
15-424/15-624 Recitation 2
Hybrid Programs: Syntax, Semantics, and an Example

1. Quiz

Explain the difference between syntax and semantics:

Syntax defines a notation (e.g. the grammars for terms, formulas, and hybrid pro-
grams). Semantics gives the syntax meaning (e.g. valuation of terms, the satisfaction
relation ν |= F for a first-order formula, and the transition semantics ρ for HPs).

Fill in the missing semantics for the following terms and formulas:

(a) JxKν = ν(x) where x is a variable

(b) JcKν = c where c is a rational constant

(c) Jθ1 + θ2Kν = Jθ1Kν + Jθ2Kν
(d) ν |= (θ1 = θ2) iff Jθ1Kν = Jθ2Kν
(e) ν |= F ∧G iff ν |= F or ν |= G

2. Syntax & Semantics

In recitation we reviewed the syntax and semantics of terms, formulas, and hybrid
programs. There was some confusion about where you can find these definitions.

Syntax of Terms.

http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=8

The grammar for terms can be found in Lecture 2, Section 5. A term θ is defined by
the grammar (where θ, ϑ are terms, x a variable, and c a rational constant):

θ, ϑ ::= x | c | θ + ϑ | θ · ϑ

Semantics of Terms.

http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=9

We define the semantics of a term by its value, according to the valuation function
defined in Lecture 2, Section 6.

The value of term θ in state ν is denoted JθKν and defined by induction on the structure
of θ:

JxKν = ν(x) if x is a variable

JcKν = c if c is a rational constant

Jθ + ϑKν = JθKν + JϑKν
Jθ · ϑKν = JθKν · JϑKν

1

http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=8
http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=9

Syntax of Formulas.

http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=9

The grammar for formulas can be found in Lecture 2, Section 5.

F,G ::= θ = ϑ | θ ≥ ϑ | ¬F | F ∧G | F ∨G | F → G | F ↔ G | ∀xF | ∃xF

Semantics of Formulas.

http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=10

We define the semantics of a formula by a satisfaction relation ν |= F . In other words,
ν |= F means that F is satisfied in the state ν. If F is satisfied in all states ν, then
we call F valid and write |= F . A full discussion of the semantics of formulas can be
found in Lecture 2, Section 6.

The satisfaction relation ν |= F for a first-order formula F of real arithmetic in state
ν is defined inductively:

• ν |= (θ1 = θ2) iff Jθ1Kν = Jθ2Kν .

• ν |= (θ1 ≥ θ2) iff Jθ1Kν ≥ Jθ2Kν .

• ν |= ¬F iff ν 6|= F , i.e. if it is not the case that ν |= F .

• ν |= F ∧G iff ν |= F and ν |= G.

• ν |= F ∨G iff ν |= F or ν |= G.

• ν |= F → G iff ν 6|= F or ν |= G.

• ν |= F ↔ G iff (ν |= F and ν |= G) or (ν 6|= F and ν 6|= G).

• ν |= ∀xF iff νdx |= F for all d ∈ R.

• ν |= ∃xF iff νdx |= F for some d ∈ R.

• ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α)

• ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α)

If ν |= F , then we say that F is true at ν or that ν is a model of F . A formula F is
valid, written � F , iff ν |= F for all states ν. A formula F is a consequence of a set of
formulas Γ, written Γ � F , iff, for each ν: ν |= G for all G ∈ Γ implies that ν |= F .

The modal operators [α]φ and 〈α〉φ are introduced in Section 8 for Lecture 4:
http://symbolaris.com/course/fcps13/04-contracts.pdf

2

http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=9
http://symbolaris.com/course/fcps13/02-diffeq.pdf#page=10
http://symbolaris.com/course/fcps13/04-contracts.pdf

Syntax of Hybrid Programs

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf#page=9

The grammar for hybrid programs can be found in Lecture 3, Section 7.

HPs are defined by the following grammar (α, β are HPs, x a variable, θ a term possibly
containing x, and H a formula of first-order logic of real arithmetic):

α, β ::= x := θ | ?H | x′ = θ&H | α ∪ β | α; β | α∗

3

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf#page=9

3. Example

Figure 1: Water Tank Example

Suppose you have a tank of water with an input pipe that you control, and output
spigot that a human user controls. You don’t want the tank to overflow, so the height
of the water must never go above 9 inches. You also don’t want the water level to go
below the pipe and the spigot, which we say are at height 0.

When the input pipe is on, the height of the water increases at 1 inch per second.
When the input pipe is off, the height of the water does not increase.

However, when the spigot is open, water flows out of the tank at 1 inch per second.
And when the spigot is closed, water flows out of the tank at 0.1 inches per second (it
leaks).

Problem: Design a controller which will keep the water level between 0 and 9 and
then write a hybrid program that models the whole system.

Solution: In our controller design, we decided that we only wanted to switch the pipe
to on if the water level fell below a height of 1 inch, and that we would only switch
the pipe to off if the water level rose above a height of 8 inches. When the water
level was between 1 and 8 inches, we would not change the state of the input pipe. We
modeled the human user as a non-deterministic choice without any guards, since the
human could open or close the spigot under any circumstances.

((?(h ≤ 1); s := 1) ∪ ?(1 < h ∧ h < 8) ∪ (?(h ≤ 8); s := 0);

(s := s− 1) ∪ (s := s− 0.1);

{h′ = s & 0 ≤ h ≤ 9})∗

At the end of recitation, it was pointed out that this model would require the user to
control the spigot in the same instant of time as the controller, and that the assignment
of s by the human user depended on the value of s assigned by our controller. These
are undesirable properties!

4

To allow the controller and the human to interact with the spigot at different times, we
could use non-deterministic choice (∪) instead of sequential composition (;) to separate
them. A full solution to this problem (not presented in recitation) could look like this:

((?(h ≤ 1); s := 1) ∪ ?(1 < h ∧ h < 8) ∪ (?(h ≤ 8); s := 0)

∪ (d := −1) ∪ (d := −0.1);

{h′ = s+ d & 0 ≤ h ≤ 9})∗

5

