15-424/15-624 Recitation 6: Differential Invariants
 15-424/15-624 Foundations of Cyber-Physical Systems

 Notes: Khalil Ghorbal(kghorbal@cs.cmu.edu)Recall: Three main proof rules: Differential Invariant, Differential Cut, Differential Weakening The Cut rule "cuts" $A \rightarrow B$ into $A \rightarrow C \wedge C \rightarrow B$ (if such a C exists). The same intuition can be used in the differential context:

$$
(D C) \frac{F \vdash\left[x^{\prime}=\theta \& H\right] C \quad F \vdash\left[x^{\prime}=\theta \& H \wedge C\right] F}{F \vdash\left[x^{\prime}=\theta \& H\right] F}
$$

The differential invariant rule is essentially used to lift a property about the differential terms to a property about their derivatives.In conjunction with the D operator, the property is rewritten using the θ (right-hand side of the differential equation), which we can deal with as a first-order logic formula.

$$
(D I) \frac{H \vdash F_{x^{\prime}}^{\prime \theta}}{F \vdash\left[x^{\prime}=\theta \& H\right] F}
$$

The differential weakening rule is trivial (the invariant is enforced by design) and essentially used to close the proof after a DC.

$$
(D W) \frac{H \vdash F}{F \vdash\left[x^{\prime}=\theta \& H\right] F}
$$

The D operator on first-order real-arithmetic: what intuitions to keep in mind

To prove that a differentiable real function: $f: \mathbb{R}_{+} \rightarrow \mathbb{R} ; t \mapsto f(t)$ has a constant $\operatorname{sign}(f(t) \leq 0$, say), it is sufficient to prove that $f(0) \leq 0$ and its derivative w.r.t. to the variable t is also non-positive: $f^{\prime}(t) \leq 0$

$$
f(0) \leq 0 \wedge f^{\prime}(t) \leq 0 \rightarrow f(t) \leq 0, \forall t \geq 0
$$

Following the same reasoning, given two functions f and g, one has:

$$
f(0) \leq 0 \wedge g(0) \leq 0 \wedge f^{\prime}(t) \leq 0 \wedge g^{\prime}(t) \leq 0 \rightarrow f(t) \leq 0 \wedge g(t) \leq 0, \forall t \geq 0
$$

which also implies that $f(t) \leq 0$ or $g(t) \leq 0, \forall t \geq 0$. This should give an intuition about why we need to switch from \vee to \wedge for the D operator to be sound. Observe that all of these transformations are sufficient conditions. This means, that the differential invariant rule is sound but, alone, is not complete directly.

Case Study: 3D Lotka-Volterra

The following predator/pray model describes the behavior of the biomasses x, y and z of three distinct species. We want to prove that none of the three involved species will disappear: that is we reach an equilibrium cycle.

```
\programVariables {
    R x,y,z;
}
\problem{
    x != 0 & y != 0 & z !=0
        ->
        \
        {x'=x*(y-z), y'=y*(z-x), z'=z*(x-y)}
    \] (x != 0 & y!=0 & z!=0)
}
```

1. Apply a DI first (with the postcondition as differential invariant). Observe that the proof does not close because the condition asks about separate properties for x, y and z.
2. Apply a DC with $x y z \neq 0$ (which is equivalent to the post-condition, but links explicitly the involved variables).
3. Close the proof by a DI and DW.

Quiz

1. Can you prove that $y>0 \wedge x<0 \rightarrow\left[x^{\prime}=x, y^{\prime}=y\right] x \neq y$? Explain why or why not.
2. Can you prove $x<x_{o} \rightarrow\left[a:=\frac{v^{2}}{2\left(x-x_{o}\right)} ;\left\{x^{\prime}=v, v^{\prime}=a, v \geq 0\right\}\right] x \leq x_{o}$ using DI instead of ODE (solving the differential equation) ? Write down your DI.
