
15-819/18-879: Hybrid Systems Analysis
& Theorem Proving

09: Train Control Verification

André Platzer

aplatzer@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA

0.2
0.4

0.6
0.8

1.00.1

0.2

0.3

0.4

0.5

André Platzer (CMU) 15-819/09: Train Control Verification 1 / 30

Outline

1 Motivation

2 Train Control
Separation Principle
Parametric ETCS

3 Parametric European Train Control System
Controllability
Reactivity
Refined Control
Safety
Liveness

4 Proving ETCS in KeYmaera
Architecture
KeYmaera Problem Input
KeYmaera Rule Base
Real Arithmetic, Computer Algebra and Automation
Experiments

André Platzer (CMU) 15-819/09: Train Control Verification 1 / 30

Outline

1 Motivation

2 Train Control
Separation Principle
Parametric ETCS

3 Parametric European Train Control System
Controllability
Reactivity
Refined Control
Safety
Liveness

4 Proving ETCS in KeYmaera
Architecture
KeYmaera Problem Input
KeYmaera Rule Base
Real Arithmetic, Computer Algebra and Automation
Experiments

André Platzer (CMU) 15-819/09: Train Control Verification 1 / 30

ETCS Control Verification

Problem

Hybrid System

Continuous evolutions
(differential equations)

Discrete jumps
(control decisions)

1 2 3 4
t

-2

-1

1

2
a

1 2 3 4
t

0.5

1.0

1.5

2.0

2.5

3.0
v

1 2 3 4
t

1

2

3

4

5

6
z

André Platzer (CMU) 15-819/09: Train Control Verification 2 / 30

Verifying Parametric Hybrid Systems

ETCS objectives:

1 Collision free

2 Maximise throughput & velocity (300 km/h)

3 2.1 ∗ 106 passengers/day

André Platzer (CMU) 15-819/09: Train Control Verification 3 / 30

Verifying Parametric Hybrid Systems

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

Parameters have nonlinear influence

Handle SB as free symbolic parameter?

Challenge: verification (falsifying is “easy”)

Which constraints for SB?

∀m∃SB “train always safe”

MA
z

v
t

André Platzer (CMU) 15-819/09: Train Control Verification 3 / 30

Verifying Parametric Hybrid Systems

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

Parameters have nonlinear influence

Handle SB as free symbolic parameter?

Challenge: verification (falsifying is “easy”)

Which constraints for SB?

∀m∃SB “train always safe”

MA
z

v
t

André Platzer (CMU) 15-819/09: Train Control Verification 3 / 30

Verifying Parametric Hybrid Systems

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

Parameters have nonlinear influence

Handle SB as free symbolic parameter?

Challenge: verification (falsifying is “easy”)

Which constraints for SB?

∀m∃SB “train always safe”

MA
z

v

MA
z

v
t

André Platzer (CMU) 15-819/09: Train Control Verification 3 / 30

Verifying Parametric Hybrid Systems

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

Parameters have nonlinear influence

Handle SB as free symbolic parameter?

Challenge: verification (falsifying is “easy”)

Which constraints for SB?

∀m∃SB “train always safe”

MA
z

v

MA
z

v
t

André Platzer (CMU) 15-819/09: Train Control Verification 3 / 30

Branching Executions in Hybrid Programs: ETCS

system ≡ (cor ; drive)∗

cor ≡ (?m− z ≤ SB; a :=−b) ∪ (?m− z ≥ SB; a := A)

drive ≡ τ := 0; (z ′ = v , v ′ = a, τ ′ = 1 ∧ v ≥ 0 ∧ τ ≤ ε)

∪

?m−z≤SB

?m−z≥SB

a :=−b

a :=
A

τ := 0 z ′′ = a

τ ′ = 1
∧ τ≤ε

André Platzer (CMU) 15-819/09: Train Control Verification 4 / 30

Branching Executions in Hybrid Programs: ETCS

system ≡ (cor ; drive)∗

cor ≡ (?m− z ≤ SB; a :=−b) ∪ (?m− z ≥ SB; a := A)

drive ≡ τ := 0; (z ′ = v , v ′ = a, τ ′ = 1 ∧ v ≥ 0 ∧ τ ≤ ε)

∪

?m−z≤SB

?m−z≥SB

a :=−b

a :=
A

τ := 0 z ′′ = a

τ ′ = 1
∧ τ≤ε

André Platzer (CMU) 15-819/09: Train Control Verification 4 / 30

Outline

1 Motivation

2 Train Control
Separation Principle
Parametric ETCS

3 Parametric European Train Control System
Controllability
Reactivity
Refined Control
Safety
Liveness

4 Proving ETCS in KeYmaera
Architecture
KeYmaera Problem Input
KeYmaera Rule Base
Real Arithmetic, Computer Algebra and Automation
Experiments

André Platzer (CMU) 15-819/09: Train Control Verification 4 / 30

2D Movement Authorities

τ.v

τ.p

m.r

m.r
m.rm.r

m.em.em.e

m.d
m.d m.d

Vectorial MA m = (d , e, r):

Beyond point m.e train not faster than m.d .

Train should try not to keep recommended speed m.r

André Platzer (CMU) 15-819/09: Train Control Verification 5 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,

This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Separation Principle

Lemma (Principle of separation by movement authorities)

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.

André Platzer (CMU) 15-819/09: Train Control Verification 6 / 30

Model/State Variables

Train τ :

τ.v Position

τ.v Speed

τ.a Acceleration

(t model time)

RBC + MA:

m.e End of Authority

m.d Speed limit

m.r Recommended speed

rbc.message Channel

Parameters:

SB Start Braking

ST Start Talking

b Braking power/deceleration

A Maximum acceleration

ε Maximum cycle time

∆ Maximum expected
communication delay

André Platzer (CMU) 15-819/09: Train Control Verification 7 / 30

Parametric Skeleton of ETCS Cooperation Protocol

ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp : if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Verify safety?

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Lots of counterexamples!

André Platzer (CMU) 15-819/09: Train Control Verification 8 / 30

Parametric Skeleton of ETCS Cooperation Protocol

ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp : if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Verify safety?

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Lots of counterexamples!

André Platzer (CMU) 15-819/09: Train Control Verification 8 / 30

Parametric Skeleton of ETCS Cooperation Protocol

ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp : if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Verify safety?

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Lots of counterexamples!

André Platzer (CMU) 15-819/09: Train Control Verification 8 / 30

Parametric Skeleton of ETCS Cooperation Protocol

ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp : if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Verify safety?

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Lots of counterexamples!

André Platzer (CMU) 15-819/09: Train Control Verification 8 / 30

Iterative Control Refinement Process

1 Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dL decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

2 Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dL decomposition to discover parametric constraints which
maintain controllability under these control laws.

3 Safety convergence: Repeat step 2 until resulting system proven safe.

4 Liveness check: Prove that discovered parametric constraints do not
over-constrain system inconsistently by showing that it remains live.

André Platzer (CMU) 15-819/09: Train Control Verification 9 / 30

Iterative Control Refinement Process

1 Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dL decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

2 Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dL decomposition to discover parametric constraints which
maintain controllability under these control laws.

3 Safety convergence: Repeat step 2 until resulting system proven safe.

4 Liveness check: Prove that discovered parametric constraints do not
over-constrain system inconsistently by showing that it remains live.

André Platzer (CMU) 15-819/09: Train Control Verification 9 / 30

Iterative Control Refinement Process

1 Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dL decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

2 Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dL decomposition to discover parametric constraints which
maintain controllability under these control laws.

3 Safety convergence: Repeat step 2 until resulting system proven safe.

4 Liveness check: Prove that discovered parametric constraints do not
over-constrain system inconsistently by showing that it remains live.

André Platzer (CMU) 15-819/09: Train Control Verification 9 / 30

Iterative Control Refinement Process

1 Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dL decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

2 Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dL decomposition to discover parametric constraints which
maintain controllability under these control laws.

3 Safety convergence: Repeat step 2 until resulting system proven safe.

4 Liveness check: Prove that discovered parametric constraints do not
over-constrain system inconsistently by showing that it remains live.

André Platzer (CMU) 15-819/09: Train Control Verification 9 / 30

Outline

1 Motivation

2 Train Control
Separation Principle
Parametric ETCS

3 Parametric European Train Control System
Controllability
Reactivity
Refined Control
Safety
Liveness

4 Proving ETCS in KeYmaera
Architecture
KeYmaera Problem Input
KeYmaera Rule Base
Real Arithmetic, Computer Algebra and Automation
Experiments

André Platzer (CMU) 15-819/09: Train Control Verification 9 / 30

ETCS Controllability

m.d τ.p

τ.v

m.e

τ.v 2 −m.d2 ≤ 2b(m.e − τ.p)

Proposition (Controllability)

[τ.p′ = τ.v , τ.v ′ = −b ∧ τ.v ≥ 0](τ.p ≥ m.e → τ.v ≤ m.d)

≡ C ≡ τ.v 2 = m.d2 ≤ 2b(m.e − τ.p)

André Platzer (CMU) 15-819/09: Train Control Verification 10 / 30

ETCS RBC Controllability

E
O
A

N
E
W

E
O
A

N
E
W

E
O
A

N
E
W

E
O
A

X
X

Proposition (RBC Controllability)

m.d ≥ 0 ∧ b > 0→ [m0 := m; rbc]
(

M ≡ m0.d
2 −m.d2 ≤ 2b(m.e −m0.e) ∧m0.d ≥ 0 ∧m.d ≥ 0↔

∀τ
(
(〈m := m0〉C)→ C

))
André Platzer (CMU) 15-819/09: Train Control Verification 11 / 30

ETCS Reactivity

m.d
τ.p

τ.v

← SB → m.e

Proposition (Reactivity)(
∀m.e ∀τ.p

(
m.e − τ.p ≥ SB ∧ C →

[τ.a := A; drive] C
))

≡ SB ≥ τ.v 2 −m.d2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + ε τ.v

)

André Platzer (CMU) 15-819/09: Train Control Verification 12 / 30

Refined ETCS Control

spec : τ.v 2 −m.d2 ≤ 2b(m.e − τ.p) ∧ τ.v ≥ 0 ∧m.d ≥ 0 ∧ b > 0
→ [ETCS](τ.p ≥ m.e → τ.v ≤ m.d)

ETCS : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?0 > τ.a ≥ −b)

atp : SB := τ.v2−m.d2

2b +
(

A
b + 1

) (
A
2 ε

2 + ε τ.v
)
;

: if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency)

∪
(
m0 := m; m := ∗;

?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d
2 −m.d2 ≤ 2b(m.e −m0.e)

)

τ.v 2 = m.d2 ≤ 2b(m.e − τ.p)→ [ETCSaug](τ.p ≥ m.e → τ.v ≤ m.d)

André Platzer (CMU) 15-819/09: Train Control Verification 13 / 30

Refined ETCS Control

spec : τ.v 2 −m.d2 ≤ 2b(m.e − τ.p) ∧ τ.v ≥ 0 ∧m.d ≥ 0 ∧ b > 0
→ [ETCS](τ.p ≥ m.e → τ.v ≤ m.d)

ETCS : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?0 > τ.a ≥ −b)

atp : SB := τ.v2−m.d2

2b +
(

A
b + 1

) (
A
2 ε

2 + ε τ.v
)
;

: if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency)

∪
(
m0 := m; m := ∗;

?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d
2 −m.d2 ≤ 2b(m.e −m0.e)

)
τ.v 2 = m.d2 ≤ 2b(m.e − τ.p)→ [ETCSaug](τ.p ≥ m.e → τ.v ≤ m.d)

André Platzer (CMU) 15-819/09: Train Control Verification 13 / 30

ETCS Safety

E
O
A

E
O
A

Proposition (Safety)

C →
[ETCS](τ.p ≥ m.e → τ.v ≤ m.d)

André Platzer (CMU) 15-819/09: Train Control Verification 14 / 30

ETCS Liveness

E
O
A

N
E
W
E

O
A

N
E
W

E
O
A

Proposition (Liveness)

τ.v > 0 ∧ ε > 0 → ∀P 〈ETCS〉 τ.p ≥ P

André Platzer (CMU) 15-819/09: Train Control Verification 15 / 30

Outline

1 Motivation

2 Train Control
Separation Principle
Parametric ETCS

3 Parametric European Train Control System
Controllability
Reactivity
Refined Control
Safety
Liveness

4 Proving ETCS in KeYmaera
Architecture
KeYmaera Problem Input
KeYmaera Rule Base
Real Arithmetic, Computer Algebra and Automation
Experiments

André Platzer (CMU) 15-819/09: Train Control Verification 15 / 30

KeYmaera Architecture

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

Quantifier
eliminiation

André Platzer (CMU) 15-819/09: Train Control Verification 16 / 30

KeYmaera Architecture

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

Quantifier
eliminiation

André Platzer (CMU) 15-819/09: Train Control Verification 17 / 30

KeYmaera Problem Specification Input File .key

\ funct ions {
R ep ; R b ; R A ;

}
\problem {
\ [R SB , a , v , z , t , m; \] (

(v ˆ2 <= 2∗b∗(m−z) & b > 0 & A>=0)
−>
\ [(
SB := (v ˆ2)/(2∗ b) + ((A/b)+1)∗((A/2)∗ ep ˆ2 + ep∗v) ;
((?m − z <= SB ; a:= −b)
++ (?m − z >= SB ; a:=A)) ;

t :=0;
{z ‘=v , v ‘ = a , t ‘=1 , (v >= 0 & t <= ep)}
)∗
\] (z <= m)

)
}

André Platzer (CMU) 15-819/09: Train Control Verification 18 / 30

KeYmaera Problem Specification Input File .key

\ funct ions { R b ; R A ; R ep ; }
\problem {
\ [R r , SB , mo, t , a , v , z ,m, d , do , d r i v e , brake , s t a t e ; d r i v e :=0; b r a k e :=1; s t a t e := d r i v e \] (

(vˆ2−dˆ2 <= 2∗b∗(m−z) & d>=0 & b>0 & A>=0 & ep>=0)
−> \ [((

(do:=d ; mo:=m; m:=∗ ; d :=∗ ; r :=∗ ;
?d>=0 & doˆ2−dˆ2<=2∗b∗(m−mo) & r>=0)

++ (s t a t e := b r a k e)
) ++ (

((? v <= r ; a :=∗ ; ? a >=−b & a <= A)
++ (? v >= r ; a :=∗ ; ? a <0 & a >= −b)) ;
SB := (vˆ2−d ˆ2)/(2∗ b) + (A/b+1)∗(A/2∗ epˆ2+ep∗v) ;
i f (m−z <= SB | s t a t e=b r a k e) then a:= b f i ;
(t :=0; {z ’=v , v ’=a , t ’=1 , (v>=0 & t<=ep)})

)
)∗\] (z>=m −> v<=d))

}
André Platzer (CMU) 15-819/09: Train Control Verification 19 / 30

KeYmaera Architecture

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

Quantifier
eliminiation

André Platzer (CMU) 15-819/09: Train Control Verification 19 / 30

KeYmaera Architecture

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

Quantifier
eliminiation

André Platzer (CMU) 15-819/09: Train Control Verification 19 / 30

Proof Sketch

Init ` [ETCS∗]z ≤ m

Init ` Inv Inv ` [ETCS]Inv

. . . Drive

v ≥ vdes

m − z ≤ SB m − z > SB

v ≤ vdes

m − z ≤ SB m − z > SB

Brake

Inv ` z ≤ m

Example

m − z ≥
(

A
b + 1

) (
εv + A

2 ε
2
)

+ v2−d2

2b ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes
∧v 2 − d2 ≤ 2b(m − z) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0
`
∀t ≥ 0 ((∀0 ≤ t̃ ≤ t (at̃ + v ≥ 0 ∧ t̃ ≤ ε))
→ (at + v)2 − d2 ≤ 2b(m − (1

2 at + tv + z)) ∧ at + v ≥ 0 ∧ d ≥ 0)

André Platzer (CMU) 15-819/09: Train Control Verification 20 / 30

Proof Sketch

Init ` [ETCS∗]z ≤ m

Init ` Inv Inv ` [ETCS]Inv

. . . Drive

v ≥ vdes

m − z ≤ SB m − z > SB

v ≤ vdes

m − z ≤ SB m − z > SB

Brake

Inv ` z ≤ m

Example

m − z ≥
(

A
b + 1

) (
εv + A

2 ε
2
)

+ v2−d2

2b ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes
∧v 2 − d2 ≤ 2b(m − z) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0
`
∀t ≥ 0 ((∀0 ≤ t̃ ≤ t (at̃ + v ≥ 0 ∧ t̃ ≤ ε))
→ (at + v)2 − d2 ≤ 2b(m − (1

2 at + tv + z)) ∧ at + v ≥ 0 ∧ d ≥ 0)

André Platzer (CMU) 15-819/09: Train Control Verification 20 / 30

Handling Differential Equations

Example

∀t ≥ 0 [x := y(t)]φ

[x ′ = f (x)]φ

v w

φ

x ′ = f (x)

x := y(t)

. . . ` ∀t ≥ 0 (−1
2 bt2 + tv + z ≤ m)

. . . ` ∀t ≥ 0 [z := −1
2 bt2 + tv + z]z ≤ m

. . . ` [z ′ = v , v ′ = −b]z ≤ m

André Platzer (CMU) 15-819/09: Train Control Verification 21 / 30

Handling Differential Equations

Example

∀t ≥ 0 [x := y(t)]φ

[x ′ = f (x)]φ

v w

φ

x ′ = f (x)

x := y(t)

. . . ` ∀t ≥ 0 (−1
2 bt2 + tv + z ≤ m)

. . . ` ∀t ≥ 0 [z := −1
2 bt2 + tv + z]z ≤ m

. . . ` [z ′ = v , v ′ = −b]z ≤ m

André Platzer (CMU) 15-819/09: Train Control Verification 21 / 30

Handling Differential Equations

Example

∀t ≥ 0 [x := y(t)]φ

[x ′ = f (x)]φ

v w

φ

x ′ = f (x)

x := y(t)

. . . ` ∀t ≥ 0 (−1
2 bt2 + tv + z ≤ m)

. . . ` ∀t ≥ 0 [z := −1
2 bt2 + tv + z]z ≤ m

. . . ` [z ′ = v , v ′ = −b]z ≤ m

André Platzer (CMU) 15-819/09: Train Control Verification 21 / 30

KeYmaera Rule Base

Γ ` φ,∆ Γ ` ψ,∆
Γ ` φ ∧ ψ,∆

a n d r i g h t {
\ f i nd (==> b & c)
\ rep lacewith(==> b) ;
\ rep lacewith(==> c)
\ heu r i s t i c s (s p l i t , b e t a)

} ;

André Platzer (CMU) 15-819/09: Train Control Verification 22 / 30

KeYmaera Rule Base

Γ ` [α]φ,∆ Γ ` [β]φ,∆

Γ ` [α ∪ β]φ,∆

b o x c h o i c e r i g h t {
\ f i nd (==> \ [#d l ++ #d l 2 \] (p o s t))
\ rep lacewith(==> \[# d l \] (p o s t)) ;
\ rep lacewith(==> \[# d l 2 \] (p o s t))
\ heu r i s t i c s (s i m p l i f y p r o g)

} ;

André Platzer (CMU) 15-819/09: Train Control Verification 23 / 30

KeYmaera Rule Base

Γ ` 〈S(t)〉φ,∆
Γ ` [x ′1 = θ1, . . , x ′n = θn]φ,∆

O D E S o l v e r i g h t {
\ f i nd (==> \ [#s i m p l e o d e \] (p o s t))
\ rep lacewith(==> #ODESolve (\[# s i m p l e o d e \] (p o s t)))
\ heu r i s t i c s (d i f f s o l v e , d i f f r u l e)
\displayname ”ODESolve”

} ;

Using meta-operator #ODESolve implemented in Java

André Platzer (CMU) 15-819/09: Train Control Verification 24 / 30

KeYmaera Rule Base

Γ ` 〈S(t)〉φ,∆
Γ ` [x ′1 = θ1, . . , x ′n = θn]φ,∆

O D E S o l v e r i g h t {
\ f i nd (==> \ [#s i m p l e o d e \] (p o s t))
\ rep lacewith(==> #ODESolve (\[# s i m p l e o d e \] (p o s t)))
\ heu r i s t i c s (d i f f s o l v e , d i f f r u l e)
\displayname ”ODESolve”

} ;

Using meta-operator #ODESolve implemented in Java

André Platzer (CMU) 15-819/09: Train Control Verification 24 / 30

KeYmaera Rule Base

φ(X) `
∀x φ(x) `

φ(s(X1, . . ,Xn)) `
∃x φ(x) `

a l l l e f t {
\ f i nd (\ f o r a l l u ; b ==>)
\ rep lacewith ({\ s u b s t u ; q}(b) ==>)
\ heu r i s t i c s (gamma)

} ;
e x l e f t {
\ f i nd (\ e x i s t s u ; b ==>)
\varcond (\new (sk , \dependingOn (b)))
\ rep lacewith ({\ s u b s t u ; sk }b ==>)
\ heu r i s t i c s (d e l t a)

} ;

André Platzer (CMU) 15-819/09: Train Control Verification 25 / 30

KeYmaera Rule Base

` QE(∀X (Φ(X) ` Ψ(X)))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

` QE(∃X
∧

i (Φi ` Ψi))

Φ1 ` Ψ1 . . . Φn ` Ψn

Using built-in rule implemented in Java

André Platzer (CMU) 15-819/09: Train Control Verification 26 / 30

KeYmaera Rule Base

` QE(∀X (Φ(X) ` Ψ(X)))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

` QE(∃X
∧

i (Φi ` Ψi))

Φ1 ` Ψ1 . . . Φn ` Ψn

Using built-in rule implemented in Java

André Platzer (CMU) 15-819/09: Train Control Verification 26 / 30

KeYmaera Architecture

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

Quantifier
eliminiation

André Platzer (CMU) 15-819/09: Train Control Verification 26 / 30

KeYmaera Architecture

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

Quantifier
eliminiation

André Platzer (CMU) 15-819/09: Train Control Verification 26 / 30

Proof Sketch

Init ` [ETCS∗]z ≤ m

Init ` Inv Inv ` [ETCS]Inv

. . . Drive

v ≥ vdes

m − z ≤ SB m − z > SB

v ≤ vdes

m − z ≤ SB m − z > SB

Brake

Inv ` z ≤ m

Example

m − z ≥
(

A
b + 1

) (
εv + A

2 ε
2
)

+ v2−d2

2b ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes
∧v 2 − d2 ≤ 2b(m − z) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0
`
∀t ≥ 0 ((∀0 ≤ t̃ ≤ t (at̃ + v ≥ 0 ∧ t̃ ≤ ε))
→ (at + v)2 − d2 ≤ 2b(m − (1

2 at + tv + z)) ∧ at + v ≥ 0 ∧ d ≥ 0)

André Platzer (CMU) 15-819/09: Train Control Verification 27 / 30

Proof Sketch

Init ` [ETCS∗]z ≤ m

Init ` Inv Inv ` [ETCS]Inv

. . . Drive

v ≥ vdes

m − z ≤ SB m − z > SB

v ≤ vdes

m − z ≤ SB m − z > SB

Brake

Inv ` z ≤ m

Example

m − z ≥
(

A
b + 1

) (
εv + A

2 ε
2
)

+ v2−d2

2b ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes
∧v 2 − d2 ≤ 2b(m − z) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0
`
∀t ≥ 0 ((∀0 ≤ t̃ ≤ t (at̃ + v ≥ 0 ∧ t̃ ≤ ε))
→ (at + v)2 − d2 ≤ 2b(m − (1

2 at + tv + z)) ∧ at + v ≥ 0 ∧ d ≥ 0)

André Platzer (CMU) 15-819/09: Train Control Verification 28 / 30

Quantifier Elimination and Proof Strategies

Quantifier elimination is
doubly exponential

Choice conflict:
1 Apply quantifier

elimination
2 Split using

` A ` B

` A ∧ B

1

2 2

4 4

8 8

16
16

16

∗

∗

16
8

4
2

1

André Platzer (CMU) 15-819/09: Train Control Verification 29 / 30

Experimental Results

Case Study Interact Steps IBC(s) Eager QE(s)

ETCS essentials 0 46 47.8 ∞
1 46 6.6 8.8

ETCS complete 0 163 2045.2 ∞
1 168 23.3 ∞

ETCS reactivity 0 49 76.2 ∞
ETCS liveness 3 112 17.6 16.0
Aircraft TRM 0 94 10.9 ∞

1 94 1.2 1.2
TRM 3 Planes 0 187 171.8 ∞

1 187 21.2 ∞
TRM 4 Planes 0 255 704.3 ∞

1 255 170 ∞
Water tank 1 375 2.0 2.0

∞ =̂ more than five hours

André Platzer (CMU) 15-819/09: Train Control Verification 30 / 30

Experimental Results

Case Study Interact Steps IBC(s) Eager QE(s)

ETCS essentials 0 46 47.8 ∞
1 46 6.6 8.8

ETCS complete 0 163 2045.2 ∞
1 168 23.3 ∞

ETCS reactivity 0 49 76.2 ∞
ETCS liveness 3 112 17.6 16.0
Aircraft TRM 0 94 10.9 ∞

1 94 1.2 1.2
TRM 3 Planes 0 187 171.8 ∞

1 187 21.2 ∞
TRM 4 Planes 0 255 704.3 ∞

1 255 170 ∞
Water tank 1 375 2.0 2.0

∞ =̂ more than five hours

André Platzer (CMU) 15-819/09: Train Control Verification 30 / 30

A. Platzer.
Differential dynamic logic for hybrid systems.
J. Autom. Reasoning, 41(2):143–189, 2008.

A. Platzer and J.-D. Quesel.
KeYmaera: A hybrid theorem prover for hybrid systems.
In A. Armando, P. Baumgartner, and G. Dowek, editors, IJCAR,
volume 5195 of LNCS, pages 171–178. Springer, 2008.

A. Platzer and J.-D. Quesel.
Logical verification and systematic parametric analysis in train control.

In M. Egerstedt and B. Mishra, editors, HSCC, volume 4981 of LNCS,
pages 646–649. Springer, 2008.

André Platzer (CMU) 15-819/09: Train Control Verification 30 / 30

	Motivation
	Train Control
	Separation Principle
	Parametric ETCS

	Parametric European Train Control System
	Controllability
	Reactivity
	Refined Control
	Safety
	Liveness

	Proving ETCS in KeYmaera
	Architecture
	KeYmaera Problem Input
	KeYmaera Rule Base
	Real Arithmetic, Computer Algebra and Automation
	Experiments

