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Modeling Wall•E and Eve’s Love

Describing the System:
We studied a system based on the movie Wall•E. During the movie, there is a 

scene where Wall•E and Eve celebrate their love by dancing through space. During the 
dance, they twirl around each other in a spiral. During this spiral, they make sure that 
they keep up with one another (meaning they are never too far apart from each other), 
and more importantly ensure that they never crash into each other. Wall•E is able to fly 
because of a fire extinguisher, while Eve has the ability to fly without help. Due to the 
extinguisher’s space-travel limitations, Wall•E’s controller has to choose discretely to 
accelerate or brake, and could have a hard time keeping up while Eve is traveling at a 
constant velocity. We created a control for Wall•E to make sure Wall•E never hits Eve 
during their dance. 

We model the system as Wall•E and Eve moving along a spiral centered at the 
origin. The spiral is a circle in the x-y plane that moves forward with some velocity in 
the z direction. We have two models, one which is simply modeling both traveling at a 
constant velocity and staying on opposite halves of the circle, the second models Wall•E 
as he attempts to keep up with Eve who is traveling at a constant velocity. The first 
model (simple-test.key) uses the regular x-y plane and z direction. To ease in proving 
the second model, we modeled the motion using polar coordinates. The circle is of 
radius cute_r, which Wall•E and Eve should never leave. When they are on the circle, 
we ensure that the sum of Wall•E’s and Eve’s radii is less than cute_r so that they both 
can fit on the circle of motion without hitting each other. 

There is one property that is the core of the system for safety and for liveness. 
The safety property is that Wall•E and Eve never crash into each other. We also prove in 
our simple test that they are always on opposite sides on the circle from each other, 
which implies that they don’t crash.

Methods to Analyze the System and Key Files: 

!1



We analyzed our system in two different ways, both of which are described 
below. The simple-test.key is a simplified model of the system where Wall•E and Eve 
are both uncontrolled, but move along the spiral. The second found in follow-eve-polar-
test.key is a controller for Wall•E that allows him to break and accelerate to follow Eve, 
who is moving with constant velocity, around the circle without hitting her. 

simple-test.key
To model the constant velocity system, we begin with the assumption that the 

distance between Wall•E and Eve is (2*cute_r)^2. This is equivalent to them being on 
opposite sides of the circle. We then show that if they stay at the same speed, they will 
always be on opposite sides of the circle. Since they are always (2*cute_r)^2 apart from 
each other, this implies that they never hit each other as cute_r > 0. Using KeYmaera, we 
proved this property by having the following important differential invariants. 

x_w = cute_r*dy_w (Equation 1)
y_w = -cute_r*dx_w (Equation 2)
x_e = cute_r*dy_e (Equation 3)
y_e = -cute_r*dx_e (Equation 4)
dx_w^2 + dy_w^2 = 1 (Equation 5)
dx_e^2 + dy_e^2 = 1 (Equation 6)

(x_w - x_e)^2 + (y_w - y_e)^2 = (2*cute_r)^2 (Equation 7)
Equations 1 through 4 help to ensure that the direction of motion of Wall•E (dx_w, 
dy_w), and Eve (dx_e, dy_e) correspond to their x and y position on the circle. 
Equation 5 and 6 describe the vectors of motion as they move around the circle. The 
most important invariant is equation 7, which is our safety property. 

follow-eve-polar-test.key
follow-eye-polar-test.key is designed to model the situation where Eve moves 

with constant velocity and Wall•E tries to not run into her. Note this also means that 
Wall•E has to ensure Eve never runs into him (which is possible since Eve is moving at 
constant velocity). Our controller for Wall•E has non-deterministic acceleration for 
breaking and accelerating. The control then tests the following:

(omega_w > omega_e -> (a < 0 & T <= (omega_w - omega_e)/a | a >= 0)) &
(omega_e > omega_w -> (a > 0 & T <= (omega_e - omega_w)/a | a <= 0)) &
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 theta_e + omega_e*T > theta_w + omega_w*T + a*T^2/2 &
 360 > theta_e + omega_e*T - (theta_w + omega_w*T + a*T^2/2));

This control checks 4 main things. The first check (omega_w > omega_e -> 
(a < 0 & T <= (omega_w - omega_e)/a | a >= 0)) is to ensure that if 
Wall•E is moving faster than Eve and is breaking, that he does not break for longer than 
it the time it takes to get to Eve’s velocity. This is so that he doesn’t break too far and 
end up hitting Eve in the other direction. The second is a similar test: (omega_e > 
omega_w -> (a > 0 & T <= (omega_e - omega_w)/a | a <= 0)) which 
tests the same idea: when Wall•E is moving slower than Eve, we want to ensure that he 
doesn’t accelerate too fast so that he then crashes into Eve. The last two checks in the 
control (theta_e + omega_e*T > theta_w + omega_w*T + a*T^2/2 &360 > 
theta_e + omega_e*T - (theta_w + omega_w*T + a*T^2/2)) ensure that 
given that Wall•E accelerates for time T, he hasn’t passed or hit Eve at the end and also 
that he doesn’t fall more than 360° behind Eve (meaning Eve ran into him from behind). 
If Wall•E accelerates such that he is more than 360° away from Eve, then Wall•E and 
Eve can be at the same spot, but have different theta values (Wall•E hits Eve, but at by 
going around the circle one more time than Eve does). 

To prove this property, we use the following loop invariant. 0 < theta_e - 
theta_w & theta_e - theta_w < 360. This loop invariant helps to ensure that 
Wall•E and Eve are always within 360° of each other, for two reasons. First, since 
they’re on a circle, Wall•E and Eve could collide if theta_e == theta_w ± 360°, or 
any multiple of 360°. This would mean verifying that theta_e != theta_w is 
useless, since there are many other ways they can collide. Second, if it is ever the case 
that they are not within 360° of each other, it means that one of them ‘lapped’ the other, 
which would mean they collided at some point, which violates our safety condition.

Evaluation the System: 
There are two aspects of our system that are useful to analyze: how applicable it 

is, and how efficient it is. Applicability would measure how close our system matches 
real world situations. Is it easy to adapt? How well does it model the system? Efficiency 
would measure how well the system is achieving the goal. Even if it’s safe, it could be 
doing so without accomplishing much. For example, if our goal was to design a system 
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where a moving robot doesn’t run into anything, it could just sit still. That would be 
safe, but not particularly efficient or interesting. 

In our case, efficiency is pretty straightforward. Because we verified that Wall•E 
is neither too close or too far behind Eve, it’s guaranteed to be efficient, when efficiency 
is defined as not being left behind by Eve. We only verified that Wall•E and Eve don’t 
collide and our efficiency condition became an invariant of our system needed to prove 
safety. A more efficient condition would be to verify that not only do they avoid 
collisions, but they spiral nicely (meaning Wall•E would always be roughly across the 
circle from Eve). This actually would not be any harder to verify, since all we’d have to 
do is change the 0° and 360° bounds in our loop invariant to be more restrictive. For 
instance, we could prove that instead of 0 < theta_e - theta_w & theta_e - 
theta_w < 360 , the difference in their thetas is between 170° and 190°, thus showing 
they are approximately across from each other on the circle.

This of course would mean we would have to change the controller accordingly, 
but

theta_e + omega_e*T > theta_w + omega_w*T + a*T^2/2 &
360 > theta_e + omega_e*T - (theta_w + omega_w*T + a*T^2/2))

is really the same thing as:

0 < theta_e + omega_e*T - (theta_w + omega_w*T + a*T^2/2) & theta_e + 
omega_e*T - (theta_w + omega_w*T + a*T^2/2)) < 360

So, we could just change the 0° and 360° appropriately and impose more constraints on 
acceleration and Eve’s velocity to prove this new property. So if were to instead use 
thetas appropriately constrained, and prove that, it would be more efficient.

Another possible issue with our design is that we enforce these two restrictions: 

(omega_w > omega_e -> (a < 0 & T <= (omega_w - omega_e)/a | a >= 0)) &
(omega_e > omega_w -> (a > 0 & T <= (omega_e - omega_w)/a | a <= 0)) 

These aren’t actually required for a controller to be safe, since it might be safe at some 
point to brake when you start out going faster than Eve, and would end up going 
slower than Eve. Currently, we restrict our breaking acceleration so that Wall•E never 
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crosses Eve’s velocity.  We chose to add these because those cases would make it a lot 
harder to analyze and prove, for instance, when Wall•E is going faster than Eve, he 
might brake, but in doing so slows down to the point where Eve runs into him. 

While our system is fairly efficient, it’s not very applicable. Since we didn’t 
constrain the braking or accelerating power, it’s not a very realistic model. Infinite 
braking power would allow Wall•E to approach to just behind Eve and then brake 
really hard, which would not be safe if Wall•E’s brakes weren’t strong enough (since a 
fire extinguisher does have a limited braking capacity). An alternate controller that 
would constrain the maximum acceleration and the maximum braking to A and B 
respectively, would better match Wall•E’s abilities. We have a draft of a controller that 
would do this, attached in appendix A, though we weren’t able to prove the system. 
Actually, since all Wall•E has is a fire extinguisher which is either on or off, it might be 
more realistic to constrain the controller to be able to choose only between accelerate, 
brake, or coast, as well as have the braking and acceleration be the same value. 
However, if we consider the three dimensional case, he could tilt the angle and point 
some of the acceleration in the z-direction, lessening his acceleration around the spiral, 
so it’s not really necessary to only have three values for Wall•E to choose from.

It’s also a little unrealistic because when we chose to use polar coordinates, we 
assumed Wall•E and Eve were centered at the origin. It would not be trivial to adjust 
our controller to be centered somewhere else, but our proof at least shows that it would 
be possible. Converting to rectangular coordinates would be possible, but would 
complicate the differential equations. The proof would then rely on many differential 
invariants and differential cuts rather than solving the differential equations.
Clearly there are some tradeoffs when designing such a model. Some of the trade-offs 
were listed above. For example, choosing polar coordinates was a tradeoff between 
usefulness of the model and ease of proof. We also chose to start with unbounded 
braking and acceleration because that was easier to prove, though again, it’s not as 
accurate. 

Another trade-off was the ease of simulation versus the freedom of the controller. 
Because we used non-deterministic or star assignment (a := *) rather than if-then-
else (non-deterministic choice) and deterministic assignment, it became harder to 
simulate. So if we wanted to simulate our system and look for bugs or possible edge 
cases, it would be harder to assign a safe acceleration than if we had only a couple 
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conditions to meet and had a deterministic assignment. We chose to do non-
deterministic assignment because although it is harder to simulate, it allows more 
freedom in the controller to choose anything that would be safe, so models a wider 
range of possibilities than constraining Wall•E to only chose from a limited number of 
possible accelerations. It also ends up being easier to prove this way since the 
constraints we then impose on the acceleration are exactly the ones we’d need to use to 
prove our safety property.

Possible Future Directions
As noted above, there are many possible directions you could take this problem 

in. We feel there are three major improvements that would be useful and should be 
feasible. The easier one is to constrain Wall•E acceleration to within a maximum 
acceleration and maximum braking, as seen in the a proposed controller in appendix A. 
This would be a more useful and realistic controller, and we have gotten part way 
through the proof. It seems like it should be possible, but there are many branches and 
it’s hard to tell if one will provide a counterexample. 

The other possible improvement is to do what our initial plan was, and model 
this using a rectangular coordinate system. We moved away from that direction since 
both the controller and proof get significantly more complicated. You have to use 
approximations of distance since we cannot use pi, cos, and sin which makes it hard to 
model circular motion. The differential equations would not be solvable, and 
consequently the proof would rely heavily upon differential cuts and invariants. We 
believe that our proof is a precursor to modeling that system, since it may be easier to 
translate a system that works into rectangular coordinates than it would to start from 
scratch in that coordinate system.

The third improvement we wanted to make was to control Wall•E’s motion in 
the z-direction as well. As we mentioned, Wall•E is able move the fire extinguisher in 
the z-direction, thus decreasing his velocity in the circle, while also making him 
accelerate in the z-direction. This would help increase the applicability of the model as 
the model would allow for moving in all three directions and show how Wall•E can 
move in 3-dimensional space. 
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Appendix A: Proposed bounded controller
This controller we think will model correctly Wall•E keeping up with Eve in polar 
coordinates such that Wall•E’s acceleration is bounded below by -B and above by A 
(maximum braking and acceleration). 

\programVariables{
  R A; /* walle's maximum acceleration */
  R B; /* walle's maximum braking */
  R T; /* Time-trigger limit on evolution */
  R t;  /* time */

  R theta_w; /* Position of walle in y direction */
  R z_w; /* Position of walle in z direction */
  R dz_w; /* Unit vector in direction of travel, z direction */
  R r_w; /* Over-approximation on radius of walle */
  R omega_w; /* Angular velocity of walle */
  R a; /* Linear acceleration of walle */

  R theta_e; /* Position of eve in y direction */
  R z_e; /* Position of eve in z direction */
  R dz_e; /* Unit vector in direction of travel, z direction */
  R r_e; /* Over-approximation on radius of eve */
  R omega_e; /* Angular velocity of eve */

  R cute_r; /* Distance between center of walle and center of eve */

  R time_to_brake;
  R dist_to_brake;
  R time_to_acc;
  R dist_to_acc;
}

\problem{
(
omega_w >= 0 & omega_e > 0 &
0 < theta_e - theta_w & theta_e - theta_w < 360 &
T > 0 &
r_w > 0 & r_e > 0 &
dz_w > 0 & dz_e = dz_w & B > 0 & A > 0 &
(omega_w > omega_e -> T <= (omega_w - omega_e)/B) &
(omega_e > omega_w -> T <= (omega_e - omega_w)/A)
)
->
\[(
   a := *;
   time_to_brake := ((omega_w + a*T) - omega_e)/B;
   dist_to_brake := ((omega_w + a*T)^2 - omega_e^2)/(2*B);
   time_to_acc := (omega_e - (omega_w + a*T))/A;
   dist_to_acc := (omega_e^2 - (omega_w + a*T)^2)/(2*A);
   ?( a >= -B & a <= A &
     0 < 
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     theta_e + omega_e*T + omega_e*Max(time_to_brake, time_to_acc) -
     (theta_w + omega_w*T + a*T^2/2 + Max(dist_to_brake, dist_to_acc))
     &
     theta_e + omega_e*T + omega_e*Max(time_to_acc, time_to_brake) - 
     (theta_w + omega_w*T + a*T^2/2 + Max(dist_to_brake, dist_to_acc))
     < 360);
   t := 0;
   {
     theta_w' = omega_w, z_w' = dz_w, omega_w' = a,
     theta_e' = omega_e, z_e' = dz_e,
     t' = 1, t <= T, omega_w >= 0
    }@invariant(t >= 0)
   )*@invariant(
                omega_w >= 0 &
                0 < theta_e - theta_w &
                theta_e - theta_w < 360 & B > 0 & A > 0 &
                (omega_w > omega_e -> T <= (omega_w - omega_e)/B) &
                (omega_e > omega_w -> T <= (omega_e - omega_w)/A)
                )
\](theta_e != theta_w)
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