=\theta_{n} \wedge \chi\right\rangle \phi} \\
\frac{[\alpha][\beta] \phi}{[\alpha ; \beta] \phi} & \frac{\forall x[\mathcal{J}] \phi}{[\exists x \mathcal{J}] \phi} & \frac{\chi \rightarrow \phi_{x_{1}}^{\theta_{1}} \ldots x_{x_{n}}}{\left[x_{1}:=\theta_{1} \wedge \ldots \wedge x_{n}:=\theta_{n} \wedge \chi\right] \phi} \\
\frac{\langle\alpha\rangle \phi \vee\langle\beta\rangle \phi}{\langle\alpha \cup \beta\rangle \phi} & \frac{\left\langle\mathcal{J}_{1} \cup \ldots \cup \mathcal{J}_{n}\right\rangle \phi}{\langle\mathcal{J}\rangle \phi} & \frac{\left\langle\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right\rangle \phi}{\langle\mathcal{D}\rangle \phi} \\
\frac{[\alpha] \phi \wedge[\beta] \phi}{[\alpha \cup \beta] \phi} & \frac{\left[\mathcal{J}_{1} \cup \ldots \cup \mathcal{J}_{n}\right] \phi}{[\mathcal{J}] \phi} & \frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
\end{array}
$$

\mathbb{A} Verification of Differential-algebraic Dynamic Logic Dynamic Rules

$$
\frac{\vdash[\mathcal{E}] \phi}{\vdash[\mathcal{D}] \phi} \quad \frac{\vdash\langle\mathcal{D}\rangle \phi}{\vdash\langle\mathcal{E}\rangle \phi} \quad \frac{\vdash[\mathcal{D}] \chi \quad \vdash[\mathcal{D} \wedge \chi] \phi}{\vdash[\mathcal{D}] \phi} \text { where " } \mathcal{D} \rightarrow \mathcal{E} \text { " }
$$

in $\mathrm{FOL}_{\mathbb{R}}$

\mathbb{P} Verification of Differential-algebraic Dynamic Logic

 Global Rules$$
\begin{aligned}
& \frac{\vdash \forall^{\alpha}(\phi \rightarrow \psi)}{[\alpha] \phi \vdash[\alpha] \psi} \quad \frac{\vdash \forall^{\alpha}(\phi \rightarrow \psi)}{\langle\alpha\rangle \phi \vdash\langle\alpha\rangle \psi} \quad \frac{\vdash \forall^{\alpha}(F \rightarrow[\alpha] F)}{F \vdash\left[\alpha^{*}\right] F} \\
& \frac{\vdash \forall^{\alpha}(\varphi(x) \rightarrow\langle\alpha\rangle \varphi(x-1))}{\exists v \varphi(v) \vdash\left\langle\alpha^{*}\right\rangle \exists v \leq 0 \varphi(v)} \\
& \frac{\vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k}\left(\chi \rightarrow{F^{\prime}}_{x_{1}^{\prime}}^{\theta_{1}} \ldots \theta_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F} \\
& \\
& \qquad \begin{array}{l}
{\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F}
\end{array}
\end{aligned}
$$

First-Order Rules

$$
\frac{\vdash \phi\left(s\left(X_{1}, \ldots, X_{n}\right)\right)}{\vdash \forall x \phi(x)}
$$

$$
\frac{\vdash \phi(X)}{\vdash \exists x \phi(x)}
$$

$$
\frac{\phi\left(s\left(X_{1}, \ldots, X_{n}\right)\right) \vdash}{\exists x \phi(x) \vdash}
$$

s new, $\left\{X_{1}, \ldots, X_{n}\right\}=F V(\exists x \phi(x))$

$$
\frac{\phi(X) \vdash}{\forall x \phi(x) \vdash}
$$

X new variable

$$
\begin{aligned}
& \quad \frac{\vdash \mathrm{QE}(\forall X(\Phi(X) \vdash \Psi(X)))}{\Phi\left(s\left(X_{1}, \ldots, X_{n}\right)\right) \vdash \Psi\left(s\left(X_{1}, \ldots, X_{n}\right)\right)} \\
& X \text { new variable }
\end{aligned}
$$

$$
\frac{\vdash \mathrm{QE}\left(\exists X \bigwedge_{i}\left(\Phi_{i} \vdash \Psi_{i}\right)\right)}{\Phi_{1} \vdash \Psi_{1} \ldots \Phi_{n} \vdash \Psi_{n}}
$$

X only in branches $\Phi_{i} \vdash \Psi_{i}$
QE needs to be defined in premiss

\mathbb{A} Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic dL

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules

(2) Soundness

(3) Restricting Differential Invariants

4 Deductive Power

Soundness

Theorem (Soundness)
DAL calculus is sound, i.e.,

$$
\vdash \phi \Rightarrow \vDash \phi
$$

Definition (Local Soundness)

$$
\frac{\Phi}{\psi} \text { locally sound iff for each } v(v \models \Phi \Rightarrow v \models \Psi)
$$

\mathbb{A} Soundness

Theorem (Soundness)
DAL calculus is sound, i.e.,

$$
\vdash \phi \Rightarrow \vDash \phi
$$

Challenges (Soundness Proof)

Definition (Local Soundness)
$\frac{\Phi}{\psi}$ locally sound iff for each $v(v \models \Phi \Rightarrow v \models \Psi)$

\mathbb{A} Soundness

Theorem (Soundness)
DAL calculus is sound, i.e.,

$$
\vdash \phi \Rightarrow \vDash \phi
$$

Challenges (Soundness Proof)

- Differential induction

Definition (Local Soundness)

$$
\frac{\Phi}{\psi} \text { locally sound iff for each } v(v \models \Phi \Rightarrow v \models \Psi)
$$

\mathbb{A} Soundness

Theorem (Soundness)
DAL calculus is sound, i.e.,

$$
\vdash \phi \Rightarrow \vDash \phi
$$

Challenges (Soundness Proof)

- Differential induction
- Side deductions

Definition (Local Soundness)

$$
\frac{\Phi}{\psi} \text { locally sound iff for each } v(v \models \Phi \Rightarrow v \models \Psi)
$$

Soundness Proof

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.
- $\rho(\mathcal{D}) \supseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ obvious

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.
- $\rho(\mathcal{D}) \supseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ to show.

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.
- $\rho(\mathcal{D}) \supseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ to show.
- Let φ state flow for a transition $(v, \omega) \in \rho(\mathcal{D})$.

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.
- $\rho(\mathcal{D}) \supseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ to show.
- Let φ state flow for a transition $(v, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.

Soundness Proof

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.
- $\rho(\mathcal{D}) \supseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ to show.
- Let φ state flow for a transition $(v, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.
- Finite number, m, of switches between \mathcal{D}_{i}, say $\mathcal{D}_{i_{1}}, \mathcal{D}_{i_{2}}, \ldots, \mathcal{D}_{i_{m}}$.

Soundness Proof

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.
- $\rho(\mathcal{D}) \supseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ to show.
- Let φ state flow for a transition $(v, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.
- Finite number, m, of switches between \mathcal{D}_{i}, say $\mathcal{D}_{i_{1}}, \mathcal{D}_{i_{2}}, \ldots, \mathcal{D}_{i_{m}}$.
- Transition (v, ω) belonging to φ can be simulated piecewise by m repetitions of $\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}$:

Soundness Proof

$$
\frac{\left[\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right] \phi}{[\mathcal{D}] \phi}
$$

Proof (locally sound).

- diff.trafo. \Rightarrow there is an equivalent DNF $\mathcal{D}_{1} \vee \cdots \vee \mathcal{D}_{n}$ of \mathcal{D}.
- $\rho(\mathcal{D}) \supseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ obvious
- $\rho(\mathcal{D}) \subseteq \rho\left(\left(\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}\right)^{*}\right)$ to show.
- Let φ state flow for a transition $(v, \omega) \in \rho(\mathcal{D})$.
- Assume φ non-Zeno.
- Finite number, m, of switches between \mathcal{D}_{i}, say $\mathcal{D}_{i_{1}}, \mathcal{D}_{i_{2}}, \ldots, \mathcal{D}_{i_{m}}$.
- Transition (v, ω) belonging to φ can be simulated piecewise by m repetitions of $\mathcal{D}_{1} \cup \ldots \cup \mathcal{D}_{n}$:
- Each piece selects the respective part $\mathcal{D}_{i_{j}}$.

Soundness Proof

$$
\begin{aligned}
& \frac{\vdash[\mathcal{E}] \phi}{\vdash[\mathcal{D}] \phi} \text { where " } \mathcal{D} \rightarrow \mathcal{E} \text { " in } \mathrm{FOL}_{\mathbb{R}} \\
& \frac{\vdash\langle\mathcal{D}\rangle \phi}{\vdash\langle\mathcal{E}\rangle \phi}
\end{aligned}
$$

Proof (locally sound).

- Immediate consequence of diff.trafo. and semantics of modalities.

Soundness Proof

$$
\frac{\vdash[\mathcal{D}] \chi \quad \vdash[\mathcal{D} \wedge \chi] \phi}{\vdash[\mathcal{D}] \phi}
$$

Proof (locally sound).

- Left premiss \Rightarrow every flow φ that satisfies \mathcal{D} also satisfies χ all along the flow, i.e., $\varphi \neq \chi$.

$$
\frac{\vdash[\mathcal{D}] \chi \quad \vdash[\mathcal{D} \wedge \chi] \phi}{\vdash[\mathcal{D}] \phi}
$$

Proof (locally sound).

- Left premiss \Rightarrow every flow φ that satisfies \mathcal{D} also satisfies χ all along the flow, i.e., $\varphi \neq \chi$.
- Thus, $\varphi \models \mathcal{D}$ implies $\varphi \models \mathcal{D} \wedge \chi$

$$
\frac{\vdash[\mathcal{D}] \chi \quad \vdash[\mathcal{D} \wedge \chi] \phi}{\vdash[\mathcal{D}] \phi}
$$

Proof (locally sound).

- Left premiss \Rightarrow every flow φ that satisfies \mathcal{D} also satisfies χ all along the flow, i.e., $\varphi \neq \chi$.
- Thus, $\varphi \models \mathcal{D}$ implies $\varphi \models \mathcal{D} \wedge \chi$
- Right premiss entails the conclusion.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \vDash G$.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \vDash G$.
- F continuous invariant if, say, each conjunct of G is.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \vDash G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \geq 0$ (accordingly for $c>0$).

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots \ldots x_{n}^{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \vDash G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \geq 0$ (accordingly for $c>0$).
- Let $\varphi:[0, r] \rightarrow$ States flow with $\varphi \models \exists y\left(x^{\prime}=\theta \wedge \chi\right)$ and $\varphi(0)=v$.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots{\underset{x}{n}}_{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \vDash G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \geq 0$ (accordingly for $c>0$).
- Let $\varphi:[0, r] \rightarrow$ States flow with $\varphi \models \exists y\left(x^{\prime}=\theta \wedge \chi\right)$ and $\varphi(0)=v$.
$\Rightarrow \varphi \models \exists y \chi$, thus $v \models F$, i.e., $c \geq 0$ holds at v.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots{\underset{x}{n}}_{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \vDash G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \geq 0$ (accordingly for $c>0$).
- Let $\varphi:[0, r] \rightarrow$ States flow with $\varphi \models \exists y\left(x^{\prime}=\theta \wedge \chi\right)$ and $\varphi(0)=v$.
$\Rightarrow \varphi \vDash \exists y \chi$, thus $v \vDash F$, i.e., $c \geq 0$ holds at v.
- Assume duration $r>0$ (otherwise $v \models c \geq 0$ already holds).

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} \ldots \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\prime \theta_{1}} \ldots{\underset{x}{n}}_{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Let v satisfy premiss and antecedent of conclusion.
- Diff.trafo. \Rightarrow assume F in DNF. Consider disjunct G of F with $v \vDash G$.
- F continuous invariant if, say, each conjunct of G is.
- Assume conjunct is $c \geq 0$ (accordingly for $c>0$).
- Let $\varphi:[0, r] \rightarrow$ States flow with $\varphi \models \exists y\left(x^{\prime}=\theta \wedge \chi\right)$ and $\varphi(0)=v$.
$\Rightarrow \varphi \vDash \exists y \chi$, thus $v \vDash F$, i.e., $c \geq 0$ holds at v.
- Assume duration $r>0$ (otherwise $v \models c \geq 0$ already holds).
- Show $\varphi \neq c \geq 0$.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- By contradiction suppose there was a $\zeta \in[0, r]$ where $\varphi(\zeta) \models c<0$.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- By contradiction suppose there was a $\zeta \in[0, r]$ where $\varphi(\zeta) \models c<0$. $\Rightarrow h:[0, r] \rightarrow \mathbb{R} ; h(t)=\llbracket c \rrbracket_{\varphi(t)}$ satisfies $h(0) \geq 0>h(\zeta)$, because $v \vDash c \geq 0$ by antecedent.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- By contradiction suppose there was a $\zeta \in[0, r]$ where $\varphi(\zeta) \models c<0$. $\Rightarrow h:[0, r] \rightarrow \mathbb{R} ; h(t)=\llbracket c \rrbracket_{\varphi(t)}$ satisfies $h(0) \geq 0>h(\zeta)$, because $v \vDash c \geq 0$ by antecedent.
- φ is of order of $c^{\prime}: \operatorname{ord}_{x} \varphi \geq 1, \operatorname{ord}_{z} \varphi=\infty$ for unchanged z.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- By contradiction suppose there was a $\zeta \in[0, r]$ where $\varphi(\zeta) \models c<0$. $\Rightarrow h:[0, r] \rightarrow \mathbb{R} ; h(t)=\llbracket c \rrbracket_{\varphi(t)}$ satisfies $h(0) \geq 0>h(\zeta)$, because $v \vDash c \geq 0$ by antecedent.
- φ is of order of $c^{\prime}: \operatorname{ord}_{x} \varphi \geq 1, \operatorname{ord}_{z} \varphi=\infty$ for unchanged z.
- By α-renaming, c^{\prime} cannot contain quantified variables y, hence, φ is not required to be of any order in y.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- By contradiction suppose there was a $\zeta \in[0, r]$ where $\varphi(\zeta) \models c<0$. $\Rightarrow h:[0, r] \rightarrow \mathbb{R} ; h(t)=\llbracket c \rrbracket_{\varphi(t)}$ satisfies $h(0) \geq 0>h(\zeta)$, because $v \vDash c \geq 0$ by antecedent.
- φ is of order of $c^{\prime}: \operatorname{ord}_{x} \varphi \geq 1, \operatorname{ord}_{z} \varphi=\infty$ for unchanged z.
- By α-renaming, c^{\prime} cannot contain quantified variables y, hence, φ is not required to be of any order in y.
- Value of c defined along φ, as χ guards against zeros division.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots A_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- By contradiction suppose there was a $\zeta \in[0, r]$ where $\varphi(\zeta) \models c<0$. $\Rightarrow h:[0, r] \rightarrow \mathbb{R} ; h(t)=\llbracket c \rrbracket_{\varphi(t)}$ satisfies $h(0) \geq 0>h(\zeta)$, because $v \vDash c \geq 0$ by antecedent.
- φ is of order of $c^{\prime}: \operatorname{ord}_{x} \varphi \geq 1, \operatorname{ord}_{z} \varphi=\infty$ for unchanged z.
- By α-renaming, c^{\prime} cannot contain quantified variables y, hence, φ is not required to be of any order in y.
- Value of c defined along φ, as χ guards against zeros division.
- Thus, by derivation lemma, h is continuous on $[0, r]$ and differentiable at every $\xi \in(0, r)$.

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{\zeta-0})=h(\zeta)-h(0)<0
$$

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0
$$

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow \mathcal{F}_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\begin{aligned}
& \frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{(\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0 \\
0> & \frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \stackrel{\text { deriv.lem }}{=} \llbracket c^{\prime} \rrbracket_{\bar{\varphi}(\xi)}
\end{aligned}
$$

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\begin{gathered}
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{(\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0 \\
0>\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \stackrel{\text { deriv.lem }}{=} \llbracket c^{\prime} \rrbracket_{\bar{\varphi}(\xi)} \stackrel{\text { diff. subst }}{=} \llbracket c^{\prime \prime}{ }_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)_{y}^{u}}
\end{gathered}
$$

because $\varphi \vDash \exists y\left(x^{\prime}=\theta \wedge \chi\right)$ so that $\bar{\varphi}(\xi)_{y}^{u}=x^{\prime}=\theta \wedge \chi$ for some $u \in \mathbb{R}$ and because y^{\prime} does not occur and $y \notin c$.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots \ldots x_{n}^{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\begin{gathered}
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0 \\
0>\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \stackrel{\text { derivilem }}{=} \llbracket c^{\prime} \rrbracket_{\bar{\varphi}(\xi)} \stackrel{\text { diff } f^{\text {subst }}}{=} \llbracket c^{\prime \prime}{ }_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)_{y}^{u}}
\end{gathered}
$$

because $\varphi \models \exists y\left(x^{\prime}=\theta \wedge \chi\right)$ so that $\bar{\varphi}(\xi)_{y}^{u} \models x^{\prime}=\theta \wedge \chi$ for some $u \in \mathbb{R}$ and because y^{\prime} does not occur and $y \notin c$.

- Contradiction: by premiss $\varphi \models \forall y\left(\chi \rightarrow c^{\prime \theta} x^{\prime} \geq 0\right)$ as \forall^{α} comprises all changed variables.

Soundness Proof

$$
\frac{\vdash \forall^{\alpha} \forall y_{1} . . \forall y_{k}\left(\chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} . . \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} . . \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

Proof (locally sound).

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\begin{gathered}
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{(\zeta-0}_{\geq 0})=h(\zeta)-h(0)<0 \\
0>\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \stackrel{\text { deriv.lem }}{=} \llbracket c^{\prime} \rrbracket_{\bar{\varphi}(\xi)} \stackrel{\text { diff. subst }}{=} \llbracket c^{\prime \prime}{ }_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)_{y}^{u}}
\end{gathered}
$$

because $\varphi \vDash \exists y\left(x^{\prime}=\theta \wedge \chi\right)$ so that $\bar{\varphi}(\xi)_{y}^{u}=x^{\prime}=\theta \wedge \chi$ for some $u \in \mathbb{R}$ and because y^{\prime} does not occur and $y \notin c$.

- Contradiction: by premiss $\varphi \models \forall y\left(\chi \rightarrow c^{\prime \theta} x^{\prime} \geq 0\right)$ as \forall^{α} comprises all changed variables. For $\bar{\varphi}(\xi)_{y}^{u} \models \chi$, we have $\bar{\varphi}(\xi)_{y}^{u} \models c_{x^{\prime}}^{\prime \theta} \geq 0$.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots\binom{\theta_{n}^{n}}{x_{n}^{\prime}}\right.
$$

$\overline{\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F}$

Proof (locally sound, quantifier free case).

- Let v satisfy premiss and antecedent of conclusion.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots \begin{array}{c}
\theta_{n}^{n} \\
x_{n}^{n}
\end{array}\right)
$$

$\overline{\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F}$

Proof (locally sound, quantifier free case).

- Let v satisfy premiss and antecedent of conclusion.
- After α-renaming, ε fresh, thus $v \vDash \forall^{\alpha}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x^{\prime}}^{\theta}\right)$.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots\binom{\theta_{n}^{n}}{x_{n}^{n}}\right.
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantifier free case).

- Let v satisfy premiss and antecedent of conclusion.
- After α-renaming, ε fresh, thus $v \vDash \forall^{\alpha}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x^{\prime}}^{\theta}\right)$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem \Rightarrow there is a global solution of arbitrary duration $r \geq 0$.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots\binom{\theta_{n}^{n}}{x_{n}^{n}}\right.
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantifier free case).

- Let v satisfy premiss and antecedent of conclusion.
- After α-renaming, ε fresh, thus $v \vDash \forall^{\alpha}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x^{\prime}}^{\theta}\right)$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem \Rightarrow there is a global solution of arbitrary duration $r \geq 0$.
- Let $\varphi=x^{\prime}=\theta$ start in v of some duration $r \geq 0$.

Soundness Proof

$$
\frac{\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdot \ominus_{\theta_{n}^{n}}^{\prime}\right)}{\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F}
$$

Proof (locally sound, quantifier free case).

- Let v satisfy premiss and antecedent of conclusion.
- After α-renaming, ε fresh, thus $v \vDash \forall^{\alpha}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x^{\prime}}^{\theta}\right)$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem \Rightarrow there is a global solution of arbitrary duration $r \geq 0$.
- Let $\varphi \models x^{\prime}=\theta$ start in v of some duration $r \geq 0$.
- If there is ζ with $\varphi(\zeta) \models F$, then by antecedent, until (including, as $\sim F$ contains closure of $\neg F$) "first" ζ, χ holds during φ.

\mathbb{P} Soundness Proof

$$
\frac{\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots \ominus_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F}
$$

Proof (locally sound, quantifier free case).

- Let v satisfy premiss and antecedent of conclusion.
- After α-renaming, ε fresh, thus $v \vDash \forall^{\alpha}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x^{\prime}}^{\theta}\right)$.
- We required Lipschitz-continuity. Global Picard-Lindelöf theorem \Rightarrow there is a global solution of arbitrary duration $r \geq 0$.
- Let $\varphi=x^{\prime}=\theta$ start in v of some duration $r \geq 0$.
- If there is ζ with $\varphi(\zeta) \models F$, then by antecedent, until (including, as $\sim F$ contains closure of $\neg F$) "first" ζ, χ holds during φ.
- Hence, restriction of φ to $[0, \zeta]$ is flow for $v \models\left\langle x^{\prime}=\theta \wedge \chi\right\rangle F$.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots \begin{array}{c}
\theta_{n_{n}^{\prime}} \\
x_{n}^{\prime}
\end{array}\right)
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- If there is no such ζ, extending φ by larger r will make F true:

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots \begin{array}{c}
\theta_{n}^{\prime} \\
x_{n}^{\prime}
\end{array}\right)
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- If there is no such ζ, extending φ by larger r will make F true:
- Thus $\varphi \models \neg F \wedge \chi$ and, by premiss, $\varphi \models{F^{\prime}}_{x^{\prime}} \geq \varepsilon$, because \forall^{α} comprises all changed variables.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots \begin{array}{c}
\theta_{n}^{\prime} \\
x_{n}^{\prime}
\end{array}\right)
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- If there is no such ζ, extending φ by larger r will make F true:
- Thus $\varphi \models \neg F \wedge \chi$ and, by premiss, $\varphi \models{F^{\prime}}_{x^{\prime}} \geq \varepsilon$, because \forall^{α} comprises all changed variables.
- ${F^{\prime}}_{x^{\prime}}^{\theta} \geq \varepsilon$ is a conjunction.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots\binom{\theta_{n}^{n}}{x_{n}^{\prime}}\right.
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- If there is no such ζ, extending φ by larger r will make F true:
- Thus $\varphi \models \neg F \wedge \chi$ and, by premiss, $\varphi \models F_{x^{\prime}}^{\prime \theta} \geq \varepsilon$, because \forall^{α} comprises all changed variables.
- ${F^{\prime}}_{x^{\prime}}^{\theta} \geq \varepsilon$ is a conjunction.
- Consider one of its conjuncts ${c^{\prime}}_{x^{\prime}}^{\prime} \geq \varepsilon$ belonging to $c \geq 0$ (others similar).

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots\binom{\theta_{x_{n}^{\prime}}^{\prime}}{x_{n}}\right.
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- If there is no such ζ, extending φ by larger r will make F true:
- Thus $\varphi \models \neg F \wedge \chi$ and, by premiss, $\varphi \models F_{x^{\prime}}^{\prime \theta} \geq \varepsilon$, because \forall^{α} comprises all changed variables.
- ${F^{\prime}}_{x^{\prime}}^{\theta} \geq \varepsilon$ is a conjunction.
- Consider one of its conjuncts ${c^{\prime}}_{x^{\prime}}^{\theta} \geq \varepsilon$ belonging to $c \geq 0$ (others similar).
- Again, φ of the order of c^{\prime} and value of c defined along φ, because $\varphi \vDash \chi$ and χ guards against zeros.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- By mean-value theorem, derivation lemma \& diff.subst., we conclude for each $\zeta \in[0, r]$ that for some $\xi \in(0, \zeta)$

$$
\llbracket c \rrbracket_{\varphi(\zeta)}-\llbracket c \rrbracket_{\varphi(0)}=\llbracket{c^{\prime}}_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)}(\zeta-0)
$$

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- By mean-value theorem, derivation lemma \& diff.subst., we conclude for each $\zeta \in[0, r]$ that for some $\xi \in(0, \zeta)$

$$
\llbracket c \rrbracket_{\varphi(\zeta)}-\llbracket c \rrbracket_{\varphi(0)}=\llbracket{c^{\prime}}_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)}(\zeta-0) \geq \zeta \llbracket \varepsilon \rrbracket_{\varphi(0)}
$$

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- By mean-value theorem, derivation lemma \& diff.subst., we conclude for each $\zeta \in[0, r]$ that for some $\xi \in(0, \zeta)$

$$
\llbracket c \rrbracket_{\varphi(\zeta)}-\llbracket c \rrbracket_{\varphi(0)}=\llbracket{c^{\prime}}_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)}(\zeta-0) \geq \zeta \llbracket \varepsilon \rrbracket_{\varphi(0)}
$$

- As $\llbracket \varepsilon \rrbracket_{\varphi(0)}>0$ we have for all $\zeta>-\frac{\llbracket c \rrbracket_{\varphi(0)}}{\llbracket \varepsilon \rrbracket_{\varphi(0)}}$ that $\varphi(\zeta) \models c \geq 0$ and $\varphi(r) \models c \geq 0$, even $\varphi(r) \models c>0$.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1}, y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1}, y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge, \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right\rangle F$

Proof (locally sound, quantified case).

- By mean-value theorem, derivation lemma \& diff.subst., we conclude for each $\zeta \in[0, r]$ that for some $\xi \in(0, \zeta)$

$$
\llbracket c \rrbracket_{\varphi(\zeta)}-\llbracket c \rrbracket_{\varphi(0)}=\llbracket{c^{\prime}}_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)}(\zeta-0) \geq \zeta \llbracket \varepsilon \rrbracket_{\varphi(0)}
$$

- As $\llbracket \varepsilon \rrbracket_{\varphi(0)}>0$ we have for all $\zeta>-\frac{\llbracket c \rrbracket_{\varphi(0)}}{\llbracket \varepsilon \rrbracket_{\varphi(0)}}$ that $\varphi(\zeta) \models c \geq 0$ and $\varphi(r) \models c \geq 0$, even $\varphi(r) \models c>0$.
- By extending r, all literals $c \geq 0$ of one conjunct of F are true, which concludes the proof, because, until F finally holds, $\varphi \models \chi$ is implied by antecedent (above).

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1} \ldots y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots \theta_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1} \ldots y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1} \ldots y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n}\right.\right.$

Proof (locally sound, quantified case).

- With quantifiers $\exists y$ we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1} \ldots y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots \theta_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1} \ldots y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1} \ldots y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \ldots \wedge x_{n}^{\prime}=\theta_{n}\right.\right.$

Proof (locally sound, quantified case).

- With quantifiers $\exists y$ we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1} \ldots y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots \ldots x_{n}^{\theta_{n}^{n}}\right)
$$

$\left[\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n}\right.\right.$

Proof (locally sound, quantified case).

- With quantifiers $\exists y$ we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_{y}^{u} \models \chi$.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1} \ldots y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots \ldots x_{n}^{\theta_{n}^{n}}\right)
$$

$\left[\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n}\right.\right.$

Proof (locally sound, quantified case).

- With quantifiers $\exists y$ we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_{y}^{u} \models \chi$.
- Hence, v_{y}^{u} satisfies assumptions of quantifier-free case.

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1} \ldots y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots \ldots_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n}\right.\right.$

Proof (locally sound, quantified case).

- With quantifiers $\exists y$ we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_{y}^{u} \models \chi$.
- Hence, v_{y}^{u} satisfies assumptions of quantifier-free case.
- Thus, $v_{y}^{u} \models\left\langle x^{\prime}=\theta \wedge \chi\right\rangle F$,

Soundness Proof

$$
\vdash \exists \varepsilon>0 \forall^{\alpha} \forall y_{1} \ldots y_{k}\left(\neg F \wedge \chi \rightarrow\left(F^{\prime} \geq \varepsilon\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots \ldots_{x_{n}^{\prime}}^{\theta_{n}}\right)
$$

$\left[\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n} \wedge \sim F\right)\right] \chi \vdash\left\langle\exists y_{1} . . y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge . . \wedge x_{n}^{\prime}=\theta_{n}\right.\right.$

Proof (locally sound, quantified case).

- With quantifiers $\exists y$ we prove slightly stronger statement, because y is quantified universally in the premiss (and antecedent):
- F reachable for all choices of y that respect χ (not only one).
- By antecedent, there is a $u \in \mathbb{R}$ such that $v_{y}^{u} \models \chi$.
- Hence, v_{y}^{u} satisfies assumptions of quantifier-free case.
- Thus, $v_{y}^{u} \models\left\langle x^{\prime}=\theta \wedge \chi\right\rangle F$,
- Hence $v \vDash\left\langle\exists y\left(x^{\prime}=\theta \wedge \chi\right)\right\rangle F$ using u constantly as the value for the quantified variable y during the evolution.

\mathbb{P} Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic dL

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(3) Soundness
(3) Restricting Differential Invariants

4 Deductive Power

Restricting Differential Invariance

$$
\frac{\vdash\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

Restricting Differential Invariance

$$
\frac{\vdash\left(F \wedge \chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

Restricting Differential Invariance

$\frac{\vdash\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}$

$$
\frac{\vdash\left(F \wedge \chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

Example (Restrictions)

$$
\frac{\vdash \forall x\left(x^{2} \leq 0 \rightarrow 2 x \cdot 1 \leq 0\right)}{x^{2} \leq 0 \vdash\left[x^{\prime}=1\right] x^{2} \leq 0}
$$

Restricting Differential Invariance

$\frac{\vdash\left(\chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}$

$$
\frac{\vdash\left(F \wedge \chi \rightarrow F^{\prime}\right)}{\chi \rightarrow F \vdash\left[x^{\prime}=\theta \wedge \chi\right] F}
$$

Example (Restrictions)

$$
\frac{\vdash \forall x\left(x^{2} \leq 0 \rightarrow 2 x \cdot 1 \leq 0\right)}{x^{2} \leq 0 \vdash\left[x^{\prime}=1\right] x^{2} \leq 0}
$$

Restricting Differential Invariance

Example (Restrictions are unsound nonsense!)

$$
\begin{aligned}
& \stackrel{\vdash \forall x\left(x^{2} \leq 0 \rightarrow 2 x \cdot 1 \leq 0\right)}{x^{2} \leq 0 \vdash\left[x^{\prime}=1\right] x^{2} \leq 0}
\end{aligned}
$$

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{n}^{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F} F \text { open }
$$

locally sound if F open.

- Proof similar to diff.inv.

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow F^{\prime, \theta_{1}} \ldots \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F} F \text { open }
$$

locally sound if F open.

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \geq 0 \geq h(\zeta)$,

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots \cdots_{n}^{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F} F \text { open }
$$

locally sound if F open.

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \geq 0 \geq h(\zeta)$,
- which does not lead to a contradiction.

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots \cdots_{n}^{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F} F \text { open }
$$

locally sound if F open.

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \geq 0 \geq h(\zeta)$,
- which does not lead to a contradiction.
- F open \Rightarrow distance to ∂F is positive in $\varphi(0)$

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow F_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{n}^{\theta_{n}^{\prime}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F} F \text { open }
$$

locally sound if F open.

- Proof similar to diff.inv.
- Except that assuming $\varphi(\zeta) \models \neg F$ only yields $h(0) \geq 0 \geq h(\zeta)$,
- which does not lead to a contradiction.
- F open \Rightarrow distance to ∂F is positive in $\varphi(0)$
- Thus $h(0)>0 \geq h(\zeta)$, and the contradiction arises accordingly.

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{n}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Repeating argument for diff.inv., assume $F \equiv c \geq 0$.

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Repeating argument for diff.inv., assume $F \equiv c \geq 0$.
- By contradiction suppose there was a $\iota \in[0, r]$ where $\varphi(\iota) \models c<0$.

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Repeating argument for diff.inv., assume $F \equiv c \geq 0$.
- By contradiction suppose there was a $\iota \in[0, r]$ where $\varphi(\iota) \models c<0$.
- Let $\zeta \in[0, r]$ infimum of these ι,

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Repeating argument for diff.inv., assume $F \equiv c \geq 0$.
- By contradiction suppose there was a $\iota \in[0, r]$ where $\varphi(\iota) \models c<0$.
- Let $\zeta \in[0, r]$ infimum of these ι,
- Hence, $\varphi(\zeta) \vDash c=0$ by continuity.

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots{ }_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Repeating argument for diff.inv., assume $F \equiv c \geq 0$.
- By contradiction suppose there was a $\iota \in[0, r]$ where $\varphi(\iota) \models c<0$.
- Let $\zeta \in[0, r]$ infimum of these ι,
- Hence, $\varphi(\zeta) \vDash c=0$ by continuity.
$\Rightarrow h:[0, r] \rightarrow \mathbb{R} ; h(t)=\llbracket c \rrbracket_{\varphi(t)}$ satisfies $h(0) \geq 0 \geq h(\zeta)$, because $v \vDash c \geq 0$ by antecedent.

Restricting Differential Invariants (Soundly!)

$$
\vdash \forall y_{1} \ldots \forall y_{k}(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}} \cdots \cdots \underbrace{\theta_{n}}_{x_{n}^{\prime}})
$$

$\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{\prime}=\theta_{n} \wedge \chi\right)\right] F$

locally sound.

- Repeating argument for diff.inv., assume $F \equiv c \geq 0$.
- By contradiction suppose there was a $\iota \in[0, r]$ where $\varphi(\iota) \models c<0$.
- Let $\zeta \in[0, r]$ infimum of these ι,
- Hence, $\varphi(\zeta) \models c=0$ by continuity.
$\Rightarrow h:[0, r] \rightarrow \mathbb{R} ; h(t)=\llbracket c \rrbracket_{\varphi(t)}$ satisfies $h(0) \geq 0 \geq h(\zeta)$, because $v \vDash c \geq 0$ by antecedent.
- Repeating argument with derivation lemma, h continuous on $[0, r]$ and differentiable at every $\xi \in(0, r)$ with a derivative of

$$
\frac{\mathrm{dh}(t)}{\mathrm{d} t}(\xi)=\llbracket c^{\prime} \rrbracket_{\bar{\varphi}(\xi)} \stackrel{\text { diff. subst. }}{=} \llbracket c_{x^{\prime}}^{\prime^{\prime}} \rrbracket_{\bar{\varphi}(\xi)} \text {, as } \varphi \models x^{\prime}=\theta .
$$

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}^{\prime}} \cdots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{n}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0)
$$

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}^{\prime}} \cdots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{n}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0) \leq 0
$$

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}^{\prime}} \cdots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{n}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\begin{gathered}
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{(-0-0}_{\geq 0})=h(\zeta)-h(0) \leq 0 \\
\left.\frac{\mathrm{~d} h(t)}{\mathrm{d} t}(\xi)=\llbracket c_{c^{\prime \prime}}^{\prime}\right]_{\bar{\varphi}(\xi)} \leq 0
\end{gathered}
$$

Restricting Differential Invariants (Soundly!)

$$
\frac{\vdash \forall y_{1} \ldots \forall y_{k}\left(F \wedge \chi \rightarrow\left(F^{\prime}>0\right)_{x_{1}^{\prime}}^{\theta_{1}} \ldots x_{x_{n}^{\prime}}^{\theta_{n}}\right)}{\left[\exists y_{1} \ldots \exists y_{k} \chi\right] F \vdash\left[\exists y_{1} \ldots \exists y_{k}\left(x_{1}^{\prime}=\theta_{1} \wedge \cdots \wedge x_{n}^{n}=\theta_{n} \wedge \chi\right)\right] F}
$$

locally sound.

- Mean value theorem \Rightarrow there is $\xi \in(0, \zeta)$ such that

$$
\begin{gathered}
\frac{\mathrm{d} h(t)}{\mathrm{d} t}(\xi) \cdot(\underbrace{\zeta-0}_{\geq 0})=h(\zeta)-h(0) \leq 0 \\
\frac{\mathrm{~d} h(t)}{\mathrm{d} t}(\xi)=\llbracket{c^{\prime}}_{x^{\prime}} \rrbracket_{\bar{\varphi}(\xi)} \leq 0
\end{gathered}
$$

- Contradiction: by premiss $\bar{\varphi}(\xi) \models{c^{\prime \theta}}_{x^{\prime}}>0$, as the flow satisfies $\varphi \models \chi$ and $\varphi(\xi) \models c \geq 0$, because $\zeta>\xi$ is the infimum of the counterexamples ι with $\varphi(\iota) \models c<0$.

Restricting Differential Invariants

Example (Any differential invariant restriction rule)

$$
x>\frac{1}{4} \vdash\left[x^{\prime}=x^{3}\right] x>\frac{1}{4}
$$

Restricting Differential Invariants

Example (Any differential invariant restriction rule)

$$
\frac{\vdash \forall x\left(x>\frac{1}{4} \rightarrow x^{3}>0\right)}{x>\frac{1}{4} \vdash\left[x^{\prime}=x^{3}\right] x>\frac{1}{4}}
$$

Restricting Differential Invariants

Example (Any differential invariant restriction rule)
$\frac{*}{\qquad \forall x\left(x>\frac{1}{4} \rightarrow x^{3}>0\right)} \frac{\vdash-\frac{1}{4} \vdash\left[x^{\prime}=x^{3}\right] x>\frac{1}{4}}{x}$

Restricting Differential Invariants

Example (Any differential invariant restriction rule)

\mathbb{P} Outline

(1) Verification Calculus for Differential-algebraic Dynamic Logic dL

- Motivation for Differential Induction
- Derivations and Differentiation
- Differential Induction
- Motivation for Differential Saturation
- Differential Variants
- Compositional Verification Calculus
- Differential Transformation
- Differential Reduction \& Differential Elimination
- Proof Rules
(2) Soundness
(3) Restricting Differential Invariants

4 Deductive Power

Which formulas are best as differential invariants?

Does it make a difference if we have propositional operators?

Equational Deductive Power

Does it make a difference if we have propositional operators?

Proposition (Equational deductive power)

The deductive power of differential induction with atomic equations is identical to the deductive power of differential induction with propositional combinations of polynomial equations: Formulas are provable with propositional combinations of equations as differential invariants iff they are provable with only atomic equations as differential invariants.
"differential induction for ' $=$ ' \equiv differential induction for logic of ' $=$ '"
\mathbb{P} Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
\mathbb{P} Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)
$$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)
$$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)
$$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0
$$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0
$$

- $F \equiv p_{1}=p_{2} \wedge q_{1}=q_{2}$ equivalent to $\left(p_{1}-p_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}=0$.

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0
$$

- $F \equiv p_{1}=p_{2} \wedge q_{1}=q_{2}$ equivalent to $\left(p_{1}-p_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies
$2\left(p_{1}-p_{2}\right)\left(p_{1}^{\prime}-p_{2}^{\prime}\right)+2\left(q_{1}-q_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0
$$

- $F \equiv p_{1}=p_{2} \wedge q_{1}=q_{2}$ equivalent to $\left(p_{1}-p_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies
$2\left(p_{1}-p_{2}\right)\left(p_{1}^{\prime}-p_{2}^{\prime}\right)+2\left(q_{1}-q_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0
$$

- $F \equiv p_{1}=p_{2} \wedge q_{1}=q_{2}$ equivalent to $\left(p_{1}-p_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies
$2\left(p_{1}-p_{2}\right)\left(p_{1}^{\prime}-p_{2}^{\prime}\right)+2\left(q_{1}-q_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0
$$

- $F \equiv p_{1}=p_{2} \wedge q_{1}=q_{2}$ equivalent to $\left(p_{1}-p_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies
$2\left(p_{1}-p_{2}\right)\left(p_{1}^{\prime}-p_{2}^{\prime}\right)+2\left(q_{1}-q_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0$

Equational Deductive Power: Proof

Proof.

- Assume differential invariant F is in NNF.
- $F \equiv p_{1}=p_{2} \vee q_{1}=q_{2}$ equivalent to
- $\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies

$$
\left(\left(p_{1}-p_{2}\right)\left(q_{1}-q_{2}\right)\right)^{\prime}=\left(p_{1}^{\prime}-p_{2}^{\prime}\right)\left(q_{1}-q_{2}\right)+\left(p_{1}-p_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0
$$

- $F \equiv p_{1}=p_{2} \wedge q_{1}=q_{2}$ equivalent to $\left(p_{1}-p_{2}\right)^{2}+\left(q_{1}-q_{2}\right)^{2}=0$.
- $F^{\prime} \equiv p_{1}^{\prime}=p_{2}^{\prime} \wedge q_{1}^{\prime}=q_{2}^{\prime}$ implies
$2\left(p_{1}-p_{2}\right)\left(p_{1}^{\prime}-p_{2}^{\prime}\right)+2\left(q_{1}-q_{2}\right)\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0$
- $F \equiv \neg\left(p_{1}=p_{2}\right)$ does not qualify as differential invariant.

Does it make a difference if we have propositional operators?

Deductive Power

Does it make a difference if we have propositional operators?

Theorem (Deductive power)

The deductive power of differential induction with arbitrary formulas exceeds the deductive power of differential induction with atomic formulas: All DAL formulas that are provable using atomic differential invariants are provable using general differential invariants, but not vice versa!
"differential induction for atomic formulas < general differential induction"

Deductive Power: Proof

Proof (Single differential induction step).

$$
x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)
$$

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}
$$

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}
$$

Deductive Power: Proof

Proof (Single differential induction step).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Suppose single polynomial $p(x, y)$ such that $p(x, y)>0$ is a differential invariant. The we have valid formulas:

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}
$$

- Suppose single polynomial $p(x, y)$ such that $p(x, y)>0$ is a differential invariant. The we have valid formulas:
(1) $x>0 \wedge y>0 \rightarrow p(x, y)>0$, as differential invariants hold in prestate

Deductive Power: Proof

Proof (Single differential induction step).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Suppose single polynomial $p(x, y)$ such that $p(x, y)>0$ is a differential invariant. The we have valid formulas:
(1) $x>0 \wedge y>0 \rightarrow p(x, y)>0$, as differential invariants hold in prestate
(2) $p(x, y)>0 \rightarrow x>0 \wedge y>0$, as differential invariant implies postcondition

Deductive Power: Proof

Proof (Single differential induction step).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Suppose single polynomial $p(x, y)$ such that $p(x, y)>0$ is a differential invariant. The we have valid formulas:
(1) $x>0 \wedge y>0 \rightarrow p(x, y)>0$, as differential invariants hold in prestate
(2) $p(x, y)>0 \rightarrow x>0 \wedge y>0$, as differential invariant implies postcondition
- Hence $x>0 \wedge y>0 \leftrightarrow p(x, y)>0$ valid.

Deductive Power: Proof

Proof (Single differential induction step).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Suppose single polynomial $p(x, y)$ such that $p(x, y)>0$ is a differential invariant. The we have valid formulas:
(1) $x>0 \wedge y>0 \rightarrow p(x, y)>0$, as differential invariants hold in prestate
(2) $p(x, y)>0 \rightarrow x>0 \wedge y>0$, as differential invariant implies postcondition
- Hence $x>0 \wedge y>0 \leftrightarrow p(x, y)>0$ valid.
- Thus, p satisfies:

$$
\begin{equation*}
p(x, y) \geq 0 \text { for } x \geq 0, y \geq 0, \text { and, otherwise, } p(x, y) \leq 0 \tag{QS}
\end{equation*}
$$

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\stackrel{\vdash}{x>0 \wedge \forall y>(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}}
$$

- Assume p minimal total degree with property

$$
\begin{equation*}
p(x, y) \geq 0 \text { for } x \geq 0, y \geq 0, \text { and, otherwise, } p(x, y) \leq 0 \tag{QS}
\end{equation*}
$$

- $p(x, 0)$ is univariate polynomial in x with zeros at all $x>0$
$\Rightarrow p(x, 0)=0$ is the zero polynomial
$\Rightarrow y$ divides $p(x, y)$.
- Accordingly, $p(0, y)=0$ for all y, hence x divides $p(x, y)$.
- Thus, xy divides p.

Deductive Power: Proof

Proof (Single differential induction step).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Assume p minimal total degree with property

$$
\begin{equation*}
p(x, y) \geq 0 \text { for } x \geq 0, y \geq 0, \text { and, otherwise, } p(x, y) \leq 0 \tag{QS}
\end{equation*}
$$

- $p(x, 0)$ is univariate polynomial in x with zeros at all $x>0$
$\Rightarrow p(x, 0)=0$ is the zero polynomial
$\Rightarrow y$ divides $p(x, y)$.
- Accordingly, $p(0, y)=0$ for all y, hence x divides $p(x, y)$.
- Thus, xy divides p.
- $\frac{-p(-x,-y)}{x y}$ satisfies (QS) with smaller total degree than p, contradiction!

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\qquad} \frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}
$$

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\qquad \frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}
$$

- There is no polynomial p such that $x>0 \wedge y>0 \leftrightarrow p(x, y)=0$,

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\qquad \frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}
$$

- There is no polynomial p such that $x>0 \wedge y>0 \leftrightarrow p(x, y)=0$,
- because only zero polynomial is zero on the full quadrant $(0, \infty)^{2}$.

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\stackrel{\vdash}{\vdash>x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}}
$$

- There is no polynomial p such that $x>0 \wedge y>0 \leftrightarrow p(x, y)=0$,
- because only zero polynomial is zero on the full quadrant $(0, \infty)^{2}$.
- $x>0 \wedge y>0 \leftrightarrow p(x, y) \geq 0$ is impossible for continuity reasons that imply $p(0,0)=0$, which is a contradiction.

Deductive Power: Proof

Proof (Single differential induction step).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- There is no polynomial p such that $x>0 \wedge y>0 \leftrightarrow p(x, y)=0$,
- because only zero polynomial is zero on the full quadrant $(0, \infty)^{2}$.
- $x>0 \wedge y>0 \leftrightarrow p(x, y) \geq 0$ is impossible for continuity reasons that imply $p(0,0)=0$, which is a contradiction.
- Same argument for any other sign condition that characterizes one quadrant of \mathbb{R}^{2} uniquely.

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\qquad \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}
$$

- There is no polynomial p such that $x>0 \wedge y>0 \leftrightarrow p(x, y)=0$,
- because only zero polynomial is zero on the full quadrant $(0, \infty)^{2}$.
- $x>0 \wedge y>0 \leftrightarrow p(x, y) \geq 0$ is impossible for continuity reasons that imply $p(0,0)=0$, which is a contradiction.
- Same argument for any other sign condition that characterizes one quadrant of \mathbb{R}^{2} uniquely.
- So far, argument independent of actual dynamics

Deductive Power: Proof

Proof (Single differential induction step).

$$
\frac{*}{\qquad} \frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}
$$

- There is no polynomial p such that $x>0 \wedge y>0 \leftrightarrow p(x, y)=0$,
- because only zero polynomial is zero on the full quadrant $(0, \infty)^{2}$.
- $x>0 \wedge y>0 \leftrightarrow p(x, y) \geq 0$ is impossible for continuity reasons that imply $p(0,0)=0$, which is a contradiction.
- Same argument for any other sign condition that characterizes one quadrant of \mathbb{R}^{2} uniquely.
- So far, argument independent of actual dynamics
- Thus, still valid in the presence of arbitrary differential weakening.

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$$
\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
x y>0
$$

$$
x>0 \quad y>0
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
x^{\prime}=x y>0 \ell^{x y>0} \quad y>0
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cc}
x y>0 \\
x^{\prime}=x y>0 \\
x>0 & y>0
\end{array}
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\frac{\vdash \forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cc}
x y>0 \\
x^{\prime}=x y>0 & y^{\prime}=x y>0 \\
x>0 & y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)^{\prime x y} x y y
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\vdash x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cl}
x^{\prime}=x y>0 \\
x>0 & y y^{\prime}=x y>0 \\
x>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)_{\substack{x y \\ x^{\prime} \\ y^{\prime}}}^{\prime x y}=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} x y y^{\prime}
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cl}
\\
x^{\prime}=x y>0 \\
x>0 & y^{\prime}=x y>0 \\
x>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)_{x^{\prime}}^{\prime x y} y^{\prime} y=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime}=x y y+y x y
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cl}
x y>0 \\
x^{\prime}=x y>0 \\
x>0 & y^{\prime}=x y>0 \\
y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)_{x^{\prime}}^{x y x y} y^{\prime}=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime}=x y y+y x y=(y+x) x y
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cl}
x y>0 \\
x^{\prime}=x y>0 & y^{\prime}=x y>0 \\
x>0 & y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)_{x^{\prime}}^{x y} y^{\prime} y y=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime}=x y y+y x y=(y+x) x y>0
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cl}
x y>0 \\
x^{\prime}=x y>0 & y^{\prime}=x y>0 \\
x>0 & y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)_{\substack{\prime \prime \\ x^{\prime} \\ y^{\prime}}}^{\prime x y}=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime} y^{\prime}=x y y+y x y=(y+x) x y>0
$$

- $x y>0 \rightarrow(y+x) x y>0$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cl}
x y>0 \\
x^{\prime}=x y>0 \\
x>0 & y^{\prime}=x y>0 \\
y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)_{\substack{\prime \prime \\ x^{\prime} \\ y^{\prime}}}^{\prime x y}=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime} y^{\prime}=x y y+y x y=(y+x) x y>0
$$

- $x y>0 \rightarrow(y+x) x y>0 \equiv x \geq 0 \vee y \geq 0$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\forall x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cc}
x y>0 \\
x^{\prime}=x y>0 \\
x>0 & y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
\begin{aligned}
& x y>0 \rightarrow(x y)^{\prime x y} \begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime}=x y y+y x y=(y+x) x y>0 \\
& \text { - } x y>0 \rightarrow(y+x) x y>0 \equiv x \geq 0 \vee y \geq 0 \equiv \neg(-x>0 \wedge-y>0)
\end{aligned}
$$

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\vdash x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cc}
x y>0 \\
x^{\prime}=x y>0 \\
x>0 & y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs

$$
x y>0 \rightarrow(x y)_{x^{\prime}}^{x y y} y^{\prime}=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime} y y=x y y+y x y=(y+x) x y>0
$$

- $x y>0 \rightarrow(y+x) x y>0 \equiv x \geq 0 \vee y \geq 0 \equiv \neg(-x>0 \wedge-y>0)$
- not provable by atomic differential induction/weakening (see above).

Deductive Power: Proof

Proof (Nested differential induction + strengthening).

$\frac{*}{\stackrel{\vdash}{ } \frac{\vdash x \forall y(x>0 \wedge y>0 \rightarrow x y>0 \wedge x y>0)}{x>0 \wedge y>0 \vdash\left[x^{\prime}=x y \wedge y^{\prime}=x y\right](x>0 \wedge y>0)}}$

- Inductively, strengthening χ needs to be a differential invariant:

$$
\begin{array}{cc}
x y>0 \\
x^{\prime}=x y>0 \\
x>0 & y>0
\end{array}
$$

- Differential invariance of $x y>0$ needs $x y>0 \rightarrow(x y)^{\prime x y} \begin{gathered}x^{\prime} \\ y^{\prime}\end{gathered}=\left(x^{\prime} y+y x^{\prime}\right)_{x^{\prime}}^{x y} y^{\prime}=x y y+y x y=(y+x) x y>0$
- $x y>0 \rightarrow(y+x) x y>0 \equiv x \geq 0 \vee y \geq 0 \equiv \neg(-x>0 \wedge-y>0)$
- not provable by atomic differential induction/weakening (see above).
- Circular dependencies for strengthening by $x>0, y>0, x y>0$,

