15-819/18-879: Hybrid Systems Analysis & Theorem Proving 01: Safety-critical Hybrid Systems

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon /University, Pittsburgh, PA

15-819/01: Hybrid Systems

Outline

Applications

- Air Traffic Control
- Hybrid Systems / Cyber-Physical Systems
- Train Control
- Car Control
- UAV
- Chemical/Physical Process Control
- Biomedical Applications
- Advanced Chip Design

2 Hybrid Systems

- Labeled Transition Systems
- Finite Automata
- Hybrid Automata
- Hybrid Systems

Differential Equations

How can we build computerized controllers for physical systems that are guaranteed to meet their design goals?

- Hybrid systems
- Logic-based analysis
- Symbolic / numerical techniques
- Automatic theorem proving
- Model checking
- Verification
- Balance theory, practice & applications
- 30% Homework, 15% Midterm, 55% Project
- Project: Theory and/or implementation and/or application
- Whitepaper (4p), proposal (10p), report

\mathcal{R} Course Outline

- Safety-critical Hybrid Systems
- Propositional Logic
- First-order Logic
- Oumerical Analysis versus Symbolic Verification
- Propositional Tableau Procedures
- First-order Tableau Procedures
- Ø Dynamic Logic Programs and Dynamical Systems
- O Hybrid Dynamical Systems & Hybrid Programs
- Aircraft, Train, and Car Control
- Oynamic Verification Calculi
- Decision Procedures
- Theorem Proving Modulo
- Oifferential Equations, Differential Variance and Invariance
- Oisturbances in Hybrid Systems Control
- Proof Theory of Hybrid Systems
- Fixedpoint Model Checking Engines

• Differential equations (Peano, Picard, Lipschitz)

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic
- First-order logic

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic
- First-order logic
- Automated theorem proving

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic
- First-order logic
- Automated theorem proving
- Model checking (discrete / hybrid)

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic
- First-order logic
- Automated theorem proving
- Model checking (discrete / hybrid)
- Quantifier elimination

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic
- First-order logic
- Automated theorem proving
- Model checking (discrete / hybrid)
- Quantifier elimination
- Algebraic geometry

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic
- First-order logic
- Automated theorem proving
- Model checking (discrete / hybrid)
- Quantifier elimination
- Algebraic geometry
- Differential algebra

- Differential equations (Peano, Picard, Lipschitz)
- Hybrid systems
- Propositional logic
- First-order logic
- Automated theorem proving
- Model checking (discrete / hybrid)
- Quantifier elimination
- Algebraic geometry
- Differential algebra
- Computer algebra

Outline

Applications

- Air Traffic Control
- Hybrid Systems / Cyber-Physical Systems
- Train Control
- Car Control
- UAV
- Chemical/Physical Process Control
- Biomedical Applications
- Advanced Chip Design

- Labeled Transition Systems
- Finite Automata
- Hybrid Automata
- Hybrid Systems

R Air Traffic Control

Hybrid Systems

interacting discrete and continuous dynamics

ጽ Air Traffic Control

Hybrid Systems

interacting discrete and continuous dynamics

\mathcal{R} Air Traffic Control

Verification?

looks correct

Verification?

looks correct NO!

\mathcal{R} Air Traffic Control

Verification?

looks correct NO!

ጽ Air Traffic Control

Example ("Solving" differential equations)

 $x_{1}(t) = \frac{1}{\omega \varpi} (x_{1} \omega \varpi \cos t \omega - u \omega \cos t \omega \sin \vartheta + u \omega \cos t \omega \cos t \varpi \sin \vartheta - v \varpi \sin t \omega$ $+ x_{2} \omega \varpi \sin t \omega - u \omega \cos \vartheta \cos t \varpi \sin t \omega - u \omega \sqrt{1 - \sin \vartheta^{2}} \sin t \omega$ $+ u \omega \cos \vartheta \cos t \omega \sin t \varpi + u \omega \sin \vartheta \sin t \omega \sin t \varpi) \dots$

ጽ Air Traffic Control

Example ("Solving" differential equations)

 $\forall t \ge 0 \qquad \frac{1}{\omega \varpi} \left(x_1 \omega \varpi \cos t \omega - u \omega \cos t \omega \sin \vartheta + u \omega \cos t \omega \cos t \varpi \sin \vartheta - v \varpi \sin t \omega \right. \\ \left. + x_2 \omega \varpi \sin t \omega - u \omega \cos \vartheta \cos t \varpi \sin t \omega - u \omega \sqrt{1 - \sin \vartheta^2} \sin t \omega \right. \\ \left. + u \omega \cos \vartheta \cos t \omega \sin t \varpi + u \omega \sin \vartheta \sin t \omega \sin t \varpi \right) \dots$

15-819/01: Hybrid Systems

R Mid-air Collision at Überlingen, Germany 2002

- Human at ATC detected conflict
- Human instructed Tupolev to descend
- TCAS instructed Tupolev to climb and Boeing to descend
- Boeing couldn't notify human (busy)
- Pilots on both aircraft descended
- Mid-air collision (less than a minute after conflict detected)

R Mid-air Collision at Überlingen, Germany 2002

André Platzer (CMU)

15-819/01: Hybrid Systems

\mathscr{R} Hybrid Systems / Cyber-Physical Systems

Mathematical model for complex physical systems:

Definition (Hybrid Systems)

systems with interacting discrete and continuous dynamics

Technical characteristics:

Definition (Cyber-Physical Systems)

(Distributed network of) computerized control for physical system

R European Train Control System

- ETCS objectives:
 - Collision free
 - 2 Maximise throughput & velocity (320 km/h = 200 mph)
 - $\textcircled{3} 2.1*10^6 \text{ passengers/day}$

R European Train Control System

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

ጽ European Train Control System

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

ጽ European Train Control System

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

R European Train Control System

Parametric Hybrid Systems

continuous evolution along differential equations + discrete change

- Challenge: verification
- Which constraints for parameter SB?

 $\forall MA \exists SB$ "train always safe"

earrow Head-on Train Collision at Chatsworth, CA 2008

- Train engineer disobeyed stop signal at single track section
- No warning issued to train dispatcher
- First sight 4 seconds before impact
- Freight train triggers emergency brakes 2 seconds before impact

\mathscr{R} Head-on Train Collision at Chatsworth, CA 2008

André Platzer (CMU)

- Adaptive cruise control keeps safe distance?
- Lane change assistant
- Safe control with wireless interactions in CAR2CAR and USCAR
- Virtual car platooning

\mathcal{R} UAV - Unmanned Aerial Vehicle Control

R UAV - Unmanned Aerial Vehicle Control

- Safe and stable UAV flight control
- Mixing UAV swarms into pilot flight control areas
- Refueling of UAV: mixed human operation and micro turbulences
- Many other robotic applications

R Computerized Chemical/Physical Process Control

R Computerized Chemical/Physical Process Control

<u>*R*</u> Computerized Chemical/Physical Process Control

Control objective

Stabilize neutron multiplication factor

${\mathscr R}$ Biomedial Applications: Glucose/Insulin Regulation

Control objective

Maintain glucose in bounded range

<u>*R* Hybr</u>id Effects in Chip Design

\mathcal{R} Outline

Applications

- Air Traffic Control
- Hybrid Systems / Cyber-Physical Systems
- Train Control
- Car Control
- UAV
- Chemical/Physical Process Control
- Biomedical Applications
- Advanced Chip Design

2 Hybrid Systems

- Labeled Transition Systems
- Finite Automata
- Hybrid Automata
- Hybrid Systems

Differential Equations

Definition (Labeled Transition System)

- Transition relation on $Q \times A \times Q$, denoted as $q \stackrel{a}{\longrightarrow} q^+$, along with
- (possibly infinite) set A of transition actions,
- (possibly infinite) set Q of states.

Definition (Labeled Transition System)

- Transition relation on $Q \times A \times Q$, denoted as $q \stackrel{a}{\longrightarrow} q^+$, along with
- (possibly infinite) set A of transition actions,
- (possibly infinite) set Q of states.

Definition (Trace)

Definition (Trace)

Definition (Trace)

Definition (Trace)

Definition (Model Checking Problem)

Given initial states $Q_0 \subseteq Q$ and bad states $B \subseteq Q$ for a transition system, check whether there is a trace from some $q_0 \in Q_0$ to some $q_b \in B$.

Definition (Model Checking Problem)

Given initial states $Q_0 \subseteq Q$ and bad states $B \subseteq Q$ for a transition system, check whether there is a trace from some $q_0 \in Q_0$ to some $q_b \in B$.

Definition (Image Computation)

$$\mathit{Post}_{\mathcal{A}}(Y) \; := \; \{q^+ \in Q \; : \; q \stackrel{a}{\longrightarrow} q^+ \; \mathsf{for \; some } \; q \in Y, a \in \mathcal{A} \}$$

Definition (Image Computation)

$$\textit{Post}_{A}(Y) := \{q^{+} \in Q : q \xrightarrow{a} q^{+} \text{ for some } q \in Y, a \in A\}$$

17 / 39

Definition (Image Computation)

$$\textit{Post}_{A}(Y) := \{q^{+} \in Q : q \xrightarrow{a} q^{+} \text{ for some } q \in Y, a \in A\}$$

Definition (Image Computation)

$$Post_A(Y) := \{q^+ \in Q : q \xrightarrow{a} q^+ \text{ for some } q \in Y, a \in A\}$$

earrow Labeled Transition Systems

Definition (Image Computation)

$$\textit{Post}_{A}(Y) := \{q^{+} \in Q : q \xrightarrow{a} q^{+} \text{ for some } q \in Y, a \in A\}$$

17 / 39

Definition (Image Computation)

17 / 39

Definition (Nondeterministic Finite Automata)

- Transition relation on $Q \times A \times Q$, denoted as $q \stackrel{a}{\longrightarrow} q^+$, along with
- finite set A of transition actions,
- finite set Q of states, initial states $Q_0 \subseteq Q$.

\mathcal{R} Finite Automaton for Collision Avoidance

ℜ Finite Automaton for Collision Avoidance

ጽ Finite Automaton for Collision Avoidance

Collision avoidance is a property of controlled movement!

\mathcal{R} Hybrid Automata

Definition (Hybrid Automata)

- Finite directed graph: vertices M (modes), edges E (control switches)
- continuous state space \mathbb{R}^n
- flows φ_ν, where φ_ν(t; x) ∈ ℝⁿ is the state reached after staying in mode ν for time t ≥ 0 when continuous evolution starts in state x ∈ ℝⁿ
- invariant conditions $inv_v \subseteq \mathbb{R}^n$ for $v \in M$
- jump relations jump_e ⊆ ℝⁿ × ℝⁿ for edges e ∈ E usually comprising guard on current state and reset relations

\mathcal{R} Hybrid Automata

Definition (Hybrid Automata)

- Finite directed graph: vertices M (modes), edges E (control switches)
- continuous state space \mathbb{R}^n
- flows φ_ν, where φ_ν(t; x) ∈ ℝⁿ is the state reached after staying in mode ν for time t ≥ 0 when continuous evolution starts in state x ∈ ℝⁿ
- invariant conditions $inv_v \subseteq \mathbb{R}^n$ for $v \in M$
- jump relations jump_e ⊆ ℝⁿ × ℝⁿ for edges e ∈ E usually comprising guard on current state and reset relations

Is this a good definition?

André Platzer (CMU)

15-819/01: Hybrid Systems

Example (Mandelbrot Set)

For complex numbers $c \in \mathbb{C}$ define $f_0(c) = c$ and $f_{n+1}(c) = f_n(c)^2 + c$. Then the Mandelbrot set is

$$\{c \in \mathbb{C} : f_n(c) \not\to \infty \text{ as } n \to \infty\}$$

Example (Mandelbrot Set)

For complex numbers $c \in \mathbb{C}$ define $f_0(c) = c$ and $f_{n+1}(c) = f_n(c)^2 + c$. Then the Mandelbrot set is

$$\{c \in \mathbb{C} : f_n(c) \not\to \infty \text{ as } n \to \infty\}$$

Theorem (Lenore Blum, Cucker, Shub, Smale'90. . . 98)

"The Mandelbrot set is undecidable over $\mathbb R$ / in Real Turing Machines"

\mathcal{R} Hybrid Automata

Definition (Hybrid Automata)

- Finite directed graph: vertices M (modes), edges E (control switches)
- continuous state space \mathbb{R}^n
- flows φ_ν, where φ_ν(t; x) ∈ ℝⁿ is the state reached after staying in mode ν for time t ≥ 0 when continuous evolution starts in state x ∈ ℝⁿ
- invariant conditions $inv_v \subseteq \mathbb{R}^n$ for $v \in M$
- jump relations jump_e ⊆ ℝⁿ × ℝⁿ for edges e ∈ E usually comprising guard on current state and reset relations

Is this a good definition?
\mathcal{R} Hybrid Automata

Definition (Hybrid Automata)

- Finite directed graph: vertices M (modes), edges E (control switches)
- continuous state space \mathbb{R}^n
- flows φ_ν, where φ_ν(t; x) ∈ ℝⁿ is the state reached after staying in mode ν for time t ≥ 0 when continuous evolution starts in state x ∈ ℝⁿ
- invariant conditions $inv_v \subseteq \mathbb{R}^n$ for $v \in M$
- jump relations jump_e ⊆ ℝⁿ × ℝⁿ for edges e ∈ E usually comprising guard on current state and reset relations

\mathcal{R} Hybrid Automata

Definition (Hybrid Automata)

- Finite directed graph: vertices M (modes), edges E (control switches)
- continuous state space \mathbb{R}^n
- flows φ_ν, where φ_ν(t; x) ∈ ℝⁿ is the state reached after staying in mode ν for time t ≥ 0 when continuous evolution starts in state x ∈ ℝⁿ
- invariant conditions $inv_v \subseteq \mathbb{R}^n$ for $v \in M$
- jump relations jump_e ⊆ ℝⁿ × ℝⁿ for edges e ∈ E usually comprising guard on current state and reset relations

All relations decidable / definable in first-order real arithmetic

Computationally relevant output needs computational input!

\mathcal{R} Hybrid Automaton for Collision Avoidance

R Hybrid Automaton for Collision Avoidance

$$\varphi_{v}(t; x, y, \tau) = \begin{pmatrix} x_{1} + tv \sin \vartheta \\ x_{2} + tv \cos \vartheta \\ y_{1} + tu \sin \varsigma \\ y_{2} + tu \cos \varsigma \\ \tau + t \end{pmatrix}$$

$$\vartheta := \vartheta + \frac{\pi}{4} \left(\tau \leq 0 \qquad \vartheta := \vartheta - \frac{\pi}{4} \right)$$

$$\vartheta := \vartheta - \frac{\pi}{4}$$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

• $inv_{right} \equiv \tau \geq 0$

- $inv_{cruise} \equiv ||x y|| \ge \alpha$
- $inv_{right} \equiv \tau \ge 0$
- inv_{left} ≡ inv_{straight} ≡ true

- $inv_{cruise} \equiv ||x y|| \ge \alpha$
- $inv_{right} \equiv \tau \ge 0$
- inv_{left} ≡ inv_{straight} ≡ true
- $jump_e(x, x^+) \equiv guard_e(x) \land reset_e(x, x^+)$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

• $inv_{right} \equiv \tau \ge 0$

- $jump_e(x, x^+) \equiv guard_e(x) \land reset_e(x, x^+)$
- $guard_{cruise,left} \equiv ||x y|| < 10$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

- $inv_{right} \equiv \tau \ge 0$
- $inv_{left} \equiv inv_{straight} \equiv true$
- $jump_e(x, x^+) \equiv guard_e(x) \land reset_e(x, x^+)$
- $guard_{cruise, left} \equiv ||x y|| < 10$
- $reset_{cruise, left} \equiv \vartheta^+ = \vartheta + \frac{\pi}{4}$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

- $inv_{right} \equiv \tau \ge 0$
- inv_{left} ≡ inv_{straight} ≡ true
- $jump_e(x, x^+) \equiv guard_e(x) \land reset_e(x, x^+)$
- $guard_{cruise, left} \equiv ||x y|| < 10$
- $reset_{cruise, left} \equiv \vartheta^+ = \vartheta + \frac{\pi}{4}$
- $reset_{left,straight} \equiv \vartheta^+ = \vartheta \frac{\pi}{4}$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

- $inv_{right} \equiv \tau \ge 0$
- $inv_{left} \equiv inv_{straight} \equiv true$
- $jump_e(x, x^+) \equiv guard_e(x) \land reset_e(x, x^+)$
- $guard_{cruise, left} \equiv ||x y|| < 10$
- reset_{cruise,left} $\equiv \vartheta^+ = \vartheta + \frac{\pi}{4}$
- $reset_{left,straight} \equiv \vartheta^+ = \vartheta \frac{\pi}{4}$
- $reset_{straight,right} \equiv \vartheta^+ = \vartheta \frac{\pi}{4}$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

- $inv_{right} \equiv \tau \ge 0$
- $inv_{left} \equiv inv_{straight} \equiv true$
- $jump_e(x, x^+) \equiv guard_e(x) \land reset_e(x, x^+)$
- $guard_{cruise, left} \equiv ||x y|| < 10$
- $reset_{cruise, left} \equiv \vartheta^+ = \vartheta + \frac{\pi}{4}$
- $reset_{left,straight} \equiv \vartheta^+ = \vartheta \frac{\pi}{4}$
- $reset_{straight,right} \equiv \vartheta^+ = \vartheta \frac{\pi}{4}$
- $guard_{right,cruise} \equiv \tau \leq 0$

•
$$inv_{cruise} \equiv ||x - y|| \ge \alpha$$

- $inv_{right} \equiv \tau \ge 0$
- $inv_{left} \equiv inv_{straight} \equiv true$
- $jump_e(x, x^+) \equiv guard_e(x) \land reset_e(x, x^+)$
- $guard_{cruise, left} \equiv ||x y|| < 10$
- $reset_{cruise, left} \equiv \vartheta^+ = \vartheta + \frac{\pi}{4}$
- reset_{left,straight} $\equiv \vartheta^+ = \vartheta \frac{\pi}{4}$
- $reset_{straight,right} \equiv \vartheta^+ = \vartheta \frac{\pi}{4}$
- $guard_{right,cruise} \equiv \tau \leq 0$
- reset_{right,cruise} $\equiv \vartheta^+ = \vartheta + \frac{\pi}{4}$

If the aircraft are far apart and have compatible speed, then—when following the protocol—they will never crash?

Example (Property)

If the aircraft enter collision avoidance, then—when following the protocol—will they ever leave again, i.e. follow their old route?

- $Q := (M \times \mathbb{R}^n) \cap \{(v, x) : x \in inv_v\}$
- Discrete transition $(v, x) \xrightarrow{a} (v^+, x^+)$ iff there is an edge e from v to v^+ with input a such that $(x, x^+) \in jump_e$
- Continuous transition (v, x) → (v, x⁺) iff x⁺ = φ_v(r; x) for r ≥ 0 and φ_v(t; x) ∈ inv_v for all 0 ≤ t ≤ r.

•
$$Q := (M \times \mathbb{R}^n) \cap \{(v, x) : x \in inv_v\}$$

- Discrete transition $(v, x) \xrightarrow{a} (v^+, x^+)$ iff there is an edge e from v to v^+ with input a such that $(x, x^+) \in jump_e$
- Continuous transition (v, x) → (v, x⁺) iff x⁺ = φ_v(r; x) for r ≥ 0 and φ_v(t; x) ∈ inv_v for all 0 ≤ t ≤ r.

•
$$Q := (M \times \mathbb{R}^n) \cap \{(v, x) : x \in inv_v\}$$

- Discrete transition $(v, x) \xrightarrow{a} (v^+, x^+)$ iff there is an edge e from v to v^+ with input a such that $(x, x^+) \in jump_e$
- Continuous transition (v, x) → (v, x⁺) iff x⁺ = φ_v(r; x) for r ≥ 0 and φ_v(t; x) ∈ inv_v for all 0 ≤ t ≤ r.

•
$$Q := (M \times \mathbb{R}^n) \cap \{(v, x) : x \in inv_v\}$$

- Discrete transition $(v, x) \xrightarrow{a} (v^+, x^+)$ iff there is an edge e from v to v^+ with input a such that $(x, x^+) \in jump_e$
- Continuous transition (v, x) → (v, x⁺) iff x⁺ = φ_v(r; x) for r ≥ 0 and φ_v(t; x) ∈ inv_v for all 0 ≤ t ≤ r.

•
$$Q := (M \times \mathbb{R}^n) \cap \{(v, x) : x \in inv_v\}$$

- Discrete transition $(v, x) \xrightarrow{a} (v^+, x^+)$ iff there is an edge e from v to v^+ with input a such that $(x, x^+) \in jump_e$
- Continuous transition (v, x) → (v, x⁺) iff x⁺ = φ_v(r; x) for r ≥ 0 and φ_v(t; x) ∈ inv_v for all 0 ≤ t ≤ r.

\mathcal{R} Outline

Applications

- Air Traffic Control
- Hybrid Systems / Cyber-Physical Systems
- Train Control
- Car Control
- UAV
- Chemical/Physical Process Control
- Biomedical Applications
- Advanced Chip Design

2 Hybrid Systems

- Labeled Transition Systems
- Finite Automata
- Hybrid Automata
- Hybrid Systems

Differential Equations

earrow How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)

---//////// --/////// -----********** ********

\mathcal{R} How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)

${\mathscr R}\,$ How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)

$$\left[\begin{array}{cc} y'(t) = & f(t,y) \\ y(t_0) = & y_0 \end{array}\right]$$

${\mathscr R}\,$ How to describe continuous change?

Relate continuously changing quantity and its rate of change (derivative)

 $\begin{bmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{bmatrix}$ in which direction y evolves as time t progresses where y starts at time t_0

ℜ Intuition of Differential Equations

R Intuition of Differential Equations

ℜ Intuition of Differential Equations

ጽ Intuition of Differential Equations

Definition (Ordinary Differential Equation, ODE)

 $f: D \to \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$. Then $Y: I \to \mathbb{R}^n$ is solution of IVP

$$\left[\begin{array}{cc} y'(t) = & f(t,y) \\ y(t_0) = & y_0 \end{array}\right]$$

on interval $I \subseteq \mathbb{R}$, iff, for all $t \in I$,

- $(t, Y(t)) \in D$
- 2 Y'(t) exists and Y'(t) = f(t, Y(t)).

3
$$Y(t_0) = y_0$$

Accordingly for higher-order differential equations, i.e., differential equations involving higher-order derivatives $y^{(n)}(t)$.

If $f \in C(D, \mathbb{R}^n)$, then $Y \in C^1(I, \mathbb{R}^n)$.

What is a solution of the following IVP?

$$\left[\begin{array}{cc} y'(x) = & -2xy \\ y(0) = & 1 \end{array}\right]$$

What is a solution of the following IVP?

$$\left[\begin{array}{cc} y'(x) = & -2xy \\ y(0) = & 1 \end{array}\right]$$

Solution:

$$y(x) = e^{-x^2}$$

What is a solution of the following IVP?

$$\left[\begin{array}{cc} y'(x) = & -2xy \\ y(0) = & 1 \end{array}\right]$$

Solution:

$$y(x) = e^{-x^2}$$

Proof.

$$y'(x) = \frac{de^{-x^2}}{dx} = e^{-x^2}(-2x) = -2xy(x)$$
$$y(0) = e^{-0^2} = 1$$

André Platzer (CMU)

15-819/01: Hybrid Systems

33 / 39

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
ODE	Solution
----------------------	-------------------
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x' = x, x(0) = x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1 - t x_0}$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1 - tx_0}$
$x'=\frac{1}{x}, x(0)=1$	$x(t) = \sqrt{1+2t} \dots$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x' = x, x(0) = x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x'=rac{1}{x},x(0)=1$	$x(t) = \sqrt{1+2t}\dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x' = \frac{1}{x}, x(0) = 1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
x'(t) = tx	$x(t) = x_0 e^{\frac{t^2}{2}}$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x' = \frac{1}{x}, x(0) = 1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
x'(t) = tx	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x'=x^2, x(0)=x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x'=rac{1}{x},x(0)=1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
x'(t) = tx	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$
x' = y, y' = -x, x(0) = 0, y(0) = 1	$x(t) = \sin t, y(t) = \cos t$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x' = \frac{1}{x}, x(0) = 1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
x'(t) = tx	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$
x' = y, y' = -x, x(0) = 0, y(0) = 1	$x(t) = \sin t, y(t) = \cos t$
$x' = 1 + x^2, x(0) = x_0$	$x(t) = \tan t \dots$

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x'=x^2, x(0)=x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x' = \frac{1}{x}, x(0) = 1$	$x(t) = \sqrt{1+2t}\dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
x'(t) = tx	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$
x' = y, y' = -x, x(0) = 0, y(0) = 1	$x(t) = \sin t, y(t) = \cos t$
$x' = 1 + x^2, x(0) = x_0$	$x(t) = an t \dots$
$x'(t) = rac{2}{t^3} x(t)$	$x(t) = e^{-\frac{1}{t^2}}$ non-analytic

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x' = \frac{1}{x}, x(0) = 1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
x'(t) = tx	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$
x' = y, y' = -x, x(0) = 0, y(0) = 1	$x(t) = \sin t, y(t) = \cos t$
$x' = 1 + x^2, x(0) = x_0$	$x(t) = an t \dots$
$x'(t) = rac{2}{t^3}x(t)$	$x(t) = e^{-\frac{1}{t^2}}$ non-analytic
$x' = x^2 + x^4$???

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x' = x^2, x(0) = x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x' = \frac{1}{x}, x(0) = 1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
x'(t) = tx	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$
x' = y, y' = -x, x(0) = 0, y(0) = 1	$x(t) = \sin t, y(t) = \cos t$
$x' = 1 + x^2, x(0) = x_0$	$x(t) = an t \dots$
$x'(t) = \frac{2}{t^3}x(t)$	$x(t) = e^{-\frac{1}{t^2}}$ non-analytic
$x' = x^2 + x^4$???
$x'(t) = e^{t^2}$	non-elementary
► ATC ► HA	

15-819/01: Hybrid Systems

Theorem (Existence theorem of Peano'1890)

 $f \in C(D, \mathbb{R}^n)$ on open, connected domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ with $(x_0, y_0) \in D$. Then, IVP has a solution. Further, every solution can be continued arbitrarily close to the border of D.

Example (Solvable)

$$\begin{bmatrix} y' = \sqrt{|y|} \\ y(0) = 0 \end{bmatrix}$$
$$\begin{bmatrix} y'(x) = 3x^2y - \frac{1}{y}\sin x \cos y \\ y(0) = 1 \end{bmatrix}$$

Example (Solvable but not uniquely)

$$\begin{array}{ccc} y' = & \sqrt{|y|} \\ y(0) = & 0 \end{array}$$

Example (Continuable but limited)

$$y' = 1 + y^2$$
$$y(0) = 0$$

 $f: D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is *Lipschitz-continuous* for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

 $f: D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is *Lipschitz-continuous* for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \overline{y}) \in D$:

 $f: D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is *Lipschitz-continuous* for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

 $f: D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is *Lipschitz-continuous* for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

 $f: D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is *Lipschitz-continuous* for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

 $f: D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is *Lipschitz-continuous* for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \bar{y}) \in D$:

 $f: D \to \mathbb{R}^n$ with $D \subseteq \mathbb{R} \times \mathbb{R}^n$ is *Lipschitz-continuous* for y iff there is an $L \in \mathbb{R}$ such that for all $(x, y), (x, \overline{y}) \in D$:

$$\|f(x,y)-f(x,\bar{y})\|\leq L\|y-\bar{y}\|$$

If $\frac{\partial f(x,y)}{\partial y}$ exists and is bounded on D then f is Lipschitz-continuous. f is *locally Lipschitz-continuous* iff for each $(x, y) \in D$, there is a neighbourhood in which f is Lipschitz-continuous.

R Existence and Uniqueness Picard-Lindelöf / Cauchy-Lipschitz

Theorem (Uniqueness theorem of Picard-Lindelöf'1894)

In addition to Peano premisses, let f be locally Lipschitz-continuous for y (e.g. $f \in C^1(D, \mathbb{R}^n)$). Then, there is a unique solution of IVP.

R Existence and Uniqueness Picard-Lindelöf / Cauchy-Lipschitz

Theorem (Uniqueness theorem of Picard-Lindelöf'1894)

In addition to Peano premisses, let f be locally Lipschitz-continuous for y (e.g. $f \in C^1(D, \mathbb{R}^n)$). Then, there is a unique solution of IVP.

Proposition (Global uniqueness theorem of Picard-Lindelöf)

 $f \in C([0, a] \times \mathbb{R}^n, \mathbb{R}^n)$ Lipschitz-continuous for y. Then, there is a unique solution of IVP on [0, a].

M. S. Branicky, V. S. Borkar, and S. K. Mitter.

A unified framework for hybrid control: Model and optimal control theory.

IEEE T. Automat. Contr., 43(1):31-45, 1998.

P. Hartman. Ordinary Differential Equations. John Wiley, 1964.

T. A. Henzinger.
 The theory of hybrid automata.
 In *LICS*, pages 278–292, Los Alamitos, 1996. IEEE Computer Society.

T. Krilavičius.

Bestiarium of hybrid systems.

W. T. Reid. *Ordinary Differential Equations*. John Wiley, 1971.

W. Walter.

```
Ordinary Differential Fountions
André Platzer (CMU)
```