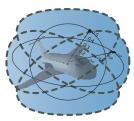
15-819/18-879: Hybrid Systems Analysis& Theorem Proving10: Completeness of Differential Dynamic Logic

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA



André Platzer (CMU)

Verification Calculus for Differential Dynamic Logic dL Compositionality Motives

2 Soundness

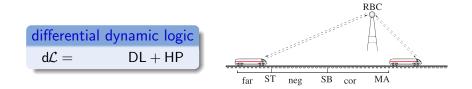
- Incompleteness
- Completeness

Verification Calculus for Differential Dynamic Logic dL Compositionality Motives

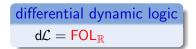
2 Soundness

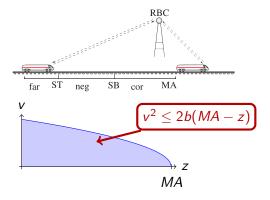
- Incompleteness
- Completeness

\mathscr{R} d \mathcal{L} Motives: The Logic of Hybrid Systems

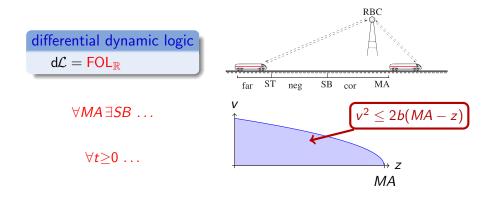


\mathcal{R} d \mathcal{L} Motives: Regions in First-order Logic

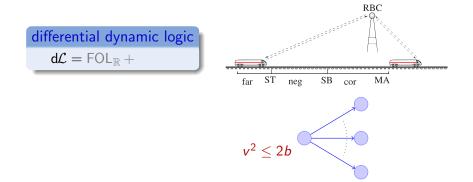




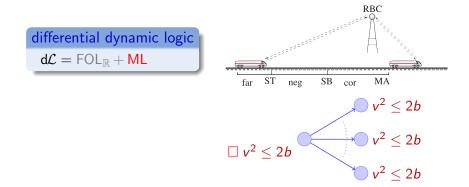
\mathcal{R} d \mathcal{L} Motives: Regions in First-order Logic



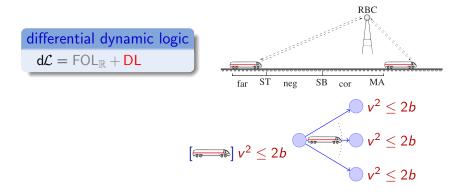
\mathcal{R} d \mathcal{L} Motives: State Transitions in Dynamic Logic



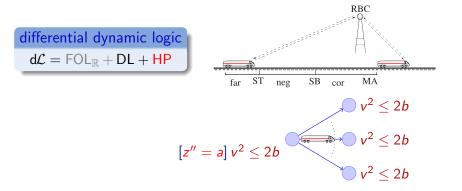
\mathcal{R} d \mathcal{L} Motives: State Transitions in Dynamic Logic



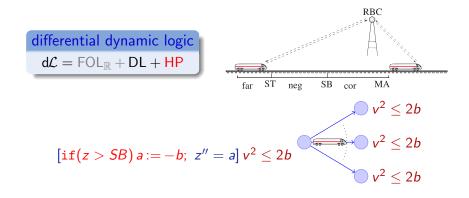
\mathcal{R} d \mathcal{L} Motives: State Transitions in Dynamic Logic



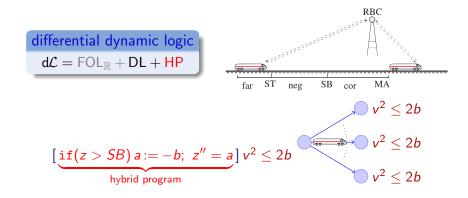
\mathcal{R} d \mathcal{L} Motives: Hybrid Programs as Uniform Model



\mathcal{R} d \mathcal{L} Motives: Hybrid Programs as Uniform Model



\mathcal{R} d \mathcal{L} Motives: Hybrid Programs as Uniform Model



R Verification Calculus for Differential Dynamic Logic Propositional Rules

10 propositional rules

$\frac{\vdash \phi}{\neg \phi \vdash}$	$\frac{\phi,\psi\vdash}{\phi\wedge\psi\vdash}$	$\frac{\phi \vdash \psi \vdash}{\phi \lor \psi \vdash}$	$\frac{\vdash \phi \ \phi \vdash}{\vdash}$
$\frac{\phi \vdash}{\vdash \neg \phi}$	$\frac{\vdash \phi \vdash \psi}{\vdash \phi \land \psi}$	$\frac{\vdash \phi, \psi}{\vdash \phi \lor \psi}$	
$\frac{\phi \vdash \psi}{\vdash \phi \to \psi}$	$\frac{\vdash \phi \psi \vdash}{\phi \to \psi \vdash}$	$\overline{\phi\vdash\phi}$	

R Verification Calculus for Differential Dynamic Logic Dynamic Rules

$$\frac{\langle \alpha \rangle \langle \beta \rangle \phi}{\langle \alpha; \beta \rangle \phi} \qquad \qquad \frac{\phi \lor \langle \alpha \rangle \langle \alpha^* \rangle \phi}{\langle \alpha^* \rangle \phi} \qquad \frac{\phi_{x_1}^{\theta_1} \dots \theta_n}{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}$$

$$\frac{[\alpha][\beta]\phi}{[\alpha;\beta]\phi} \qquad \qquad \frac{\phi \wedge [\alpha][\alpha^*]\phi}{[\alpha^*]\phi} \qquad \frac{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}{[x_1 := \theta_1, \dots, x_n := \theta_n]\phi}$$

$$\frac{\langle \alpha \rangle \phi \lor \langle \beta \rangle \phi}{\langle \alpha \cup \beta \rangle \phi} \quad \frac{\chi \land \psi}{\langle ?\chi \rangle \psi} \quad \frac{\exists t \ge 0 \left((\forall 0 \le \tilde{t} \le t \langle \mathcal{S}(\tilde{t}) \rangle \chi) \land \langle \mathcal{S}(t) \rangle \phi \right)}{\langle x_1' = \theta_1, \dots, x_n' = \theta_n \land \chi \rangle \phi}$$

 $\frac{[\alpha]\phi \wedge [\beta]\phi}{[\alpha \cup \beta]\phi} \qquad \frac{\chi \to \psi}{[?\chi]\psi} \qquad \qquad \frac{\forall t \ge 0 \left((\forall 0 \le \tilde{t} \le t \langle \mathcal{S}(\tilde{t}) \rangle \chi) \to \langle \mathcal{S}(t) \rangle \phi \right)}{[x_1' = \theta_1, \dots, x_n' = \theta_n \wedge \chi]\phi}$

R Verification Calculus for Differential Dynamic Logic First-Order Rules

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

$$\frac{\vdash \phi(X)}{\vdash \exists x \, \phi(x)}$$

$$\frac{\phi(s(X_1,\ldots,X_n))\vdash}{\exists x\,\phi(x)\vdash}$$

s new, $\{X_1, \ldots, X_n\} = FV(\exists x \phi(x))$

$$\frac{\phi(X) \vdash}{\forall x \, \phi(x) \vdash}$$

X new variable

$$\frac{\vdash \mathsf{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \dots, X_n)) \vdash \Psi(s(X_1, \dots, X_n))} \qquad \frac{\vdash \mathsf{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

X new variable X only in branches $\Phi_i \vdash \Psi_i$

QE needs to be defined in premiss

15-819/10: Completeness of Differential Dynamic Logic

${\mathcal R}$ Verification Calculus for Differential Dynamic Logic $_{{\rm Global Dynamic Rules}}$

$$\frac{\vdash \forall^{\alpha} (\phi \to \psi)}{[\alpha]\phi \vdash [\alpha]\psi}$$

$$\frac{\vdash \forall^{\alpha} (\phi \to \psi)}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi}$$

$$\frac{\vdash \forall^{\alpha} (\phi \to [\alpha] \phi)}{\phi \vdash [\alpha^*] \phi}$$

$$\frac{\vdash \forall^{\alpha} \forall \boldsymbol{v} \! > \! 0 \left(\varphi(\boldsymbol{v}) \to \langle \alpha \rangle \varphi(\boldsymbol{v}-1) \right)}{\exists \boldsymbol{v} \, \varphi(\boldsymbol{v}) \vdash \langle \alpha^* \rangle \exists \boldsymbol{v} \! \le \! 0 \, \varphi(\boldsymbol{v})}$$

Verification Calculus for Differential Dynamic Logic dL Compositionality Motives

2 Soundness

- Incompleteness
- Completeness

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vdash \phi$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

•
$$x' = f(x)$$

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

- x' = f(x)
- Side deductions

dL calculus is sound, i.e.,

$$\vdash \phi \; \Rightarrow \; \vDash \phi$$

- x' = f(x)
- Side deductions
- Free variables & Skolemization

Verification Calculus for Differential Dynamic Logic dL Compositionality Motives

2 Soundness

- Incompleteness
- Completeness

Can we prove all valid formulas of $d\mathcal{L}$?

Theorem (Incompleteness)

Both the discrete fragment and the continuous fragment of $d\mathcal{L}$ are not effectively axiomatisable, i.e., they have no sound and complete effective calculus, because natural numbers are definable in both fragments.

Theorem (Incompleteness)

Both the discrete fragment and the continuous fragment of $d\mathcal{L}$ are not effectively axiomatisable, i.e., they have no sound and complete effective calculus, because natural numbers are definable in both fragments.

Theorem (Gödels's Incompleteness)

First-order logic with (non-linear) arithmetic of natural numbers has no sound and complete effective calculus.

Proof (Incompleteness).

Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

+1 +1 +1 +1 +1 +1

Proof (Incompleteness).

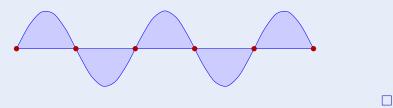
Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

$$\xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1}$$

Continuous fragment:

$$\langle s''=-s, \tau'=1 \rangle (s=0 \wedge \tau=n) \qquad \rightsquigarrow s= \sin n$$



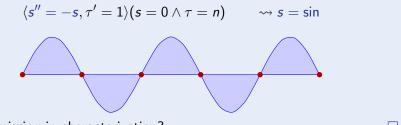
Proof (Incompleteness).

Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

$$\xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1}$$

Continuous fragment:



What's missing in characterization?

Proof (Incompleteness).

Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

$$\xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1} \xrightarrow{+1}$$

Continuous fragment:

$$\langle s'' = -s, \tau' = 1 \rangle (s = 0 \land \tau = n) \longrightarrow s = \sin$$

What's missing in characterization? $s \neq 0 \lor s'(0) \neq 0$

\mathcal{R} Incomplete! But are we missing proof rules?

Relativity

 $\mathsf{Cook}, \mathsf{Harel:} \quad \mathsf{discrete-DL}/\mathsf{data}_{\mathbb{N}} \qquad \qquad \mathsf{hybrid-d}\mathcal{L}/\mathsf{data}_{\mathbb{R}} ~ \ref{eq:loss}$

\mathcal{R} Relative Completeness

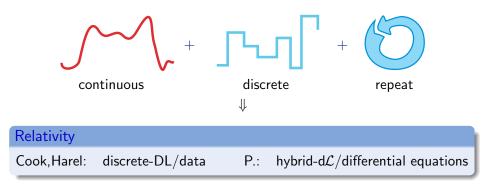
\mathcal{R} Relative Completeness

Theorem (Relative Completeness)

d*L* calculus is a sound & complete axiomatisation of hybrid systems relative to differential equations.

Theorem (Relative Completeness)

d*L* calculus is a sound & complete axiomatisation of hybrid systems relative to differential equations.



Definition (First-Order Logic of Differential Equations)

$$\mathsf{FOD} = \mathsf{FOL}_{\mathbb{R}} + [x_1' = \theta_1, \dots, x_n' = \theta_n]F$$

 $\mathsf{FOD} \ \phi ::= \theta_1 \ge \theta_2 \ | \ \neg \phi \ | \ \phi_1 \land \phi_2 \ | \ \forall x \ \phi \ | \ \exists x \ \phi \ | \ [x'_1 = \theta_1, \dots, x'_n = \theta_n] \phi$

Definition (First-Order Logic of Differential Equations)

$$\mathsf{FOD} = \mathsf{FOL}_{\mathbb{R}} + [x_1' = \theta_1, \dots, x_n' = \theta_n]F$$

$$\mathsf{FOD} \ \phi ::= \theta_1 \ge \theta_2 \ | \ \neg \phi \ | \ \phi_1 \land \phi_2 \ | \ \forall x \ \phi \ | \ \exists x \ \phi \ | \ [x'_1 = \theta_1, \dots, x'_n = \theta_n] \phi$$

FOD $\phi ::= \theta_1 \ge \theta_2 \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \forall x \phi \mid \exists x \phi \mid [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$ with FOL_R-formula *F*

Theorem (Relative Completeness)

 $d\mathcal{L}$ calculus is complete relative to first-order logic of differential equations.

 $\vDash \phi \quad iff \quad Taut_{FOD} \vdash \phi$

where $FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

Proof Outline 15p

Theorem (Relative Completeness)

d*L* calculus is complete relative to first-order logic of differential equations.

 $\vDash \phi \quad iff \quad Taut_{FOD} \vdash \phi$

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof Outline 15p

Corollary (Proof-theoretical Alignment)

verification of hybrid systems = verification of dynamical systems!