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dL Motives: The Logic of Hybrid Systems

differential dynamic logic

dL =

FOLR +

DL + HP
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dL Motives: Regions in First-order Logic

differential dynamic logic

dL = FOLR

+ + HP

∀MA∃SB . . .

∀t≥0 . . .

z

v

MA

v 2 ≤ 2b(MA− z)
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dL Motives: State Transitions in Dynamic Logic

differential dynamic logic

dL = FOLR +

+ HP

v 2 ≤ 2b
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differential dynamic logic

dL = FOLR + ML
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v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

� v 2 ≤ 2b
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dL Motives: State Transitions in Dynamic Logic

differential dynamic logic

dL = FOLR + DL

+ HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b
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dL Motives: Hybrid Programs as Uniform Model

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

[z ′′ = a] v 2 ≤ 2b
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dL Motives: Hybrid Programs as Uniform Model

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

[if(z > SB) a :=−b; z ′′ = a] v 2 ≤ 2b
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dL Motives: Hybrid Programs as Uniform Model

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

[ if(z > SB) a :=−b; z ′′ = a︸ ︷︷ ︸
hybrid program

] v 2 ≤ 2b
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Verification Calculus for Differential Dynamic Logic
Propositional Rules

10 propositional rules

` φ
¬φ `

φ `
` ¬φ

φ ` ψ
` φ→ ψ

φ, ψ `
φ ∧ ψ `

` φ ` ψ
` φ ∧ ψ

` φ ψ `
φ→ ψ `

φ ` ψ `
φ ∨ ψ `

` φ, ψ
` φ ∨ ψ

φ ` φ

` φ φ `
`
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Verification Calculus for Differential Dynamic Logic
Dynamic Rules

〈α〉〈β〉φ
〈α;β〉φ

[α][β]φ

[α;β]φ

〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

[α]φ ∧ [β]φ

[α ∪ β]φ

φ ∨ 〈α〉〈α∗〉φ
〈α∗〉φ

φ ∧ [α][α∗]φ

[α∗]φ

χ ∧ ψ
〈?χ〉ψ

χ→ ψ

[?χ]ψ

φθ1
x1
. . .θn

xn

〈x1 := θ1, . . , xn := θn〉φ

〈x1 := θ1, . . , xn := θn〉φ
[x1 := θ1, . . , xn := θn]φ

∃t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ) ∧ 〈S(t)〉φ

)
〈x ′1 = θ1, . . , x ′n = θn ∧ χ〉φ

∀t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ)→ 〈S(t)〉φ

)
[x ′1 = θ1, . . , x ′n = θn ∧ χ]φ
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Verification Calculus for Differential Dynamic Logic
First-Order Rules

` φ(s(X1, . . ,Xn))

` ∀x φ(x)

φ(s(X1, . . ,Xn)) `
∃x φ(x) `

s new, {X1, . . ,Xn} = FV (∃x φ(x))

` QE(∀X (Φ(X ) ` Ψ(X )))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

X new variable

` φ(X )

` ∃x φ(x)

φ(X ) `
∀x φ(x) `

X new variable

` QE(∃X
∧

i (Φi ` Ψi ))

Φ1 ` Ψ1 . . . Φn ` Ψn

X only in branches Φi ` Ψi

QE needs to be defined in premiss
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Verification Calculus for Differential Dynamic Logic
Global Dynamic Rules

` ∀α(φ→ ψ)

[α]φ ` [α]ψ

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ
` ∀α(φ→ [α]φ)

φ ` [α∗]φ

` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)
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Soundness

Theorem (Soundness)

dL calculus is sound, i.e.,
` φ ⇒ � φ

Challenges (Soundness Proof)

x ′ = f (x)

Side deductions

Free variables & Skolemization
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Completeness

Can we prove all valid formulas of dL?

Theorem (Incompleteness)

Both the discrete fragment and the continuous fragment of dL are not
effectively axiomatisable, i.e., they have no sound and complete effective
calculus, because natural numbers are definable in both fragments.

Theorem (Gödels’s Incompleteness)

First-order logic with (non-linear) arithmetic of natural numbers has no
sound and complete effective calculus.
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Incompleteness

Proof (Incompleteness).

Discrete fragment:
〈(x := x + 1)∗〉 x = n

+1 +1 +1 +1 +1

Continuous fragment:

〈s ′′ = −s, τ ′ = 1〉(s = 0 ∧ τ = n)  s = sin

What’s missing in characterization? s 6= 0 ∨ s ′(0) 6= 0
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André Platzer (CMU) 15-819/10: Completeness of Differential Dynamic Logic 9 / 12



Incomplete! But are we missing proof rules?

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat

⇒

André Platzer (CMU) 15-819/10: Completeness of Differential Dynamic Logic 10 / 12



Incomplete! But are we missing proof rules?

Relativity

Cook,Harel: discrete-DL/dataN hybrid-dL/dataR ??

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat
⇒
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André Platzer (CMU) 15-819/10: Completeness of Differential Dynamic Logic 10 / 12



Relative Completeness

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat

⇒
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Relative Completeness

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat⇒

Relativity

Cook,Harel: discrete-DL/data P.: hybrid-dL/differential equations
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First-Order Logic of Differential Equations FOD

Definition (First-Order Logic of Differential Equations)

FOD = FOLR + [x ′1 = θ1, . . . , x
′
n = θn]F

FOD φ ::= θ1 ≥ θ2 | ¬φ | φ1 ∧ φ2 | ∀x φ | ∃x φ | [x ′1 = θ1, . . . , x
′
n = θn]φ

FOD φ ::= θ1 ≥ θ2 | ¬φ | φ1 ∧ φ2 | ∀x φ | ∃x φ | [x ′1 = θ1, . . . , x
′
n = θn]F

with FOLR-formula F
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Relative Completeness

Theorem (Relative Completeness)

dL calculus is complete relative to first-order logic of differential equations.

� φ iff TautFOD ` φ

where FOD = FOLR + [x ′1 = θ1, . . . , x
′
n = θn]F Proof Outline 15p

Corollary (Proof-theoretical Alignment)

verification of hybrid systems = verification of dynamical systems!
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