
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Ghosts & Differential Ghosts

André Platzer

Carnegie Mellon University
Lecture 15

1 Introduction

Lecture 10 on Differential Equations & Differential Invariants and Lecture 11 on Differ-
ential Equations & Proofs equipped us with powerful tools for proving properties of
differential equations without having to solve them. Differential invariants (DI) [Pla10a]
prove properties of differential equations by induction based on the right-hand side of
the differential equation, rather than its much more complicated global solution. Differ-
ential cuts (DC) [Pla10a] made it possible to prove another property C of a differential
equation and then change the dynamics of the system around so that it can never leave
region C. Lecture 14 on Differential Invariants & Proof Theory studied some part of the
proof theory of differential equations and proved the differential invariance chart that
compares the deductive power of classes of differential invariants; see Fig. 1.

DI= DI=,∧,∨

DI> DI>,∧,∨

DI≥ DI≥,∧,∨

DI

DI≥,=,∧,∨

DI>,=,∧,∨

Figure 1: Differential invariance chart

It can be shown that differential cuts are a fundamental proof principle for differential
equations [Pla12], because some properties can only be proved with differential cuts.

Yet, it can also be shown that there are properties where even differential cuts are not
enough, but differential ghosts become necessary [Pla12]. Differential ghosts [Pla12],

15-424 LECTURE NOTES October 21, 2013 ANDRÉ PLATZER

http://symbolaris.com/course/fcps13.html
http://symbolaris.com/andre.html
http://symbolaris.com/course/fcps13/10-diffinv.pdf
http://symbolaris.com/course/fcps13/11-diffcut.pdf
http://symbolaris.com/course/fcps13/11-diffcut.pdf
http://symbolaris.com/course/fcps13/14-diffchart.pdf

L15.2 Ghosts & Differential Ghosts

spooky as they may sound, turn out to be a useful proof technique for differential equa-
tions.

This lecture is based on [Pla12, Pla10b].

2 Recap

Recall the following proof rules for differential equations from Lecture 11 on Differen-
tial Equations & Proofs:

Note 1 (Proof rules for differential equations).

(DI)
H ` F ′θx′

F ` [x′ = θ&H]F
(DW)

H ` F
Γ ` [x′ = θ&H]F,∆

(DC)
Γ ` [x′ = θ&H]C,∆ Γ ` [x′ = θ& (H ∧ C)]F ,∆

Γ ` [x′ = θ&H]F,∆

With cuts and generalizations, earlier lectures have also shown that the following can
be proved:

A ` F F ` [x′ = θ&H]F F ` B
A ` [x′ = θ&H]B

(1)

3 Arithmetic Ghosts

q :=
b

c
 q := ∗; ?qc = b q := ∗; ?qc = b ∧ c 6= 0

where q := ∗ is the nondeterministic assignment that assigns an arbitrary real number
to q.

x := 2+
b

c
+e q := ∗; ?qc = b; x := 2+q+e q := ∗; ?qc = b∧c 6= 0; x := 2+q+e

Here q is called an arithmetic ghost, because q is an auxiliary variable that is only in the
hybrid program for the sake of defining the quotient bc .

4 Nondeterministic Assignments & Ghosts of Choice

The HP statement x := ∗ is a nondeterministic assignment that assigns an arbitrary real
number to x. Comparing with the syntax of hybrid programs from Lecture 3 on Choice
& Control, however, it turns out that such a statement is not in the official language of
hybrid programs.

α, β ::= x := θ | ?H | x′ = θ&H | α ∪ β | α;β | α∗ (2)

What now?

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/11-diffcut.pdf
http://symbolaris.com/course/fcps13/11-diffcut.pdf
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf

Ghosts & Differential Ghosts L15.3

One possible solution, which is the one taken in the implementation of KeYmaera
[PQ08], is to add the nondeterministic assignment x := ∗ as a statement to the syntax of
hybrid programs.

α, β ::= x := θ | . . . | x := ∗
Consequently, nondeterministic assignments need a semantics to become meaningful.

7. ρ(x := ∗) = {(ν, ω) : ω = ν except for the value of x, which can be any real number}

And nondeterministic assignments finally need proof rules so that they can be handled
in proofs.

(〈:∗〉) ∃xφ
〈x := ∗〉φ ([:∗]) ∀xφ

[x := ∗]φ
Another approach for adding nondeterministic assignments x := ∗ to hybrid pro-

grams is to consider whether we even have to do that. That is, to understand whether
x := ∗ is truly a new program construct or whether it can be defined in terms of the
other hybrid program statements from (2). Is x := ∗ definable by a hybrid program?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

L15.4 Ghosts & Differential Ghosts

Nondeterministic assignment x := ∗ assigns any real number to x. One hybrid pro-
gram that has the same effect of giving x any arbitrary real value [Pla10b, Chapter 3]
is:

x := ∗ def≡ x′ = 1 ∪ x′ = −1 (3)

That is not the only definition of x := ∗, though. An equivalent definition is [Pla13]:

x := ∗ def≡ x′ = 1;x′ = −1

When working through the intended semantics of the left-hand side x := ∗ shown in
case 7 above and the actual semantics of the right-hand side of (3) according to Lecture
3, it becomes clear that both sides of (3) mean the same. Hence, the above definition (3)
capture the right concept. And, in particular, just like if-then-else, nondeterministic as-
signments do not really have to be added to the language of hybrid programs, because
they can already be defined. Likewise, no proof rules would have to be added for non-
deterministic assignments, because there are already proof rules for the constructs used
in the right-hand side of the definition of x := ∗ in (3). Since the above proof rules for
x := ∗ are particularly easy, though, it is usually more efficient to include them directly,
which is what KeYmaera does.

What may, at first sight, appear slightly spooky about (3), however, is that the left-
hand side x := ∗ is clearly an instant change in time where x changes its value instan-
taneously to some arbitrary new real number. That is less so for the right-hand side of
(3), which involves two differential equations, which take time to follow.

The clue is that this passage of time is not observable in the state of the system. Con-
sequently, the left-hand side of (3) really means the same as the right-hand side of (3).
Remember from earlier lectures that time is not special. If a CPS wants to refer to time,
it would have a clock variable twith the differential equation t′ = 1. With such an addi-
tion, however, the passage of time t becomes observable in the value of variable t and,
hence, a corresponding variation of the right-hand side of (3) would not be equivalent
to x := ∗ (indicated by 6≡):

x := ∗ 6≡ x′ = 1, t′ = 1 ∪ x′ = −1, t′ = 1

5 Differential-algebraic Ghosts

q′ =
b

c
 q′ = ∗& qc = b q′ = ∗& qc = b ∧ c 6= 0

See [Pla10b, Chapter 3] for the meaning of the nondeterministic differential equation
q′ = ∗.1

x′ = 2 +
b

c
+ e x′ = 2 + q + e, q′ = ∗& qc = b x′ = 2 + q + e, q′ = ∗& qc = b∧c 6= 0

1It is the same as the differential-algebraic constraint ∃d q′ = d, but differential-algebraic constraints have
not been introduced in this course so far.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf

Ghosts & Differential Ghosts L15.5

Variable q is a differential-algebraic ghost in the sense of being an auxiliary variable in
the differential-algebraic equation for the sake of defining the quotient bc .

Together with the reduction of divisions in discrete assignments from Sect. 3, plus the
inside that divisions in tests and evolution domain constraints can always be rewritten
to division-free form, is a (sketchy) proof showing that hybrid programs and differen-
tial dynamic logic do not need divisions [Pla10b]. The advantage of eliminating divi-
sions this way is that differential dynamic logic does not need special precautions for
divisions and that the handling of zero divisors is made explicit in the way the divisions
are eliminated from the formulas. In practice, however, it is still useful to use divisions,
yet great care has to be exercised to make sure that no inadvertent divisions by zero
could ever cause singularities.

6 Discrete Ghosts

Lemma 1 (Discrete ghosts). The following is a sound proof rule for introducing auxiliary
variables or (discrete) ghosts:

(IA)
Γ ` [y := θ]φ,∆

Γ ` φ,∆
where y is a new program variable.

That proof rule IA is sound can be argued based on the soundness of the substitution
axiom [:=] from Lecture 5 on Dynamical Systems & Dynamic Axioms. The assignment
axiom [:=] proves validity of

φ↔ [y := θ]φ

because the fresh variable y does not occur in φ.

7 Remember the Bouncing Ball

Recall the following sequent for the bouncing ball from Lecture 7 on Control Loops &
Invariants, which was based on an argument in Lecture 4 on Safety & Contracts.

2gh = 2gH − v2 ∧ h ≥ 0→ [h′ = v, v′ = −g&h ≥ 0](2gh = 2gH − v2 ∧ h ≥ 0) (4)

The dL formula (4) can be proved using the solutions of the differential equation
with proof rule [′]. dL formula (4) can also be proved using differential invariants, with
a differential cut and a use of differential weakening:

DC

DI

R
∗

h ≥ 0 ` 2gv = −2v(−g)
h ≥ 0 ` (2gh′ = −2vv′)vh′

−g
v′

2gh = 2gH − v2 ` [h′′ = −g&h ≥ 0]2gh = 2gH − v2
DW

ax
∗

h ≥ 0 ∧ 2gh = 2gH − v2 ` 2gh = 2gH − v2 ∧ h ≥ 0

2gh = 2gH − v2 ` [h′′ = −g&h ≥ 0 ∧ 2gh = 2gH − v2](2gh = 2gH − v2 ∧ h ≥ 0)

2gh = 2gH − v2 ` [h′′ = −g&h ≥ 0](2gh = 2gH − v2 ∧ h ≥ 0)

Note that differential weakening (DW) works for proving the postcondition h ≥ 0, but
DI would not work, because the derivative of h ≥ 0 is v ≥ 0, which is not an invariant

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/05-dynax.pdf
http://symbolaris.com/course/fcps13/07-loops.pdf
http://symbolaris.com/course/fcps13/07-loops.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf

L15.6 Ghosts & Differential Ghosts

of the bouncing ball since its velocity ultimately becomes negative when it is falling
according to gravity. Note that this proofs is very elegant and has notably easier arith-
metic than the arithmetic we ran into when working with solutions of the bouncing ball
in earlier lectures.

The reason why this proof worked so elegantly is that the invariant 2gh = 2gH −
v2 ∧ h ≥ 0 was a very good choice that we came up with in a clever way in Lecture 4.
Is there a way to prove (4) without such a distinctively clever invariant that works as a
differential invariant right away? Yes, of course, because (4) can even be proved using
solutions [′]. But it turns out that interesting things happen when we systematically try
to understand how to make a proof happen that does not use the solution rule [′] and,
yet, still uses solution-based arguments. Can you conceive a way to do use solutions
for differential equations without invoking rule [′]?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/04-contracts.pdf

Ghosts & Differential Ghosts L15.7

8 Differential Ghosts

2gh = 2gH − v2 ` [h′′ = −g&h ≥ 0](2gh = 2gH − v2 ∧ h ≥ 0)

Use the usual abbreviations:

Ah,v
def≡ 2gh = 2gH − v2

Bh,v
def≡ 2gh = 2gH − v2 ∧ h ≥ 0

(h′′ = −g)
def≡ (h′ = v, v′ = −g)

IA

DA

DC

DI

R
∗

h ≥ 0 ` −g = −1g

h ≥ 0 ` (v′ = −t′g)−gv′
1
t′

Ah,v ` {v0 := v}[h′′ = −g, t′ = 1 &h ≥ 0]v = v0 − tg
Ah,v ` {v0 := v}[h′′ = −g, t′ = 1 &h ≥ 0 ∧ v = v0 − tg]Bh,v

Ah,v ` {v0 := v}[h′′ = −g, t′ = 1 &h ≥ 0]Bh,v
Ah,v ` {v0 := v}[h′′ = −g&h ≥ 0]Bh,v

Ah,v ` [h′′ = −g&h ≥ 0]Bh,v

where the proof step marked DA omits the (here trivial) left premise of rule DA, which
proves because Bh,v ↔ ∃tBh,v is trivially valid in first-order logic, as the fresh t does
even occur in Bh,v here.

The right premise in the above proof proves as follows

IA

DC

DI

ax
∗

h ≥ 0 ∧ v = v0 − tg ` v = v0 − 2g2 t

h ≥ 0 ∧ v = v0 − tg ` (h′ = v0t′ − 2g2 tt
′)v
h′

1
t′

Ah,v ` {h0 := h, v0 := v}[h′′ = −g, t′ = 1 &h ≥ 0 ∧ v = v0 − tg]h = h0 + v0t− g
2 t

2
.

Ah,v ` {h0 := h, v0 := v}[h′′ = −g, t′ = 1 &h ≥ 0 ∧ v = v0 − tg]Bh,v
Ah,v ` {v0 := v}[h′′ = −g, t′ = 1 &h ≥ 0 ∧ v = v0 − tg]Bh,v

The proof step marked DC has a second premise which is elided (marked by .) and
proves as follows:

DW

R
∗

h ≥ 0 ∧ v = v0 − tg ∧ h = h0 + v0t− g
2 t

2 ` Bh,v
Ah,v ` {h0 := h, v0 := v}[h′′ = −g, t′ = 1 &h ≥ 0 ∧ v = v0 − tg ∧ h = h0 + v0t− g

2 t
2]Bh,v

The arithmetic (marked R) can be proved with enough care, but it has a twist! First of
all, the arithmetic can be simplified substantially using the equality substitution rule =r
and subsequent weakening.

` 2g(h0 + v0t− g
2 t

2) = 2gH − (v0 − tg)2

Wlh ≥ 0 ` 2g(h0 + v0t− g
2 t

2) = 2gH − (v0 − tg)2
∗

axh ≥ 0 ` h ≥ 0
∧r h ≥ 0 ` 2g(h0 + v0t− g

2 t
2) = 2gH − (v0 − tg)2 ∧ h ≥ 0

∧l,Wr h ≥ 0 ∧ v = v0 − tg ∧ h = h0 + v0t− g
2 t

2 ` 2g(h0 + v0t− g
2 t

2) = 2gH − (v0 − tg)2 ∧ h ≥ 0
=r h ≥ 0 ∧ v = v0 − tg ∧ h = h0 + v0t− g

2 t
2 ` 2gh = 2gH − v2 ∧ h ≥ 0

15-424 LECTURE NOTES ANDRÉ PLATZER

L15.8 Ghosts & Differential Ghosts

Observe how this use of equality substitution and weakening helped simplify the arith-
metic complexity of the formula substantially and even helped to eliminate a variable
(v) right away. This can be useful to simplify arithmetic in many other cases as well.
The arithmetic in the left branch

2g(h0 + v0t−
g

2
t2) = 2gH − (v0 − tg)2

expands by polynomial arithmetic and cancels as follows

2g(h0 + v0t − g
2 t

2) = 2gH − v20 + 2v0tg + t2g2

That leaves the remaining condition

2gh0 = 2gH − v20
Indeed, this relation characterizes exactly how H , which turns out to have been the
maximal height, relates to the initial height h0 and initial velocity v0. In the case of
initial velocity v0 = 0, this relation collapses to h0 = H .

For the case of the bouncing ball, this proof was unnecessarily complicated, because
the solution rule [′] could have been used instead. But the same proof technique can
be useful in more complicated systems that do not have computable solutions, but in
which other relations between initial (or intermediate) and final state can be proved.

Lemma 2 (Differential ghosts). The following is a sound proof rule differential auxil-
iaries (DA) for introducing auxiliary differential variables or differential ghosts [Pla12]:

(DA)
Γ ` φ↔ ∃y ψ,∆ Γ, ψ ` [x′ = θ, y′ = η&H]ψ,∆

Γ, φ ` [x′ = θ&H]φ,∆
This

proves
where y new and y′ = η, y(0) = y0 has a solution y : [0,∞)→ Rn for each y0.

Rule DA is applicable if y is a new variable and the new differential equation y′ = η
has global solutions on H (e.g., because term η satisfies a Lipschitz condition [Wal98,
Proposition 10.VII], which is definable in first-order real arithmetic and thus decidable).
Without that condition, adding y′ = η could limit the duration of system evolutions
incorrectly. In fact, it would be sufficient for the domains of definition of the solutions
of y′ = η to be no shorter than those of x. Soundness is easy to see, because precondition
φ implies ψ for some choice of y (left premise). Yet, for any y, ψ is an invariant of the
extended dynamics (right premise). Thus, ψ always holds after the evolution for some
y (its value can be different than in the initial state), which still implies φ (left premise).
Since y is fresh and its differential equation does not limit the duration of solutions
of x on H , this implies the conclusion. Since y is fresh, y does not occur in H , and,
thus, its solution does not leave H , which would incorrectly restrict the duration of the
evolution as well.

Intuitively, rule DA can help proving properties, because it may be easier to charac-
terize how x changes in relation to an auxiliary variable y with a suitable differential
equation (y′ = η).

15-424 LECTURE NOTES ANDRÉ PLATZER

Ghosts & Differential Ghosts L15.9

∗
R ` x > 0↔ ∃y xy2 = 1

∗
R ` −xy2 + 2xy y2 = 0

` (x′y2 + x2yy′ = 0)
−x
x′

y
2
y′

DIxy2 = 1 ` [x′ = −x, y′ = y
2]xy2 = 1

DA x > 0 ` [x′ = −x]x > 0

It can be shown [Pla12] that there are properties such as this one that need differential
ghosts (or differential auxiliaries) to prove.

9 Axiomatic Ghosts

When neglecting wind, gravitation, and so on, which is appropriate for analysing co-
operation in air traffic control [TPS98], the in-flight dynamics of an aircraft at x can be
described by the following differential equation system; see [TPS98] for details:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω. (5)

That is, the linear velocity v of the aircraft changes both positions x1 and x2 in the
(planar) direction corresponding to the orientation ϑ the aircraft is currently heading
toward. Further, the angular velocity ω of the aircraft changes the orientation ϑ of the
aircraft.

x1

x2

y1

y2

d

ω e

ϑ̄

̟

Figure 2: Aircraft dynamics

Unlike for straight-line flight (ω = 0), the nonlinear dynamics in (5) is difficult to anal-
yse [TPS98] for curved flight (ω 6= 0), especially due to the trigonometric expressions
which are generally undecidable. Solving (5) requires the Floquet theory of differential
equations with periodic coefficients [Wal98, Theorem 18.X] and yields mixed polyno-
mial expressions with multiple trigonometric functions. A true challenge, however,
is the need to verify properties of the states that the aircraft reach by following these
solutions, which requires proving that complicated formulas with mixed polynomial
arithmetic and trigonometric functions hold true for all values of state variables and
all possible evolution durations. However, quantified arithmetic with trigonometric
functions is undecidable by Gödel’s incompleteness theorem [Göd31].

15-424 LECTURE NOTES ANDRÉ PLATZER

L15.10 Ghosts & Differential Ghosts

To obtain polynomial dynamics, we axiomatize the trigonometric functions in the
dynamics differentially and reparametrize the state correspondingly. Instead of angular
orientation ϑ and linear velocity v, we use the linear speed vector

d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2

which describes both the linear speed ‖d‖ :=
√
d21 + d22 = v and the orientation of the

aircraft in space; see Figs. 2 and 3. Substituting this coordinate change into differential

x1

x2

v sinϑ = d2

d1 = v cosϑ

d

Figure 3: Reparametrize for differential axiomatization

equations (5), we immediately have x′1 = d1 and x′2 = d2. With the coordinate change,
we further obtain differential equations for d1, d2 from differential equation system (5)
by simple symbolic differentiation:

d′1= (v cosϑ)′ = v′ cosϑ+ v(− sinϑ)ϑ′ = −(v sinϑ)ω = −ωd2,
d′2= (v sinϑ)′ = v′ sinϑ+ v(cosϑ)ϑ′ = (v cosϑ)ω = ωd1.

The middle equality holds for constant linear velocity (v′ = 0), which we assume, be-
cause only limited variations in linear speed are possible and cost-effective during the
flight [TPS98, LLL00] so that angular velocity ω is the primary control parameter in air
traffic control. Hence, equations (5) can be restated as the following differential equa-
tion F(ω):

x′1 = d1 , x
′
2 = d2 , d

′
1 = −ωd2 , d′2 = ωd1 (F(ω))

y′1 = e1 , y
′
2 = e2 , e

′
1 = −$e2 , e′2 = $e1 (G($))

Differential equation F(ω) expresses that position x = (x1, x2) changes according to
the linear speed vector d = (d1, d2), which in turn rotates according to ω. Simultane-
ous movement together with a second aircraft at y ∈ R2 having linear speed e ∈ R2

(also indicated with angle ϑ̄ in Fig. 2) and angular velocity $ corresponds to the differ-
ential equation F(ω),G($). Differential equations capture simultaneous dynamics of
multiple traffic agents succinctly using conjunction.

By this differential axiomatization, we thus obtain polynomial differential equations.
Note, however, that their solutions still involve the same complicated nonlinear trigono-
metric expressions so that solutions still give undecidable arithmetic [Pla10b, Appendix
B]. Our proof calculus in this chapter works with the differential equations themselves
and not with their solutions, so that differential axiomatization helps.

The same technique helps when handling other special functions in other cases by
differential axiomatization.

15-424 LECTURE NOTES ANDRÉ PLATZER

Ghosts & Differential Ghosts L15.11

10 Summary

The major lesson from today’s lecture is that it can sometimes be easier to relate a vari-
able to its initial value or to other quantities. Ghosts, in their various forms, let us
achieve that by adding auxiliary variables into the system dynamics. Sometimes such
ghosts are even necessary to prove properties. Although, as a workaround, it is also
sometimes possible to rewrite the original model so that it already includes the ghost
variables. The phenomenon that relations between state and ghost variables are some-
times easier to prove than just properties of state variables applies in either case. A
secondary goal of today’s lecture is, again, developing more intuition and deeper un-
derstandings of differential invariants and differential cuts.

References

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Mon. hefte Math. Phys., 38:173–198, 1931.

[LLL00] Carolos Livadas, John Lygeros, and Nancy A. Lynch. High-level modeling
and analysis of TCAS. Proc. IEEE - Special Issue on Hybrid Systems: Theory &
Applications, 88(7):926–947, 2000.

[Pla10a] André Platzer. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput., 20(1):309–352, 2010. doi:10.1093/logcom/exn070.

[Pla10b] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg, 2010. doi:10.1007/978-3-642-14509-4.

[Pla12] André Platzer. The structure of differential invariants and differential cut
elimination. Logical Methods in Computer Science, 8(4):1–38, 2012. doi:10.

2168/LMCS-8(4:16)2012.

[Pla13] André Platzer. A complete axiomatization of differential game logic for hy-
brid games. Technical Report CMU-CS-13-100R, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, January, Revised and extended
in July 2013.

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover
for hybrid systems. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, IJCAR, volume 5195 of LNCS, pages 171–178. Springer, 2008.
doi:10.1007/978-3-540-71070-7_15.

[TPS98] Claire Tomlin, George J. Pappas, and Shankar Sastry. Conflict resolution for air
traffic management: a study in multi-agent hybrid systems. IEEE T. Automat.
Contr., 43(4):509–521, 1998.

[Wal98] Wolfgang Walter. Ordinary Differential Equations. Springer, 1998.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.1007/978-3-540-71070-7_15

	Introduction
	Recap
	Arithmetic Ghosts
	Nondeterministic Assignments & Ghosts of Choice
	Differential-algebraic Ghosts
	Discrete Ghosts
	Remember the Bouncing Ball
	Differential Ghosts
	Axiomatic Ghosts
	Summary

