Logical Foundations of Cyber-Physical Systems

André Platzer

aplatzer@cs.cmu.edu Logical Systems Lab Computer Science Department Carnegie Mellon University, Pittsburgh, PA

http://symbolaris.com/

André Platzer (CMU)

\mathcal{R} Outline

1 CPS are Multi-Dynamical Systems

- Hybrid Systems
- Hybrid Games
- Stochastic Hybrid Systems
- Distributed Hybrid Systems

2 Dynamic Logic of Multi-Dynamical Systems

- Syntax
- Semantics
- 3 Proofs for CPS

Theory of CPS

- Soundness and Completeness
- Differential Invariants

Applications

Summary

Can you trust a computer to control physics?

Can you trust a computer to control physics?

Rationale

- Safety guarantees require analytic foundations
- Poundations revolutionized digital computer science & society
- Need even stronger foundations when software reaches out into our physical world

🔏 CPS are Multi-Dynamical Systems

CPS Dynamics Bee

CPS are characterized by multiple facets of dynamical systems.

CPS Compositions

CPS combine many simple dynamical effects.

Tame Parts

Exploiting compositionality tames complexity.

André Platzer (CMU)

Challenge (Hybrid Systems)

Fixed rule describing state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

CMU 15-424 4 / 19

Challenge (Hybrid Systems)

Fixed rule describing state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

Challenge (Hybrid Systems)

Fixed rule describing state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

Logical Foundations of Cyber-Physical Systems

Challenge (Hybrid Systems)

Fixed rule describing state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

${\mathscr R}$ CPS Analysis: Other Agents

Challenge (Hybrid Games)

Game rules describing play evolution with

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)
- Adversarial dynamics
 (Angel ◊ vs. Demon □),

CMU 15-424 6 / 19

\mathscr{R} CPS Analysis: Other Agents

Challenge (Hybrid Games)

Game rules describing play evolution with

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)
- Adversarial dynamics
 a (Angel ◊ vs. Demon □) ω

lpha CPS are Multi-Dynamical Systems

hybrid systems

 $\mathsf{HS} = \mathsf{discrete} + \mathsf{ODE}$

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

CMU 15-424 7 / 19

\mathcal{R} Family of Differential Dynamic Logics

\mathcal{R} Family of Differential Dynamic Logics

Logical Foundations of Cyber-Physical Systems

Definition (Hybrid program α)

$$\mathsf{x} := \theta \mid \mathbf{?}H \mid \mathsf{x}' = \mathsf{f}(\mathsf{x}) \, \& \, H \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Definition (d \mathcal{L} Formula ϕ)

$$\theta_1 \ge \theta_2 \mid \neg \phi \mid \phi \land \psi \mid \forall x \phi \mid \exists x \phi \mid [\alpha] \phi \mid \langle \alpha \rangle \phi$$

ℜ Differential Dynamic Logic dL: Syntax

Definition (d \mathcal{L} Formula ϕ)

$$\theta_1 \geq \theta_2 \mid \neg \phi \mid \phi \land \psi \mid \forall x \phi \mid \exists x \phi \mid [\alpha] \phi \mid \langle \alpha \rangle \phi$$

Logical Foundations of Cyber-Physical Systems

\mathcal{R} Differential Dynamic Logic d \mathcal{L} : Semantics

Definition (Hybrid program α)

$$\rho(x := \theta) = \{(v, w) : w = v \text{ except } \llbracket x \rrbracket_w = \llbracket \theta \rrbracket_v \}$$

$$\rho(?H) = \{(v, v) : v \models H \}$$

$$\rho(x' = f(x)) = \{(\varphi(0), \varphi(r)) : \varphi \models x' = f(x) \text{ for some duration } r \}$$

$$\rho(\alpha \cup \beta) = \rho(\alpha) \cup \rho(\beta)$$

$$\rho(\alpha; \beta) = \rho(\beta) \circ \rho(\alpha)$$

$$\rho(\alpha^*) = \bigcup_{n \in \mathbb{N}} \rho(\alpha^n)$$

Definition (d \mathcal{L} Formula ϕ)

$v \models \ell$	$\theta_1 \ge \theta_2$	iff	$\llbracket heta_1 rbracket_{v} \geq \llbracket heta_2 rbracket_{v}$			
$v \models [$	$\alpha]\phi$	iff	$w \models \phi$ for all w with $v ho(lpha) w$			
$v \models \langle$	$\alpha angle \phi$	iff	$w \models \phi$ for some w with $v \rho(\alpha) w$			
$v \models \forall$	$x \phi$	iff	$w \models \phi$ for all w that agree with	v except	for <i>x</i>	
$v \models \Xi$	$\exists x \phi$	iff	$\pmb{w} \models \phi$ for some \pmb{w} that agrees w	ith v exce	ept for x	
$v \models q$	$b \wedge \psi$	iff	$\mathbf{v} \models \phi$ and $\mathbf{v} \models \psi$			
And	ré Platzer (CMU)	Logical Foundations of Cyber-Physical	Systems	CMU 15-424	

ጽ Differential Dynamic Logic: Axiomatization

- $[:=] \quad [x := \theta] \phi(x) \leftrightarrow \phi(\theta)$
 - $[?] \quad [?H]\phi \leftrightarrow (H \to \phi)$
 - $['] \quad [x' = f(x)]\phi \leftrightarrow \forall t \ge 0 \, [x := y(t)]\phi$

(y'(t)=f(y))

- $[\cup] \quad [\alpha \cup \beta]\phi \leftrightarrow [\alpha]\phi \wedge [\beta]\phi$
- $[;] \quad [\alpha;\beta]\phi \leftrightarrow [\alpha][\beta]\phi$
- $[*] \quad [\alpha^*]\phi \leftrightarrow \phi \land [\alpha][\alpha^*]\phi$
- $\mathsf{K} \quad [\alpha](\phi \to \psi) \to ([\alpha]\phi \to [\alpha]\psi)$
- $\mathsf{I} \quad [\alpha^*](\phi \to [\alpha]\phi) \to (\phi \to [\alpha^*]\phi)$
- $\mathsf{C} \quad [\alpha^*] \forall v > \mathsf{0} \left(\varphi(v) \to \langle \alpha \rangle \varphi(v-1) \right) \to \forall v \left(\varphi(v) \to \langle \alpha^* \rangle \exists v \leq \mathsf{0} \varphi(v) \right)$

I I C S' 12

equations of truth

R Differential Dynamic Logic: Axiomatization

equations of truth

w

w

 $\frac{\forall t \ge 0 \, [x := y_x(t)]\phi}{[x' = f(x)]\phi}$

compositional semantics \Rightarrow compositional rules!

$oldsymbol{\mathcal{R}}$ Complete Proof Theory of Hybrid Systems

Theorem (Sound & Complete)

(J.Autom.Reas. 2008, LICS'12)

d*L* calculus is a sound & complete axiomatization of hybrid systems relative to either differential equations **or** discrete dynamics.

Corollary (Complete Proof-theoretical Alignment & Bridging)

proving continuous = proving hybrid = proving discrete

earrow Complete Proof Theory of Hybrid Systems

Theorem (Sound & Complete)

(J.Autom.Reas. 2008, LICS'12)

d*L* calculus is a sound & complete axiomatization of hybrid systems relative to either differential equations **or** discrete dynamics.

Corollary (Complete Proof-theoretical Alignment & Bridging)

proving continuous = proving hybrid = proving discrete

${m {\cal R}}$ Complete Proof Theory of Hybrid Systems

Theorem (Sound & Complete)

(J.Autom.Reas. 2008, LICS'12)

d*L* calculus is a sound & complete axiomatization of hybrid systems relative to either differential equations **or** discrete dynamics.

Corollary (Complete Proof-theoretical Alignment & Bridging)

proving continuous = proving hybrid = proving discrete

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

ℛ Successful CPS Proofs

ICFEM'09,CAV'08,FM'09,HSCC'11

Logical Foundations of Cyber-Physical Systems

ℜ Successful CPS Proofs

FM'11,LMCS'12,ICCPS'12,ITSC'11,IJCAR'12

Logical Foundations of Cyber-Physical Systems

ℜ Successful CPS Proofs

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

ℜ Successful CPS Proofs

By You!

CMU 15-424/624 F'13 Students

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

André Platzer.

Logics of dynamical systems. In *LICS* [9], pages 13–24. doi:10.1109/LICS.2012.13.

André Platzer.

Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

André Platzer.

The complete proof theory of hybrid systems.

In *LICS* [9], pages 541–550. doi:10.1109/LICS.2012.64.

André Platzer.

Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput., 20(1):309–352, 2010. doi:10.1093/logcom/exn070.

Computing differential invariants of hybrid systems as fixedpoints. Form. Methods Syst. Des., 35(1):98–120, 2009. Special issue for selected papers from CAV'08. doi:10.1007/s10703-009-0079-8.

André Platzer.

The structure of differential invariants and differential cut elimination. *Logical Methods in Computer Science*, 8(4):1–38, 2012. doi:10.2168/LMCS-8(4:16)2012.

André Platzer.

A differential operator approach to equational differential invariants. In Lennart Beringer and Amy Felty, editors, *ITP*, volume 7406 of *LNCS*, pages 28–48. Springer, 2012. doi:10.1007/978-3-642-32347-8_3.

André Platzer.

Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg, 2010.

doi:10.1007/978-3-642-14509-4.

Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.

André Platzer.

Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput., 20(1):309–352, 2010. Advance Access published on November 18, 2008. doi:10.1093/logcom/exn070.

 André Platzer and Jan-David Quesel.
 KeYmaera: A hybrid theorem prover for hybrid systems.
 In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, *IJCAR*, volume 5195 of *LNCS*, pages 171–178. Springer, 2008. doi:10.1007/978-3-540-71070-7_15.

André Platzer.

Differential dynamic logic for verifying parametric hybrid systems. In Nicola Olivetti, editor, *TABLEAUX*, volume 4548 of *LNCS*, pages 216–232. Springer, 2007.

doi:10.1007/978-3-540-73099-6_17.

André Platzer.

Quantified differential dynamic logic for distributed hybrid systems. In Anui Dawar and Helmut Veith, editors, CSL, volume 6247 of LNCS, pages 469-483. Springer, 2010. doi:10.1007/978-3-642-15205-4_36.

André Platzer.

A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems.

Logical Methods in Computer Science, 8(4):1–44, 2012. Special issue for selected papers from CSL'10. doi:10.2168/LMCS-8(4:17)2012.

André Platzer.

Quantified differential invariants.

In Emilio Frazzoli and Radu Grosu, editors, *HSCC*, pages 63–72. ACM, 2011. doi:10.1145/1967701.1967713.

André Platzer.

Stochastic differential dynamic logic for stochastic hybrid programs.

In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, *CADE*, volume 6803 of *LNCS*, pages 431–445. Springer, 2011. doi:10.1007/978-3-642-22438-6_34.

André Platzer.

Logics of dynamical systems. In *LICS* [9], pages 13–24. doi:10.1109/LICS.2012.13.

André Platzer.

Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

André Platzer.

The complete proof theory of hybrid systems. In *LICS* [9], pages 541–550. doi:10.1109/LICS.2012.64.

André Platzer.

Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput., 20(1):309–352, 2010. doi:10.1093/logcom/exn070.

André Platzer and Edmund M. Clarke. Computing differential invariants of hybrid systems as fixedpoints. *Form. Methods Syst. Des.*, 35(1):98–120, 2009. Special issue for selected papers from CAV'08. doi:10.1007/s10703-009-0079-8.

André Platzer.

The structure of differential invariants and differential cut elimination. Logical Methods in Computer Science, 8(4):1–38, 2012. doi:10.2168/LMCS-8(4:16)2012.

André Platzer.

A differential operator approach to equational differential invariants. In Lennart Beringer and Amy Felty, editors, *ITP*, volume 7406 of *LNCS*, pages 28–48. Springer, 2012. doi:10.1007/978-3-642-32347-8_3.

André Platzer.

Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg, 2010. doi:10.1007/978-3-642-14509-4.

Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.

André Platzer.

Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput., 20(1):309–352, 2010. Advance Access published on November 18, 2008. doi:10.1093/logcom/exn070.

André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for hybrid systems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR, volume 5195 of LNCS, pages 171–178. Springer, 2008. doi:10.1007/978-3-540-71070-7_15.

André Platzer.

Differential dynamic logic for verifying parametric hybrid systems. In Nicola Olivetti, editor, TABLEAUX, volume 4548 of LNCS, pages 216–232. Springer, 2007. doi:10.1007/978-3-540-73099-6_17.

André Platzer.

Quantified differential dynamic logic for distributed hybrid systems. In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of LNCS. pages 469-483. Springer, 2010. doi:10.1007/978-3-642-15205-4 36.

André Platzer.

A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems.

Logical Methods in Computer Science, 8(4):1–44, 2012. Special issue for selected papers from CSL'10.

Logical Foundations of Cyber-Physical Systems

doi:10.2168/LMCS-8(4:17)2012.

André Platzer.

Quantified differential invariants.

In Emilio Frazzoli and Radu Grosu, editors, *HSCC*, pages 63–72. ACM, 2011. doi:10.1145/1967701.1967713.

André Platzer.

Stochastic differential dynamic logic for stochastic hybrid programs. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, *CADE*, volume 6803 of *LNCS*, pages 431–445. Springer, 2011. doi:10.1007/978-3-642-22438-6_34.

${\mathscr R}$ Outline Background

7 Formal Details

- Soundness Proof
- Completeness Proof
- 8 Differential Algebraic Dynamic Logic DAL (Excerpt)
 - Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 10 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- 1 European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- 13 Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- 15 Car Control Verification
- 16 Stochastic Hybrid Systems

${\cal R}$ Outline Background

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 - Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 10 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- **15** Car Control Verification
- 16 Stochastic Hybrid Systems

	Op	Par	ТС]]	Tec	Aut	Cex	Dim	
HenzingerH94, HyTech	\checkmark	×	\checkmark	<	\checkmark	\checkmark	\checkmark		LHA
LafferrierePY99	\checkmark	×	\checkmark	<	\checkmark		\checkmark		forgetful reset
Fränzle99	\checkmark	×	\checkmark	<	\checkmark		\checkmark	×	robust systems
CKrogh03, CheckMate	\checkmark	×	\checkmark	<	\checkmark	\checkmark	\checkmark		polyhedral
Frehse05, PHAVer	\checkmark	×	\checkmark	<	\checkmark	\checkmark	\checkmark	8	LHA (+affine)
MysorePM05	\checkmark	×	\checkmark	<	\checkmark	•	\checkmark	4	bounded prefix
TomlinPS98,MBT05	0	×	\times >	<	0	0	•	4	HJB numPDE
RatschanS07, HSolver	\checkmark	×	>	<	\checkmark	\checkmark	×	4	interval
MannaS98, STeP	\checkmark		>	<	\checkmark	0	×	7	inv→VCG, flat
ÁbrahámSH01, PVS	•		>	<	•	0	×	≈ 9	HA⇔PVS, -"-
ZhouRH92, EDC	×	•	✓.		×	×	×	×	no maths
DavorenN00, L μ	×	×	~	1	0	×	×	×	prop. H-semantics
RönkköRS03, HGC	\checkmark	×	\times >	<	×	×	×	×	$HGC \hookrightarrow HOL$
SSManna04	•	0	>	<	\checkmark		×	4/1	equational system
CTiwari05	•	0	>	<	\checkmark		×	6/0	linear, -"-
PrajnaJP07, barrier	•	×	>	<	•		×	3	needs 10000-dim
d£ & dTL	\checkmark	\checkmark	$\sqrt{}$	<	\checkmark	•	×	28	expr., compos.

	Dom	Op	Base	Modal	Quant	Cmpl	Aut
DL	\mathbb{N}		FOL _(ℕ)		FV+unify	$/\mathbb{N}$	
$d\mathcal{L}$	\mathbb{R}	<i>x</i> ′	$FOL_{\mathbb{R}}$	ODE	$FV{+}requant{+}QE$	/ODE	IBC

${\cal R}$ Outline Background

Formal Details

Soundness Proof

- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 10 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- 15 Car Control Verification
- 16 Stochastic Hybrid Systems

Proof (Soundness).

- x' = f(x)
- Side deductions
- Free variables & Skolemisation

Theorem

Discrete fragment and continuous fragment of d $\!\mathcal{L}$ characterize $\mathbb N$

Proof.

Discrete fragment:

$$\langle (x := x + 1)^* \rangle \ x = n$$

$$\bullet \xrightarrow{+1} \bullet \xrightarrow{+1} \bullet \xrightarrow{+1} \bullet \xrightarrow{+1} \bullet \xrightarrow{+1} \bullet \xrightarrow{+1} \bullet$$

Continuous fragment:

$$\langle s''=-s, au'=1
angle (s=0\wedge au=n) \qquad \rightsquigarrow s={
m sin}$$

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 - Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 🔟 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- **15** Car Control Verification
- 16 Stochastic Hybrid Systems

Relativity

 $\mathsf{Cook},\mathsf{Harel:}\quad\mathsf{discrete-DL}/\mathsf{data}_{\mathbb{N}}\qquad\qquad\mathsf{hybrid-d}\mathcal{L}/\mathsf{data}_{\mathbb{R}}~\ref{eq:loss}$

\mathcal{R} Relative Completeness

ℜ Relative Completeness

 $d\mathcal{L}$ calculus is complete relative to first-order logic of differential equations.

 $\vDash \phi \quad \text{iff} \quad \textit{Taut}_{\mathsf{FOD}} \vdash \phi$

where $FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

Proof Outline 15p

 $d\mathcal{L}$ calculus is complete relative to first-order logic of differential equations.

 $\vDash \phi \quad \text{iff} \quad \textit{Taut}_{\mathsf{FOD}} \vdash \phi$

where $FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

Proof Outline 15p

Relativity

Cook, Harel: discrete-DL/data P.: hybrid-d \mathcal{L} /differential equations

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

CMU 15-424 9 / 55

 $d\mathcal{L}$ calculus is complete relative to first-order logic of differential equations.

 $\vDash \phi \quad \text{iff} \quad \textit{Taut}_{\mathsf{FOD}} \vdash \phi$

where $FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

Proof Outline 15p

Corollary (Proof-theoretical Alignment)

verification of hybrid systems = verification of dynamical systems!

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

CMU 15-424 9 / 55

 $d\mathcal{L}$ calculus is complete relative to first-order logic of differential equations.

 $\vDash \phi \quad \text{iff} \quad \textit{Taut}_{\mathsf{FOD}} \vdash \phi$

where $FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

Proof Outline 15p

Corollary (Deductive Power)

dL calculus is supremal hybrid verification technique

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

CMU 15-424 9 / 55

\mathcal{R} Relative Completeness Proof

\mathcal{R} Relative Completeness Proof

Proof (Relative Completeness, 10 pages)

- $\textcircled{O} \ d\mathcal{L} \ expressible \ in \ FOD$
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- In FOD characterises ℝ-Gödel encoding
- **§** First-order expressible & program rendition: $\forall \phi \exists F \in \mathsf{FOD} \models \phi \leftrightarrow F$
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F o \langle lpha
 angle G$

ℜ Relative Completeness Proof

$$\vdash \phi \quad \text{iff} \quad Taut_{\text{FOD}} \vdash \phi$$

where $\text{FOD} = \text{FOL}_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$

Proof (Relative Completeness, 10 pages)

- 2 d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- In FOD characterises ℝ-Gödel encoding
- **§** First-order expressible & program rendition: $\forall \phi \exists F \in \mathsf{FOD} \models \phi \leftrightarrow F$
- Propositionally & first-order complete
- **(3)** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F
 ightarrow \langle lpha
 angle G$

\mathcal{R} Relative Completeness Proof

Proof (Relative Completeness, 10 pages)

- 2 d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- In FOD characterises ℝ-Gödel encoding
- **§** First-order expressible & program rendition: $\forall \phi \exists F \in \mathsf{FOD} \models \phi \leftrightarrow F$
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F o \langle lpha
 angle G$

\mathcal{R} Relative Completeness Proof

Proof (Relative Completeness, 10 pages)

- 2 d \mathcal{L} expressible in FOD
- valid dL formulas dL-derivable from corresponding FOD axioms
- Inite FOD formula characterising unbounded hybrid repetition
- FOD characterises ℝ-Gödel encoding
- **§** First-order expressible & program rendition: $\forall \phi \exists F \in \mathsf{FOD} \models \phi \leftrightarrow F$
- Propositionally & first-order complete
- **③** Relative complete for first-order safety $F \rightarrow [\alpha]G$
- **9** Relative complete for first-order liveness $F
 ightarrow \langle lpha
 angle G$

ℜ Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (\mathbb{R} -Gödel encoding)

ℜ Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

$\overline{\mathsf{Proof}}(\mathbb{R}\operatorname{-\mathsf{Godel}}\operatorname{encoding})$

Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

$\overline{\mathsf{Proof}}(\mathbb{R}\operatorname{-\mathsf{G\"odel}}\operatorname{encoding})$

\cancel{R} Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (\mathbb{R} -Gödel encoding)

André Platzer (CMU)

Logical Foundations of Cyber-Physical Systems

\mathcal{R} Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (ℝ-Gödel encoding)

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

$$\sum_{i=1}^{\infty} \frac{a_i}{2^i} = 0.a_1 a_2 \dots$$

$$\sum_{i=1}^{\infty} \frac{b_i}{2^i} = 0.b_1 b_2 \dots$$

$$\sum_{i=0}^{\infty} \left(\frac{a_i}{2^{2i+1}} + \frac{b_i}{2^{2i+2}} \right) = 0.a_1 b_1 a_2 b_2 \dots$$

▲ Return

\mathcal{R} Relative Completeness Proof

where
$$FOD = FOL_{\mathbb{R}} + [x'_1 = \theta_1, \dots, x'_n = \theta_n]F$$

Proof (ℝ-Gödel encoding)

FOD characterises constructive bijection $\mathbb{R} \to \mathbb{R}^2$

$$\sum_{i=1}^{\infty} \frac{a_i}{2^i} = 0.a_1 a_2 \dots$$
$$\sum_{i=1}^{\infty} \frac{b_i}{2^i} = 0.b_1 b_2 \dots$$
$$\sum_{i=0}^{\infty} \left(\frac{a_i}{2^{2i+1}} + \frac{b_i}{2^{2i+2}} \right) = 0.a_1 b_1 a_2 b_2 \dots$$

$$2^{n} = z \quad \leftrightarrow \quad \langle x := 1; \tau := 0; x' = x \ln 2 \wedge \tau' = 1 \rangle (\tau = n \wedge x = z)$$

$$\ln 2 = z \quad \leftrightarrow \quad \langle x := 1; \tau := 0; x' = x \wedge \tau' = 1 \rangle (x = 2 \wedge \tau = z)$$

▲ Return

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
 - Differential Temporal Dynamic Logic dTL (Excerpt)
- Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- **15** Car Control Verification
- 16 Stochastic Hybrid Systems

R Air Traffic Control

R Air Traffic Control

ℜ Air Traffic Control

Verification?

looks correct

R Air Traffic Control

\mathcal{R} Air Traffic Control

Verification?

looks correct NO!

R Air Traffic Control

 $x_1(t) = \frac{1}{\omega \omega} (x_1 \omega \omega \cos t \omega - v_2 \omega \cos t \omega \sin \vartheta + v_2 \omega \cos t \omega \cos t \omega \cos t \omega \sin \vartheta - v_1 \omega \sin t \omega$ $+ x_2\omega \omega \sin t\omega - v_2\omega \cos \vartheta \cos t\omega \sin t\omega - v_2\omega \sqrt{1 - \sin \vartheta^2} \sin t\omega$

 $+ v_2\omega\cos\vartheta\cos t\omega\sin t\omega + v_2\omega\sin\vartheta\sin t\omega\sin t\omega\sin t\omega$...

\mathcal{R} Air Traffic Control

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
 - Differential Temporal Dynamic Logic dTL (Excerpt)
- Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- **15** Car Control Verification
- 16 Stochastic Hybrid Systems

"Definition" (Differential Invariant)

"Formula that remains true in the direction of the dynamics"

"Definition" (Differential Invariant)

"Formula that remains true in the direction of the dynamics"

"Definition" (Differential Invariant)

"Formula that remains true in the direction of the dynamics"

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 - Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
 - Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- **15** Car Control Verification
- 16 Stochastic Hybrid Systems

problem	technique	C)p∣Pa	closed		
train $\models z < M$	TL-MC	\checkmark	×	\checkmark	×	
$\models (Ax(\mathit{train}) \rightarrow z < M)$	TL-calculus	×		\checkmark		
\models [train] z < M	DL-calculus	\checkmark	\checkmark	×	\checkmark	
\models [train] \Box z < M	dTL-calculus	\checkmark	\checkmark	\checkmark	\checkmark	

problem	technique	C)p Pa	closed		
train $\models z < M$	TL-MC	\checkmark	×	\checkmark	×	
$\models (Ax(\mathit{train}) \rightarrow z < M)$	TL-calculus	×		\checkmark		
\models [train] z < M	DL-calculus	\checkmark	\checkmark	×	\checkmark	
\models [train] \Box z < M	dTL-calculus	\checkmark	\checkmark	\checkmark	\checkmark	

differential temporal dynamic logic

 $\mathsf{dTL} = \mathsf{TL} + \mathsf{DL} + \mathsf{HP}$

\mathcal{R} Proof Calculus for Temporal dTL

$$\frac{\phi \land [x := \theta] \phi}{[x := \theta] \Box \phi}$$

$$\overset{\phi}{\bigvee} := \theta \overset{\phi}{\swarrow}$$

ℜ Proof Calculus for Temporal dTL

CMU 15-424 18 / 55

ℜ Proof Calculus for Temporal dTL

ℜ Proof Calculus for Temporal dTL

Theorem (Relative Completeness)

dTL calculus is a sound & complete axiomatization relative to dL.

Corollary (Continuous Relative Completeness)

dTL calculus is a sound & complete axiomatization relative to differential equations.

Corollary (Discrete Relative Completeness)

dTL calculus is a sound & complete axiomatization relative to discrete systems.

(P. 2008

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)

Deduction Modulo Real Algebraic and Computer Algebraic Constraints

- D European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- **15** Car Control Verification
- 16 Stochastic Hybrid Systems

${m {\cal R}}$ KeYmaera Verification Architecture

CMU 15-424 23 / 55

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
 - Collision Avoidance Maneuvers in Air Traffic Control
 - B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- **15** Car Control Verification
- 16 Stochastic Hybrid Systems

\Re ETCS Controllability

Proposition (Controllability)

$$\begin{aligned} [\tau.z' &= \tau.v, \tau.v' = -b \& \tau.v \ge 0] (\tau.z \ge m.e \to \tau.v \le m.d) \\ &\equiv \tau.v^2 - m.d^2 \le 2b(m.e - \tau.z) \end{aligned}$$

André Platzer (CMU)

CMU 15-424 25 / 55

\mathcal{R} ETCS RBC Controllability

Proposition (RBC Controllability)

$$m.d \ge 0 \land b > 0 \rightarrow [m_0 := m; RBC] ($$

$$m_0.d^2 - m.d^2 \le 2b(m.e - m_0.e) \land m_0.d \ge 0 \land m.d \ge 0 \leftrightarrow \forall \tau$$

$$((\langle m := m_0 \rangle \tau.v^2 - m.d^2 \le 2b(m.e - \tau.z)) \rightarrow \tau.v^2 - m.d^2 \le 2b(m.e - \tau.z))$$

ℜ ETCS Reactivity

Proposition (Reactivity)

$$\left(\forall m.e \,\forall \tau.z \, \left(m.e - \tau.z \ge SB \wedge \tau.v^2 - m.d^2 \le 2b(m.e - \tau.z) \right) \\ \left[\tau.a := A; \, drive\right] \tau.v^2 - m.d^2 \le 2b(m.e - \tau.z) \right) \\ \equiv SB \ge \frac{\tau.v^2 - m.d^2}{2b} + \left(\frac{A}{b} + 1\right) \left(\frac{A}{2}\varepsilon^2 + \varepsilon \tau.v\right) \\ \text{Andrá Platzer (CMU)} \qquad \qquad \text{Logical Foundations of Cyber-Physical Systems} \qquad \qquad \text{CMU 15-424} \qquad 27.4$$

Proposition (Safety)

$$\tau \cdot v^{2} - m \cdot d^{2} \leq 2b(m \cdot e - \tau \cdot z) \rightarrow$$

[ETCS]($\tau \cdot z \geq m \cdot e \rightarrow \tau \cdot v \leq m \cdot d$)

So far: no wind, friction, etc

Direct control of the acceleration

So far: no wind, friction, etc

Direct control of the acceleration

Issue

This is unrealistic!

So far: 1	no wind, friction, etc.	Issue					
Direct co	ntrol of the acceleration	This is unrealistic!					
Solution	Take disturbances into account.						
Theorem							
ETCS is controllable $^{\odot}$, reactive $^{\odot}$, and safe $^{\odot}$ in the presence of disturbances.							

Proof sketch

The system now contains $\tau . a - l \le \tau . v' \le \tau . a + u$ instead of $\tau . v' = \tau . a$. \sim We cannot solve the differential equations anymore. \sim Use differential invariants for approximation. For details see paper.

Platzer, A.:

Differential-algebraic dynamic logic for differential-algebraic programs. *J. Log. Comput.*, 35(1): 309–352, 2010.

André Platzer (CMU)

So far

Almost completely non-deterministic control.

So far

Almost completely non-deterministic control.

Issue

This is unrealistic!

Differential equation system

$$\tau . \mathbf{v}' = \min \Big(A, \max \big(-b, \ \ell (\tau . \mathbf{v} - m.r) - i \, \mathbf{s} - \mathbf{c} \, m.r \big) \Big) \land \mathbf{s}' = \tau . \mathbf{v} - m.r$$

see paper.

Platzer, A.:

Differential-algebraic dynamic logic for differential-algebraic programs. *J. Log. Comput.*, 35(1): 309–352, 2010.

André Platzer (CMU)

\mathcal{R} Experimental Results (ETCS)

Case Study		Int	Time(s)	Mem(Mb)	Steps	Dim
controllability	train	0	0.6	6.9	14	5
controllability	RBC	0	0.5	6.4	42	12
controllability	RBC	0	0.9	6.5	82	12
reactivity		13	279.1	98.3	265	14
reactivity		0	103.9	61.7	47	14
safety		0	2052.4	204.3	153	14
liveness	essentials	4	35.2	92.2	62	10
liveness	simplified	6	9.6	23.5	134	13
controllability	disturbance	0	2.8	8.3	26	7
reactivity	disturbance	1	23.7	47.6	76	15
safety	disturbance	1	5805.2	34	218	16

provable automatically! spec : $\tau \cdot v^2 - \mathbf{m} \cdot d^2 \leq 2b(\mathbf{m} \cdot e - \tau \cdot p) \wedge \tau \cdot v \geq 0 \wedge \mathbf{m} \cdot d \geq 0 \wedge b > 0$ \rightarrow [ETCS](τ . $p \ge \mathbf{m}.e \rightarrow \tau.v \le \mathbf{m}.d$) ETCS: $(train \cup rbc)^*$ train : spd; atp; move spd : $(?\tau \cdot v \le \mathbf{m} \cdot r; \tau \cdot a := *; ? - b \le \tau \cdot a \le A)$ \cup (? τ . $v \ge m$.r; τ .a := *; ? $0 > \tau$. $a \ge -b$) atp : $SB := \frac{\tau \cdot v^2 - \mathbf{m} \cdot d^2}{2b} + (\frac{A}{b} + 1)(\frac{A}{2}\varepsilon^2 + \varepsilon \tau \cdot v);$ $(?(\mathbf{m}.e - \tau.p \leq SB \lor rbc.message = emergency); \tau.a := -b)$ \cup (?**m**.*e* $- \tau$.*p* > *SB* \wedge *rbc*.*message* \neq *emergency*) move: t := 0; $(\tau . p' = \tau . v, \tau . v' = \tau . a, t' = 1 \& \tau . v > 0 \land t < \varepsilon)$ rbc : (*rbc.message* := *emergency*) \cup (**m**₀ := **m**; **m** := *; $(m.r > 0 \land m.d > 0 \land m_0.d^2 - m.d^2 < 2b(m.e - m_0.e))$

$\overrightarrow{\mathcal{R}}$ 1 Branch of ETCS Proof

```
state = 0,
2 * b * (m - z) >= v^2 - d^2
v >= 0, d >= 0, v >= 0, ep > 0, b > 0, amax > 0, d >= 0
==>
   v <= vdes
\rightarrow  \forall R a 3:
     ( a 3 >= 0 & a 3 <= amax
      -> ( m - z
               <= (amax / b + 1) * ep * v
               + (v^2 - d^2) / (2 * b)
                + (amax / b + 1) * amax * ep ^ 2 / 2
            \rightarrow  \forall R t0:
                 ( t0 >= 0
                  -> \forall R ts0; (0 <= ts0 & ts0 <= t0 -> -b * ts0 + v >= 0 & ts0 + 0 <= ep)
                          2 * b * (m - 1 / 2 * (-b * t0 ^ 2 + 2 * t0 * v + 2 * z))
                  ->
                       >= (-h * t0 + v)^2
                       - d ^ 2
                     \& -b * t0 + v \ge 0
                     k d \ge 0)
         & (
                m - z
               > (amax / b + 1) * ep * v
                + (v^2 - d^2) / (2 * b)
                + (amax / b + 1) * amax * ep ^ 2 / 2
            \rightarrow  \forall R t2:
                 (t_2 \ge 0)
                  -> \forall R ts2: (0 \le ts2 \& ts2 \le t2 -> a 3 * ts2 + v >= 0 \& ts2 + 0 \le ep)
                          2 * b * (m - 1 / 2 * (a 3 * t2^2 + 2 * t2 * v + 2 * z))
                  ->
                       >= (a_3 * t_2 + v)^2
                        - d ^ 2
                     & a 3 * t2 + v >= 0
                     \& d \ge 0))
```

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
 - B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- 15 Car Control Verification
- 16 Stochastic Hybrid Systems

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 10 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- 13 Hybrid Automata Embedding
 - Distributed Hybrid Systems
- 15 Car Control Verification
- 16 Stochastic Hybrid Systems

\mathcal{R} Embedding Hybrid Automata as Hybrid Programs

$$\begin{array}{l} q := accel; \\ ((?q = accel; \quad z' = v, v' = a) \\ \cup (?q = accel \land z \ge SB; \quad a := -b; \quad q := brake; \quad ?v \ge 0) \\ \cup (?q = brake; \quad z' = v, v' = a \& v \ge 0) \\ \cup (?q = brake \land v \le 1; \quad a := a + 5; \quad q := accel) \end{array}$$

\checkmark Embedding Hybrid Automata as Hybrid Programs

\checkmark Embedding Hybrid Automata as Hybrid Programs

$$q := accel;$$

$$((?q = accel; z' = v, v' = a)$$

$$\cup (?q = accel \land z \ge SB; a := -b; q := brake; ?v \ge 0)$$

$$\cup (?q = brake; z' = v, v' = a \& v \ge 0)$$

$$\cup (?q = brake \land v \le 1; a := a + 5; q := accel))^*$$

Representation of the second s

$$\begin{array}{l} q := accel; \\ ((?q = accel; \ z' = v, v' = a) \\ \cup (?q = accel \land z \ge SB; \ a := -b; \ q := brake; \ ?v \ge 0) \\ \cup (?q = brake; \ z' = v, v' = a \& v \ge 0) \\ \cup (?q = brake \land v \le 1; \ a := a + 5; \ q := accel) \end{array}$$

\mathcal{R} Embedding Hybrid Automata as Hybrid Programs

$$q := accel;$$

$$((?q = accel; z' = v, v' = a)$$

$$\cup (?q = accel \land z \ge SB; a := -b; q := brake; ?v \ge 0)$$

$$\cup (?q = brake; z' = v, v' = a \& v \ge 0)$$

$$\cup (?q = brake \land v \le 1; a := a + 5; q := accel))^*$$

\mathcal{R} Embedding Hybrid Automata as Hybrid Programs

$$z \ge SB$$

$$accel$$

$$a:=-b$$

$$brake$$

$$z' = v, v' = a$$

$$v \le 1$$

$$v \ge 0$$

$$a:= a + 5$$

$$i$$

$$((?q = accel; z' = v, v' = a)$$

$$\cup (?q = accel \land z \ge SB; a:=-b; q:= brake; ?v \ge 0)$$

$$\cup (?q = brake; z' = v, v' = a \& v \ge 0)$$

$$\cup (?q = brake \land v \le 1; a:= a + 5; q:= accel)^*$$

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 10 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
 - 3 Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- 15 Car Control Verification
- 16 Stochastic Hybrid Systems

\mathcal{R} Cyber-Physical Systems:

Q: I want to verify my car

Challenge

ℜ Cyber-Physical Systems: Hybrid Systems

Q: I want to verify my car A: Hybrid systems

Challenge (Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)

CMU 15-424 40 / 55

3

ℜ Cyber-Physical Systems: Hybrid Systems

Q: I want to verify my car A: Hybrid systems Q: But there's a lot of cars!

Challenge (Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)

$\mathcal R$ Cyber-Physical Systems:

Q: I want to verify a lot of cars

Challenge

ℜ Cyber-Physical Systems: Distributed Systems

Q: I want to verify a lot of cars A: Distributed systems

Challenge (Distributed Systems)

- Local computation (finite state automaton)
- Remote communication (network graph)

ℜ Cyber-Physical Systems: Distributed Systems

Q: I want to verify a lot of cars A: Distributed systems Q: But they move!

Challenge (Distributed Systems)

- Local computation (finite state automaton)
- Remote communication (network graph)

$\mathcal R$ Cyber-Physical Systems:

Q: I want to verify lots of moving cars

Challenge

🛪 Cyber-Physical Systems: Distributed Hybrid Systems

Q: I want to verify lots of moving cars A: Distributed hybrid systems

Challenge (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)
- Structural dynamics (communication/coupling)

🛪 Cyber-Physical Systems: Distributed Hybrid Systems

Q: I want to verify lots of moving cars A: Distributed hybrid systems

Challenge (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)
- Structural dynamics (communication/coupling)
- Dimensional dynamics (appearance)

🛪 Cyber-Physical Systems: Distributed Hybrid Systems

Q: I want to verify lots of moving cars A: Distributed hybrid systems Q: How?

Challenge (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)
- Structural dynamics (communication/coupling)
- Dimensional dynamics (appearance)

earrow Model for Distributed Hybrid Systems

Q: How to model distributed hybrid systems

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)

 Structural dynamics (communication/coupling)

CMU 15-424 43 / 55

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 x'' = a
- Discrete dynamics (control decisions)

 Structural dynamics (communication/coupling)

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 x'' = a
- Discrete dynamics (control decisions)
- $a := \text{if} \dots \text{then} a \text{else} b \text{fi}$
 - Structural dynamics (communication/coupling)

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 x'' = a
- Discrete dynamics (control decisions)
- a := if..then a else b fi
 - Structural dynamics (communication/coupling)

CMU 15-424 43 / 55

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 x'' = a
- Discrete dynamics (control decisions)
- a := if..then a else b fi
 - Structural dynamics (communication/coupling)

CMU 15-424 43 / 55

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations) x(i)" = a(i)
- Discrete dynamics (control decisions)

$$a(i) := extsf{if} \dots extsf{then} \, a \, extsf{else} - b \, extsf{fi}$$

 Structural dynamics (communication/coupling)

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations) $\forall i x(i)'' = a(i)$
- Discrete dynamics (control decisions)

$$orall i \, a(i) := ext{if} \, .. \, ext{then} \, a \, ext{else} \, -b \, ext{fi}$$

 Structural dynamics (communication/coupling)

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations) $\forall i x(i)'' = a(i)$
- Discrete dynamics (control decisions)

$$orall i \, a(i) := extsf{i} \, .. extsf{then} \, a \, extsf{else} \, -b \, extsf{fi}$$

 Structural dynamics (communication/coupling) *l*(*i*) := *carInFrontOf*(*i*)

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations) $\forall i x(i)'' = a(i)$
- Discrete dynamics (control decisions)

$$\forall i \ a(i) := \texttt{if} .. \texttt{then} \ a \texttt{else} - b \texttt{fi}$$

- Structural dynamics (communication/coupling) *l*(*i*) := carInFrontOf(*i*)
- Dimensional dynamics (appearance)

CMU 15-424 43 / 55

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations) $\forall i x(i)'' = a(i)$
- Discrete dynamics (control decisions)

$$\forall i \ a(i) := \texttt{if} .. \texttt{then} \ a \texttt{else} - b \texttt{fi}$$

- Structural dynamics (communication/coupling) *l*(*i*) := carInFrontOf(*i*)
- Dimensional dynamics (appearance)

n := new Car

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 ∀i x(i)" = a(i)
- Discrete dynamics (control decisions)

$$\forall i \ a(i) := \texttt{if} .. \texttt{then} \ a \texttt{else} - b \texttt{fi}$$

- Structural dynamics (communication/coupling) *l*(*i*) := *carInFrontOf*(*i*)
- Dimensional dynamics (appearance)

n := new Car

 $\Rightarrow \quad \text{Communication} \\ d(i, \ell(i)) := d(i, \ell(i)) + 10$

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 ∀i x(i)" = a(i)
- Discrete dynamics (control decisions)

$$orall i \, a(i) := extsf{if} \, .. \, extsf{then} \, a \, extsf{else} - b \, extsf{fi}$$

- Structural dynamics (communication/coupling) *l*(*i*) := *carInFrontOf*(*i*)
- Dimensional dynamics (appearance)

n := new Car

 $\begin{array}{l} & \leftarrow \\ \forall i \ d(i, \ell(i)) := d(i, \ell(i)) + 10 \end{array}$

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 ∀i x(i)" = a(i)
- Discrete dynamics (control decisions)

$$orall i \, a(i) := extsf{i} \, .. extsf{then} \, a \, extsf{else} - b \, extsf{fi}$$

- Structural dynamics (communication/coupling) ℓ(i) := carInFrontOf(i)
- Dimensional dynamics (appearance)

n := new Car

- Communication $\forall i \ d(i, \ell(i)) := d(i, \ell(i)) + 10$
- $\Rightarrow \text{ Discrete structural dynamics} \\ \ell(i) := \ell(\ell(i))$

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 ∀i x(i)" = a(i)
- Discrete dynamics (control decisions)

$$orall i \, a(i) := extsf{i} \, .. extsf{then} \, a \, extsf{else} - b \, extsf{fi}$$

- Structural dynamics (communication/coupling) ℓ(i) := carInFrontOf(i)
- Dimensional dynamics (appearance)
 n := new Car

- $\Rightarrow \quad \mathsf{Communication} \\ \forall i \ d(i, \ell(i)) := d(i, \ell(i)) + 10$
- $\Rightarrow \text{ Discrete structural dynamics} \\ \ell(i) := \ell(\ell(i))$
- $\Rightarrow \text{ Continuous structural dynamics} \\ x(i)'' = a(i) + c(i, \ell(i))a(\ell(i))$

André Platzer (CMU)

Model (Distributed Hybrid Systems)

- Continuous dynamics (differential equations)
 ∀i x(i)" = a(i)
- Discrete dynamics (control decisions)

$$orall i \, a(i) := extsf{i} \, .. extsf{then} \, a \, extsf{else} - b \, extsf{fi}$$

- Structural dynamics (communication/coupling) ℓ(i) := carInFrontOf(i)
- Dimensional dynamics (appearance)
 n := new Car

- $\Rightarrow \quad \mathsf{Communication} \\ \forall i \ d(i, \ell(i)) := d(i, \ell(i)) + 10$
- $\Rightarrow \text{ Discrete structural dynamics} \\ \ell(i) := \ell(\ell(i))$
- $\Rightarrow \text{ Continuous structural dynamics} \\ \forall i \, x(i)'' = a(i) + c(i, \ell(i))a(\ell(i))$

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 🔟 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- 🔟 European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- 3 Hybrid Automata Embedding
- Distributed Hybrid Systems
- 15 Car Control Verification
 - 6 Stochastic Hybrid Systems

Challenge: Local lane dynamics

• A car controller for a differential equation respects separation of local lane.

R Car Control: Local Lane Control Challenge

Challenge: Local lane dynamics

- A car controller for a differential equation respects separation of local lane.
- Follower car maintains safe distance to leader:

\mathcal{R} Car Control: Local Lane Control Challenge

Challenge: Local lane dynamics

- A car controller for a differential equation respects separation of local lane.
- Follower car maintains safe distance to leader:

$$f \ll \ell \rightarrow [(a_i := ctrl; x_i'' = a_i)^*] f \ll \ell$$

Challenge: Local lane dynamics

- A car controller for a differential equation respects separation of local lane.
- Follower car maintains safe distance to leader:

$$f \ll \ell \rightarrow [(a_i := ctrl; x_i'' = a_i)^*] f \ll \ell$$

$$egin{aligned} f \ll \ell &\equiv \ (x_f \leq x_\ell) \wedge (f
eq \ell)
ightarrow \ (x_\ell > x_f + rac{v_f^2}{2b} - rac{v_\ell^2}{2B} \ \wedge x_\ell > x_f \wedge v_f \geq 0 \wedge v_\ell \geq 0) \end{aligned}$$

Challenge: Global lane dynamics

 All controllers for arbitrarily many differential equations respect separation globally on lane.
R Car Control: Global Lane Control Challenge

Challenge: Global lane dynamics

- All controllers for arbitrarily many differential equations respect separation globally on lane.
- Each car safe behind all others

R Car Control: Global Lane Control Challenge

Challenge: Global lane dynamics

- All controllers for arbitrarily many differential equations respect separation globally on lane.
- Each car safe behind all others

$$[(\forall i a(i) := ctrl; \forall i x(i)'' = a(i))^*] \forall i, j i \ll j$$

 All controllers for arbitrarily many differential equations respect separation locally on highway.

- All controllers for arbitrarily many differential equations respect separation locally on highway.
- For each lane: all controllers for the differential equations respect separation even if cars appear or disappear.

- All controllers for arbitrarily many differential equations respect separation locally on highway.
- For each lane: all controllers for the differential equations respect separation even if cars appear or disappear.
- Each car safe behind all others, even if new cars appear or disappear.

- All controllers for arbitrarily many differential equations respect separation locally on highway.
- For each lane: all controllers for the differential equations respect separation even if cars appear or disappear.
- Each car safe behind all others, even if new cars appear or disappear.

$$[(n := \text{new } C; \forall i \ a(i) := ctrl; \forall i \ x(i)'' = a(i))^*] \forall i, j \ i \ll j$$

 All controllers for arbitrarily many differential equations respect separation globally on highway.

- All controllers for arbitrarily many differential equations respect separation globally on highway.
- All controllers for the differential equations respect separation even if cars switch lanes.

- All controllers for arbitrarily many differential equations respect separation globally on highway.
- All controllers for the differential equations respect separation even if cars switch lanes.
- On all lanes, all car safe behind all others on their lanes, even if cars switch lanes.

- All controllers for arbitrarily many differential equations respect separation globally on highway.
- All controllers for the differential equations respect separation even if cars switch lanes.
- On all lanes, all car safe behind all others on their lanes, even if cars switch lanes.

 $\left[\forall I (n := \text{new } C; \forall i a(i) := ctrl; \forall i x(i)'' = a(i)\right)^*\right] \forall I \forall i, j i \ll j$

Formal Details

- Soundness Proof
- Completeness Proof
- Differential Algebraic Dynamic Logic DAL (Excerpt)
 Differential Invariants
- Differential Temporal Dynamic Logic dTL (Excerpt)
- 🔟 Deduction Modulo Real Algebraic and Computer Algebraic Constraints
- 🔟 European Train Control System
- Collision Avoidance Maneuvers in Air Traffic Control
- B Hybrid Automata Embedding
- 14 Distributed Hybrid Systems
- 15 Car Control Verification
- 16 Stochastic Hybrid Systems

\mathcal{R} Cyber-Physical Systems:

Q: I want to verify trains

Challenge

ℜ Cyber-Physical Systems: Hybrid Systems

Q: I want to verify trains A: Hybrid systems

Challenge (Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)

ℜ Cyber-Physical Systems: Hybrid Systems

Q: I want to verify trains A: Hybrid systems Q: But there's uncertainties!

Challenge (Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)

\mathcal{R} Cyber-Physical Systems:

Q: I want to verify uncertain trains

Challenge

Q: I want to verify uncertain trains A: Markov chains

Challenge (Probabilistic Systems)

- Directed graph (Countable state space)
- Weighted edges (Transition probabilities)

Q: I want to verify uncertain trains A: Markov chains Q: But trains move!

Challenge (Probabilistic Systems)

- Directed graph (Countable state space)
- Weighted edges (Transition probabilities)

\mathcal{R} Cyber-Physical Systems:

Q: I want to verify uncertain systems

Challenge

🛪 Cyber-Physical Systems: Stochastic Hybrid Systems 🛛 🖪

Q: I want to verify uncertain systems A: Stochastic hybrid systems

Challenge (Stochastic Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)
- Stochastic dynamics (uncertainty)

ጽ Cyber-Physical Systems: Stochastic Hybrid Systems 🛛 🖪

Q: I want to verify uncertain systems A: Stochastic hybrid systems

Challenge (Stochastic Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)
- Stochastic dynamics (uncertainty)
- Discrete stochastic (lossy communication)
- Continuous stochastic (wind, track)

CMU 15-424 52 / 55

🛪 Cyber-Physical Systems: Stochastic Hybrid Systems 🛛 🖪

Q: I want to verify uncertain systems A: Stochastic hybrid systems Q: How?

Challenge (Stochastic Hybrid Systems)

- Continuous dynamics (differential equations)
- Discrete dynamics (control decisions)
- Stochastic dynamics (uncertainty)
- Discrete stochastic (lossy communication)
- Continuous stochastic (wind, track)

\mathcal{R} Model for Stochastic Hybrid Systems

\mathcal{R} Model for Stochastic Hybrid Systems

ℜ Stochastic Differential Equations (SDE)

Definition (Ordinary differential equation (ODE))

С

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = b(x(t)) \quad x(0) = x_0$$

Definition (Ito stochastic differential equation (SDE))

André Platzer (CMU

Logical Foundations of Cyber-Physical Systems

CMU 15-424 54 / 55

ℜ Stochastic Differential Equations (SDE)

Definition (Ordinary differential equation (ODE))

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = b(x(t)) \quad x(0) = x_0$$

Definition (Itō stochastic differential equation (SDE))

Definition (Ordinary differential equation (ODE))

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = b(x(t)) \quad x(0) = x_0$$

Definition (Ordinary differential equation (ODE))

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = b(x(t)) \quad x(0) = x_0$$

ndré Platzer (CMU)

- 1

Logical Foundations of Cyber-Physical Systems

Definition (Stochastic hybrid program $lpha$)		
$x := \theta$ x := * ?H $dx = bdt + \sigma dW \& H$	(assignment) (random assignment) (conditional execution) (SDE)	} jump & test
$egin{array}{lll} lpha;eta\ \lambdalpha\ \oplus\ ueta\ lpha\ lpha^* \end{array}$	(seq. composition) (convex combination) (nondet. repetition)	} algebra