## 15-424/15-624 Background Quiz Solutions

## 1. First-Order Real Arithmetic

Recall that a logical formula is

- valid if it is true for all possible assignments of free variables,
- satisfiable if it is true for at least one assignment of free variables, and
- unsatisfiable if it is not true for any assignment of free variables.

In the following, determine if the statements are valid, satisfiable, and/or unsatisfiable.
(a) $\frac{5}{2}<x \wedge x<2$
unsatisfiable
(b) $2<x \wedge x<\frac{5}{2}$
satisfiable, but not valid for all $x$
(c) $(x<y \wedge y<z) \rightarrow x<z$
valid and therefore satisfiable
(d) $x<z \wedge \exists y(x<y \wedge y<z)$
satisfiable, but not valid for all $x$ and $z$
(e) $\exists y(x<y)$
valid and satisfiable, no matter the value of $x$, there exists a $y$ that is bigger
(f) $\forall y(x<y)$
unsatisfiable, there is no $x$ such that it is smaller than all $y$
(g) $(x>y \rightarrow x>z) \vee x>y$
valid and satisfiable
(h) $x>y \leftrightarrow x^{2}>y^{2}$ satisfiable

## 2. Differential Equations

Solve the following IVPs. All derivatives are taken with respect to implicit variable $t$.
(a)

$$
\left[\begin{array}{cll}
x^{\prime} & = & v \\
v^{\prime} & = & a \\
x(0) & = & x_{0} \\
v(0) & = & v_{0}
\end{array}\right]
$$

$$
\begin{aligned}
& x(t)=\frac{a}{2} t^{2}+v_{0} t+x_{0} \\
& v(t)=a t+v_{0}
\end{aligned}
$$

(b)

$$
\left[\begin{array}{clc}
x^{\prime} & = & -y \\
y^{\prime} & = & x \\
x(0) & = & 0 \\
y(0) & = & 1
\end{array}\right]
$$

$x(t)=-\sin (t)$
$y(t)=\cos (t)$
Note: This solution can be written in multiple ways.
(c)

$$
\left[\begin{array}{ccc}
x^{\prime} & = & x \cos t \\
x(0) & = & x_{0}
\end{array}\right]
$$

You can also write $x^{\prime}$ as $\frac{d x}{d t}$, and then use the following trick:

$$
\begin{aligned}
\frac{d x}{d t} & =x \cos t \\
\frac{1}{x} d x & =\cos t d t \\
\int \frac{1}{x} d x & =\int \cos t d t \\
\ln x & =\sin t+c \\
x & =e^{\sin t+c}=c e^{\sin t}
\end{aligned}
$$

But be careful with the constants; the solution to the initial value problem is:

$$
x=x_{0} e^{\sin t}
$$

A common mistake:

$$
\begin{aligned}
x & =e^{\sin t}-1+x_{0} \\
x^{\prime} & =\cos t \cdot e^{\sin t} \neq x \cos t
\end{aligned}
$$

