Assignment 1: Introduction to Hybrid Programs 15-424/15-624 Foundations of Cyber-Physical Systems Course TA: Sarah Loos (sloos+fcps@cs.cmu.edu)

Total Points: 60

1. Term, formula, hybrid program, or none of the above?

For each of the following, determine if the expression is a $d\mathcal{L}$ term, a well-formed $d\mathcal{L}$ formula, a well-formed hybrid program, or none of the above (ie. it is not well-formed). In the case that the expression is none of the above, give a short explanation.

(a)
$$?(3 > 2)$$

(b) $[x := 1; \{x'' = x\}](-1 \le x \land x \le 1) \leftrightarrow [y := \cos z](-1 \le y \land y \le 1)$
(c) $x = 42$
(d) $x := y \cup x := z$
(e) $(x > y)^*$
(f) 42
(g) $L > 0 \land U > 0 \rightarrow [(x := *; ?(L < x \land x < U))^*](x = y)$
(h) x
(i) $y := \pi$
(j) $(x > y \land (y > z \cup y > w))$
(k) $x := 0 \rightarrow [\{x' = 1, y' = 1 \& y \le 10\}]x \le 10$
(l) $(x := x + 1)^*$
(m) $\forall x \exists y \ (x < y)$
(n) $[x := 42]$
(o) $x := y^2$
(p) $y > 1 \land z > 1 \rightarrow [x := z^y](x > z)$
(q) $[x = y; y = z]?(x \ge z)$

2. Practice writing hybrid programs.

(a) The if-then-else construct is not actually in the grammar of hybrid programs; it's just syntactic sugar. Write an equivalent hybrid program which does not depend on if-then-else:

if
$$(x^2 \ge 5 \land x \le 0) \ x := x - 1$$
 else $x := x + 1$

(b) Non-deterministic Choice: Write a hybrid program that assigns either a or b to the variable x.

3. Safety and Contracts

- (a) A safety property is something that a cyber-physical system should always maintain. Describe a cyber-physical system and then name three safety properties that it should never violate.
- (b) Suppose you want to prove that a property ϕ is a safety property of hybrid program α , i.e. that ϕ holds under all possible runs of hybrid program α . Write the $d\mathcal{L}$ formula that expresses this.
- (c) Now, suppose you want to prove that, given initial conditions ψ , another property ϕ is a safety property of hybrid program α . Write the $d\mathcal{L}$ formula that expresses this.
- (d) Consider hybrid program α :

$$\alpha \equiv x := w; ((y := 3; z := 20) \cup (z := 6; y := w + 7)); \{x' = 10\}; ?(y \le 30)$$

For each variable in α , list the set of all values they can reach at the end of a run of α .

(e) Come up with at least two properties that hold at the end of all runs of α (example: $y \leq 30$ is a property that the program always satisfies, but now you can't use upper bounds on y). Write down a d \mathcal{L} formula which is true iff hybrid program α always satisfies those properties.

4. Non-Deterministic Evolution

$$\beta \equiv x := x_0; v := v_0; t := 0; \{x' = v, v' = a, t' = 1 \& v \ge 0\}; ?(v = 0)$$

- (a) Assume that $a < 0 \land v_0 \ge 0$. At the end of a run of hybrid program β , what is the value of t as a function of x_0, v_0 , and a?
- (b) Suppose we remove the guard ?(v = 0) at the end of hybrid program β . Again assuming that $a < 0 \land v_0 \ge 0$, what are the possible values of t at the end of any run of this modified version of β ?
- (c) Suppose we assume instead that $a < 0 \land v_0 \leq 0$ (v_0 is less than or equal to zero). What are the possible values of t at the end of any run of β ?