Assignment 5: Differential Auxiliaries, dTL and Quantifier Elimination 15-424/15-624 Foundations of Cyber-Physical Systems
 Course TA: Sarah Loos (sloos+fcps@cs.cmu.edu)

Due: Beginning of recitation, Friday 11/8/13
Total Points: 60

1. Differential Auxiliaries. Prove the following properties using the sequent rules presented in class. You must use the differential auxiliary rule in each (DA).
(a) $x \geq 0 \rightarrow\left[\left\{x^{\prime}=x\right\}\right] x \geq 0$
(b) $x>10 \rightarrow\left[\left\{x^{\prime}=10-x\right\}\right] x>10$
2. Valid, Satisfiable, or Unsatisfiable. Determine whether each of the following differential temporal dynamic logic (dTL) formulas is valid, satisfiable, or unsatisfiable.
(a) $(v \geq 0 \wedge a>0 \wedge T>0) \rightarrow\left[t:=0 ;\left\{x^{\prime}=v, v^{\prime}=a, t^{\prime}=1\right\} ; ? t=T\right] \square v>0$
(b) $\left(\left[v:=a ; v:=a+d ;\left\{x^{\prime}=v\right\}\right] x \leq b\right) \leftrightarrow\left(\left[v:=a ; v:=a+d ;\left\{x^{\prime}=v\right\}\right] \square x \leq b\right)$
(c) $\left(\left[v:=a ; v:=a+d ;\left\{x^{\prime}=v\right\}\right] v \leq b\right) \leftrightarrow\left(\left[v:=a ; v:=a+d ;\left\{x^{\prime}=v\right\}\right] \square v \leq b\right)$
(d) $\left(\left[\left\{x^{\prime}=v, v^{\prime}=a \& v \geq 0\right\}\right] \square x \geq 0\right) \leftrightarrow\left(\left[\left\{x^{\prime}=v, v^{\prime}=a\right\} ; ? v \geq 0\right] x \geq 0\right)$
3. d \mathcal{L} vs. dTL. Consider the formula $F \equiv[\alpha] \phi \leftrightarrow[\alpha] \square \phi$.
(a) Assign a (non-trivial) HP to α and formula to ϕ such that F is valid.
(b) Describe a general set of restrictions on α and ϕ that ensure F is valid.
4. Quantifier Elimination. Apply quantifier elimination to eliminate the quantified variables in each of the following formulas.
(a) $\exists x\left(y=x^{4} \wedge x^{2}=3\right)$
(b) $\exists x\left(a=b+x^{2}\right)$
(c) $\exists y\left(y=x^{2} \wedge x-y \geq 0\right)$
5. Convergence and Divergence. Consider the infinite summation over function $f(i)$:

$$
\sum_{i=0}^{\infty} f(i)
$$

(a) Write a theorem in $\mathrm{d} \mathcal{L}$ which, if proved true, would guarantee the sum converges.
(b) Write a theorem in $\mathrm{d} \mathcal{L}$ which, if proved true, would guarantee the sum diverges.
6. Creative Invariants. Derive two distinct (i.e. not equivalent) loop invariants that could be used to prove the following property.

$$
\begin{aligned}
& (c 1=-2 \wedge c 2=0 \wedge r=0 \wedge c 1=c 2-(2-r)) \\
& \rightarrow \\
& {[(i f(r<2) \text { then }} \\
& \quad s:=2 \\
& \text { else } \\
& \quad s:=1 \\
& f i ; \\
& i f(c 1 \geq 7) \text { then } \\
& \quad c 1:=0 \\
& f i ; \\
& i f(c 2 \geq 7) \text { then } \\
& \quad c 2:=0 \\
& f i ; \\
& \left.\left.\left\{c 1^{\prime}=s, c 2^{\prime}=2-s, r^{\prime}=2 * s-2 \& c 1 \leq 7 \wedge c 2 \leq 7 \wedge r \leq 2\right\}\right)^{*}\right] \\
& (c 1-c 2 \leq 2 \wedge c 2-c 1 \leq 2)
\end{aligned}
$$

