15-819M Data, Code, DecisionsAssignment 2 $(\sum 50)$ due by Tue 10/13/2009

André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA aplatzer@cs.cmu.edu

Disclaimer: No solution will be accepted that comes without an explanation! Exercise 1 First-Order Sequent Calculus (22p)

- 1. Prove or disprove the following formulas using the sequent calculus presented in class or give counterexamples:
 - a) $C \lor \forall x (\neg p(x) \land \neg q(x))) \to ((\exists y (\neg q(y) \to p(y))) \to C)$
 - b) $\forall a \forall b \forall c(r(a, b) \land r(b, c) \rightarrow r(a, c)) \land \forall a \neg r(a, a) \rightarrow \forall a \forall b(r(a, b) \rightarrow \neg r(b, a))$
 - c) $(\forall x \forall y \forall z (p(x, y) \land p(y, z) \rightarrow p(z, x)) \land \forall x p(x, f(x))) \rightarrow \forall x \exists y p(y, x)$
 - d) $(\forall x (g(x) \to c(x)) \land \forall x \forall y (c(x) \land c(y) \to s(x,y)) \land \exists x g(x)) \to \forall x (c(x) \to \exists y s(x,y))$
 - e) $\forall x \,\forall y \,\forall z \,(p(x,y) \wedge p(y,z) \to p(z,x)) \wedge \forall x \,p(x,f(x)) \to \forall x \,\exists y \,p(y,x)$
- 2. Pick two formulas from the above list and prove them in KeY.

Exercise 2 First-Order Logic with Equality (3p)

1. Prove or disprove the following formulas using the sequent calculus presented in class or give counterexamples:

a)
$$(\forall x \, g(x) = f(g(x))) \land g(g(a)) = c \rightarrow f(g(f(g(a)))) = c$$

Exercise 3 Logical Modeling (25p)

We call relation $R \subseteq D \times D$ reflexive if $\{(a, a) : a \in D\} \subseteq R$. We call relation $R \subseteq D \times D$ irreflexive if $\{(a, a) : a \in D\} \cap R = \emptyset$. We call relation R symmetric if $\{(a, b) : (b, a) \in R\} \subseteq R$. We call relation R asymmetric if it is symmetric at no point, i.e., we never find $(b, a) \in R$ and $(a, b) \in R$ simultaneously.

We call relation R transitive if $\{(a,b) : (a,c) \in R, (c,b) \in R \text{ for some } c\} \subseteq R$. We call relation R Euclidean if $\{(a,b) : (a,c) \in R, (b,c) \in R \text{ for some } c\} \subseteq R$.

- 1. Formalize each of those notions about relations in first-order logic.
- 2. Formalize the conjecture that all asymmetric relations are irreflexive.
- 3. Formalize the conjecture that all relations that are transitive and irreflexive are also asymmetric.
- 4. Formalize the conjecture that all reflexive Euclidean relations are equivalence relations.
- 5. Formalize the conjecture that all Euclidean relations are symmetric relations.
- 6. Prove these conjectures in KeY or give counterexamples.