15-819M: Data, Code, Decisions 14: Instance Based Methods

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA

15-819M/14: Data, Code, Decisions

Recent Trends in Instance Based Proving

Instance Based Methods (IMs): a family of calculi and proof procedures for first-order logic (clauses), developed over past 15 years.

Overview

- Common principles behind IMs, some calculi, proof procedures
- Comparison among IMs, difference from tableaux and resolution
- Ranges of applicability/non-applicability
- Picking up SAT techniques
- ? Improvements and extensions: universal variables, equality, ...
- ? Implementations and implementation techniques

Acknowledgments

Slides based on tutorial "Instance Based Methods" by Peter Baumgartner and Gernot Stenz at TABLEAUX'05

Skolem-Herbrand-Löwenheim Theorem

 $\forall \phi \text{ is unsatisfiable iff some finite set of ground instances } \{\phi \gamma_1, \dots, \phi \gamma_n\}$ is unsatisfiable

For refutational theorem proving (i.e. start with negated conjecture) thus sufficient to

- incrementally enumerate finite sets of ground instances, and
- test each for propositional unsatisfiability.
 Stop with "unsatisfiable" when the first propositionally unsatisfiability set arrives

This has been known for a long time: Gilmore's algorithm, DPLL It is also a common principle behind IMs

Skolem-Herbrand-Löwenheim Theorem

 $\forall \phi \text{ is unsatisfiable iff some finite set of ground instances } \{\phi \gamma_1, \dots, \phi \gamma_n\}$ is unsatisfiable

For refutational theorem proving (i.e. start with negated conjecture) thus sufficient to

- incrementally enumerate finite sets of ground instances, and
- test each for propositional unsatisfiability.
 Stop with "unsatisfiable" when the first propositionally unsatisfiability set arrives

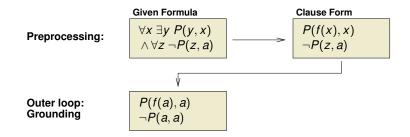
This has been known for a long time: Gilmore's algorithm, DPLL It is also a common principle behind IMs

So what's special about IMs? Do this in a clever way!

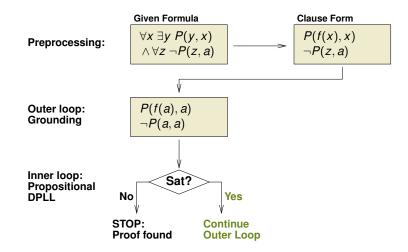
	Given Formula	Clause Form	
Preprocessing:	$\forall x \exists y P(y, x) \\ \land \forall z \neg P(z, a)$	>	$P(f(x), x) \\ \neg P(z, a)$

Outer loop: Grounding

Inner loop: Propositional DPLL

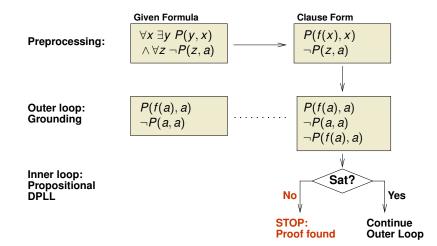


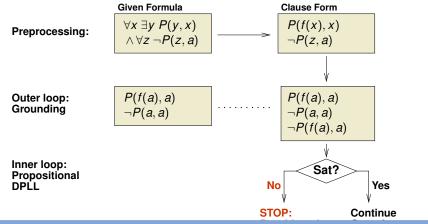
Inner loop: Propositional DPLL



	Given Formula		Clause Form
Preprocessing:	$\forall x \exists y P(y, x) \\ \land \forall z \neg P(z, a)$	>	P(f(x), x) $\neg P(z, a)$
			\bigvee
Outer loop: Grounding	P(f(a), a) $\neg P(a, a)$		$P(f(a), a) \\ \neg P(a, a) \\ \neg P(f(a), a)$

Inner loop: Propositional DPLL





Problems/Issues

- Controlled grounding process in outer loop (irrelevant instances)
- Repeat work across inner loops
- Weak redundancy criterion within inner loop

André Platzer (CMU)

15-819M/14: Data, Code, Decisions

Part I: Overview of IMs

- Classification of IMs and some representative calculi
- Emphasis not too much on the details
- Identify common principles and also differences
- Comparison with resolution and tableaux
- Applicability/Non-Applicability

Development of IMs (I)

IM History

- List existing methods (apologies for "forgotten" ones ...)
- Define abbreviations used later on
- Provide pointer to literature
- Itemize structure indicates reference relation (when obvious)
- Not: table of contents of what follows (presentation is systematic instead of historical)

DPLL – Davis-Putnam-Logemann-Loveland procedure [Davis and Putnam, 1960], [Davis *et al.*, 1962b], [Davis *et al.*, 1962a], [Davis, 1963], [Chinlund *et al.*, 1964]

FDPLL – First-Order DPLL [Baumgartner, 2000]

- ME Model Evolution Calculus [Baumgartner and Tinelli, 2003]
- ME with Equality [Baumgartner and Tinelli, 2005]

Development of IMs (III)

HL – Hyperlinking [Lee and Plaisted, 1992]

- SHL Semantic Hyper Linking [Chu and Plaisted, 1994]
- OSHL Ordered Semantic Hyper Linking [Plaisted and Zhu, 1997]

PPI – Primal Partial Instantiation (1994) [Hooker et al., 2002]

- "Inst-Gen" [Ganzinger and Korovin, 2003]
- MACE-Style Finite Model Buiding [McCune, 1994],..., [Claessen and Sörensson, 2003]

DC – Disconnection Method [Billon, 1996]

- HTNG Hyper Tableaux Next Generation
 [Baumgartner, 1998]
- DCTP Disconnection Tableaux [Letz and Stenz, 2001]

Ginsberg & Parkes method [Ginsberg and Parkes, 2000]

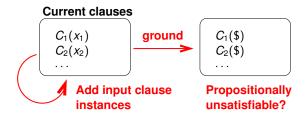
OSHT – Ordered Semantic Hyper Tableaux [Yahya and Plaisted,

Two-Level Calculi

- Separation between instance generation and SAT solving phase
- Uses (arbitrary) propositional SAT solver as a subroutine
- DPLL, HL, SHL, OSHL, PPI, Inst-Gen

Problem:

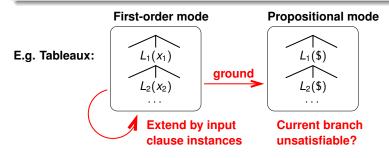
How to tell SAT solver e.g. $\forall x P(x)$?



Two-Level vs. One-Level Calculi

One-Level Calculi

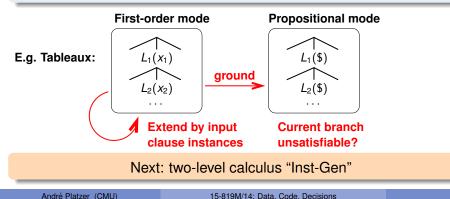
- Monolithic: one single base calculus, two modes of operation
- First-order mode: base calculus clauses from input instances
- Propositional mode: \$-instance of clauses drives first-order mode
- HyperTableaux NG, DCTP (see Part II), OSHT, FDPLL, ME



Two-Level vs. One-Level Calculi

One-Level Calculi

- Monolithic: one single base calculus, two modes of operation
- First-order mode: base calculus clauses from input instances
- Propositional mode: \$-instance of clauses drives first-order mode
- HyperTableaux NG, DCTP (see Part II), OSHT, FDPLL, ME



- Inst-Gen is simple and elegant
- Next:
 - Idea behind Inst-Gen (it provides a clue to the working of two-level calculi)
 - Inst-Gen calculus
 - Comparison to resolution
 - Mentioning some improvements "idea behind"
- References: [Ganzinger and Korovin, 2003]

Important notation:

 \perp denotes both a unique constant and a substitution that maps every variable to $\perp.$

Example (*S* is "current clause set"):

$$S: P(x, y) \lor P(y, x) \\ \neg P(x, x)$$

$$S\perp: P(\perp,\perp) \lor P(\perp,\perp) \ \neg P(\perp,\perp)$$

Analyze $S \perp$: Case 1: SAT detects unsatisfiability of $S \perp$ Then Conclude S is unsatisfiable

Important notation:

 \perp denotes both a unique constant and a substitution that maps every variable to $\perp.$

Example (*S* is "current clause set"):

Analyze $S \perp$: Case 1: SAT detects unsatisfiability of $S \perp$ Then Conclude S is unsatisfiable

But what if $S\perp$ is satisfied by some model, denoted by I_{\perp} ?

Main idea:

Associate to model I_{\perp} of S_{\perp} a *candidate model* I_S of S. *Calculus goal:* add instances to S so that I_S becomes a model of S

Example:

$$S: \quad \underbrace{P(x) \lor Q(x)}_{\neg P(a)} \qquad \qquad S\bot: \quad \underbrace{P(\bot) \lor Q(\bot)}_{\neg P(a)}$$

Analyze $S \perp$:

Case 2: SAT detects model $I_{\perp} = \{P(\perp), \neg P(a)\}$ of S_{\perp} Case 2.1: candidate model $I_{S} = \{\neg P(a)\}$ derived from literals <u>selected</u> in *S* by I_{\perp} is not a model of *S*

Main idea:

Associate to model I_{\perp} of S_{\perp} a *candidate model* I_S of S. *Calculus goal:* add instances to S so that I_S becomes a model of S

Example:

$$S: \underbrace{P(x) \lor Q(x)}_{\neg P(a)} \qquad \qquad S\bot: \underbrace{P(\bot) \lor Q(\bot)}_{\neg P(a)}$$

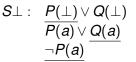
Analyze $S \perp$:

- Case 2: SAT detects model $I_{\perp} = \{P(\perp), \neg P(a)\}$ of S_{\perp}
- Case 2.1: candidate model $I_S = \{\neg P(a)\}$ derived from literals selected in *S* by I_\perp is not a model of *S*

Add "problematic" instance $P(a) \lor Q(a)$ to S to refine I_S

Inst-Gen - Underlying Idea (III)

Clause set after adding $P(a) \lor Q(a)$



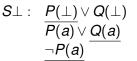
Analyze $S \perp$:

Case 2: SAT detects model $I_{\perp} = \{P(\perp), Q(a), \neg P(a)\}$ of S_{\perp} Case 2.2: candidate model $I_S = \{Q(a), \neg P(a)\}$ derived from literals <u>selected</u> in *S* by I_{\perp} *is* a model of *S* Then conclude *S* is satisfiable

Inst-Gen - Underlying Idea (III)

Clause set after adding $P(a) \lor Q(a)$

$$S: \quad \frac{P(x) \lor Q(x)}{P(a) \lor Q(a)} \\ \neg P(a)$$



Analyze $S \perp$:

Case 2: SAT detects model $I_{\perp} = \{P(\perp), Q(a), \neg P(a)\}$ of S_{\perp} Case 2.2: candidate model $I_S = \{Q(a), \neg P(a)\}$ derived from literals <u>selected</u> in *S* by I_{\perp} *is* a model of *S* Then conclude *S* is satisfiable

How to derive candidate model I_S ?

Inst-Gen - Model Construction

It provides (partial) interpretation for S_{ground} for given clause set S

$$S: \frac{P(x) \lor Q(x)}{P(a) \lor Q(a)} \qquad \Sigma = \{a, b\}, S_{ground}: \frac{P(b) \lor Q(b)}{P(a) \lor Q(a)} \\ \underline{\neg P(a)} \qquad \underline{\neg P(a)}$$

- For each C_{ground} ∈ S_{ground} find most specific C ∈ S that can be instantiated to C_{ground}
- <u>Select literal</u> in C_{ground} corresponding to <u>selected literal</u> in that C
- Add <u>selected literal</u> of that C_{ground} to I_S if not in conflict with I_S

Thus, $I_S = \{P(b), Q(a), \neg P(a)\}$

į

- Previous slides showed the main ideas underlying the working of calculus - not the calculus itself
- The models I_⊥ and the candidate model I_S are not needed in the calculus, but justify improvements
- And they provide the conceptual tool for the completeness proof: as instances of clauses are added, the initial approximation of a model of *S* is refined more and more
- The purpose of this refinement is to remove conflicts "A − ¬A" by selecting different literals in instances of clauses
- If this process does not lead to a refutation, every ground instance Cγ of a clause C ∈ S will be assigned true by some sufficiently developed candidate model

Inst-Gen Inference Rule

Inst-Gen
$$\frac{C \lor L}{(C \lor L)\theta} = \frac{\overline{L'} \lor D}{(\overline{L'} \lor D)\theta}$$
 where

(i) $\theta = mgu(L, L')$, and

(ii) θ a proper instantiator: maps some variables to nonvariable terms

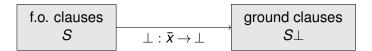
Example:

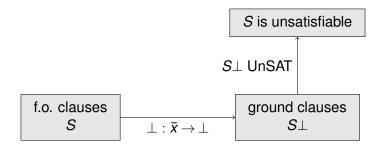
Inst-Gen
$$\frac{Q(x) \lor P(x,b) - \neg P(a,y) \lor R(y)}{Q(a) \lor P(a,b) - \neg P(a,b) \lor R(b)}$$
 where

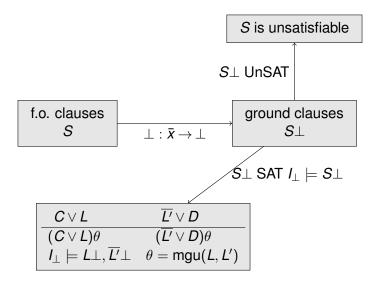
(i)
$$\theta = \operatorname{mgu}(P(x, b), \neg P(a, y)) = \{x \to a, y \to b\}$$
, and

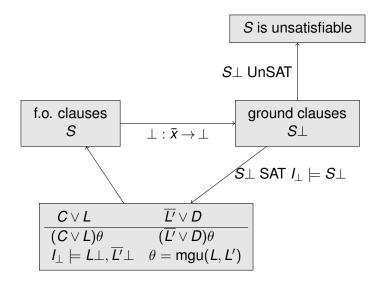
(ii) θ a proper instantiator

f.o. clauses S









Properties and Improvements

- As efficient as possible in propositional case
- Literal selection in the calculus
 - Require "back channel" from SAT solver (output of models) to select literals in *S* (as obtained in I_{\perp})
 - Restrict inference rule application to selected literals
 - Need only consider instances falsified in I_S
 - Allows to extract model if S is finitely saturated
 - Flexibility: may change models I_{\perp} arbitrarily during derivation
- Hyper-type inference rule, similar to Hyper Linking [Lee and Plaisted, 1992]
- Subsumption deletion by proper subclauses
- Special variables: allows to replace SAT solver by solver for richer fragment (guarded fragment, two-variable fragment)

Resolution vs. Inst-Gen

 $\frac{(C \lor L) \quad (\overline{L'} \lor D)}{(C \lor D)\theta}$ $\theta = mgu(L, L')$

- Inefficient for propositional
- Length of clauses grow fast
- Recombination of clauses
- Subsumption deletion
- A-Ordered resolution: selection by term ordering
- Difficult to extract model
- Decides guarded fragment, two-variable fragment, some classes defined by Leitsch et al., not Bernays-Schönfinkel

 $\begin{array}{c|c} \text{Inst-Gen} \\ \hline C \lor L & \overline{L'} \lor D \\ \hline (C \lor L)\theta & (\overline{L'} \lor D)\theta \\ \theta = \mathsf{mgu}(L,L') \end{array}$

- Efficient in propositional case
- Length of clauses fixed
- No recombination of clauses
- Subsumption deletion limited
- Selection based on propositional model
- Easy to extract model
- Decides Bernays-Schönfinkel class, nothing else known yet
- Current CASC-winning

DPLL - Davis-Putnam-Logemann-Loveland Procedure

Weak concept of redundancy already present (purity deletion)

PPI – Primal Partial Instantiation

- Comparable to Inst-Gen, but see [Jacobs and Waldmann, 2005]
- With fixed iterative deepening over term-depth bound

MACE-Style Finite Model Building (Different Focus)

- Enumerate finite domains $\{0\},\,\{0,1\},\,\{0,1,2\},\,\ldots$
- Transform clause set to encode search for finite domain model
- Apply (incremental) SAT solver
- Complete for finite models, not refutationally complete

HL - Hyper Linking (Clause Linking)

- Uses hyper type of inference rule, based on simultaneous mgu of nucleus and electrons
- Doesn't use selection (no guidance from propositional model)

SHL - Semantic Hyper Linking

- Uses "back channel" from SAT solver to guide search: find *single* ground clause $C\gamma$ so that $I_{\perp} \not\models C\gamma$ and add it
- Doesn't use unification; basically guess ground instance, but ...
- Practical effectiveness achieved by other devices:
 - Start with "natural" initial interpretation
 - "Rough resolution" to eliminate "large" literals
 - Predicate replacement to unfold definitions [Lee and Plaisted, 1989]
- Important reference: [Plaisted, 1994]

OSHL - Ordered Semantic Hyper Linking

- [Plaisted and Zhu, 1997], [Plaisted and Zhu, 2000]
- Goal-orientation by chosing "natural" initial interpretation *I*₀ that falsifies (negated) theorem clause, but satisfies most of the theory clauses
- Stepwisely modify *I*₀
 Modified interpretation represented as *I*₀(*L*₁,..., *L_m*)
 (which is like *I*₀ except for ground literals *L*₁,..., *L_m*)
- Completeness via fair enumeration of modifications
- Special treatment of unit clauses
- Subsumption by proper subclauses
- Uses A-ordered resolution as propositional decision procedure

OSHL Proof Procedure

Input: S, I_0 ;; S input clauses I_0 initial interpretation $I := I_0$:: Current interpretation $G := \{\}$:: Current ground instances from S while $\{\} \notin G$ do if $l \models S$::... and this can be detected then return "satisfiable" search $C \in S$ and γ such that $I \not\models C\gamma$;; Instance generation $G := simplify(G, C\gamma)$;; Have $C\gamma \in G$ after simplification $I := update(I_0, G)$;; Update such that $I \models G$ end while return "unsatisfiable"

How to search *C* and γ for given $I = I_0(L_1, \ldots, L_m)$

- Guess $C \in S$ and partition $C = C_1 \cup C_2$
- Let θ matcher of C_1 to $(\overline{L_1}, \ldots, \overline{L_m})$ (with complementary signs)
- Guess δ s.th. $I_0(L_1, \ldots, L_m) \not\models C\gamma$, where $\gamma = \theta \delta$

Search and Update in OSHL

IMs - Classification

Recall:

- Two-level calculi: instance generation separated from SAT solving – may use any SAT solver
- One-level calculi: monolithic, with two modes of operation: First-order mode and propositional mode Developed so far:

IM	Extended Calculus
DC	Connection Method, Tableaux
DCTP	Tableaux
OSHT	Hyper Tableaux
Hyper Tableaux NG	Hyper Tableaux
FDPLL	DPLL
ME	DPLL

IMs - Classification

Recall:

- Two-level calculi: instance generation separated from SAT solving – may use any SAT solver
- One-level calculi: monolithic, with two modes of operation: First-order mode and propositional mode Developed so far:

IM	Extended Calculus
DC	Connection Method, Tableaux
DCTP	Tableaux
OSHT	Hyper Tableaux
Hyper Tableaux NG	Hyper Tableaux
FDPLL	DPLL
ME	DPLL

Next: one-level calculus: FDPLL (simpler) / ME (better)

FDPLL: lifting of propositional core of DPLL to **F**irst-order logic

Why?

[Baumgartner, 2000]

- Lift very efficient propositional DPLL techniques to first-order
- From propositional DPLL: binary splitting, backjumping, learning, restarts, selection heuristics, simplification, ...
 Not all achieved yet; simplification not in FDPLL, but in ME
- Successful first-order techniques: unification, special treatment of unit clauses, subsumption (limited)
- For theorem proving: alternative to established methods
- For *model computation:* counterexamples, diagnosis, abduction, planning, nonmonotonic reasoning,... – largely unexplored

- Propositional DPLL as a semantic tree method
- FDPLL calculus
- Model Evolution calculus
- FDPLL/ME vs. OSHL
- FDPLL/ME vs. Inst-Gen

(1)
$$A \lor B$$
 (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

$$\begin{cases} \} \not\models A \lor B \\ \{\} \models C \lor \neg A \\ \{\} \models D \lor \neg C \lor \neg A \\ \{\} \models \neg D \lor \neg B \end{cases}$$

 $\langle empty tree \rangle$

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (*)
 André Platzer (CMU)
 15-819M/14: Data, Code, Decisions

(1)
$$A \lor B$$
 (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

$$\begin{cases} A \rbrace \models A \lor B \\ \{A\} \models C \lor \neg A \\ \{A\} \models D \lor \neg C \lor \neg A \\ \{A\} \models \neg D \lor \neg B \end{cases}$$

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- $\bullet\,$ Close branch if some clause is plainly falsified by it (\star)

André Platzer (CMU)

(1)
$$A \lor B$$
 (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

$$\begin{cases} A, C \} \models A \lor B \\ \{A, C\} \models C \lor \neg A \\ \{A, C\} \models D \lor \neg C \lor \neg A \\ \{A, C\} \models \neg D \lor \neg B \end{cases}$$

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (*)

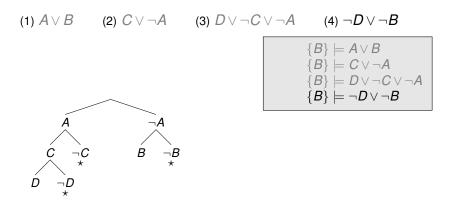
André Platzer (CMU)

(1)
$$A \lor B$$
 (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

$$\begin{cases} A, C, D \} \models A \lor B \\ \{A, C, D\} \models C \lor \neg A \\ \{A, C, D\} \models D \lor \neg C \lor \neg A \\ \{A, C, D\} \models \neg D \lor \neg B \end{cases}$$

- A Branch stands for an interpret **Apple I** $\{A, C, D\}$ found.
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (*)

André Platzer (CMU)

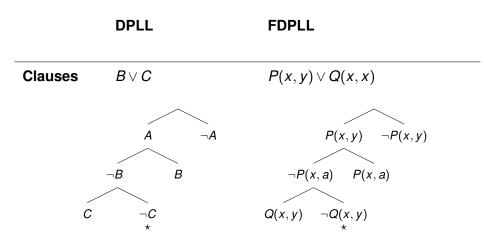


Model $\{B\}$ found.

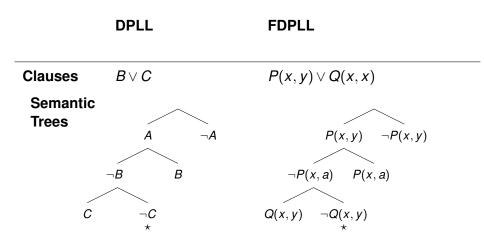
- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)

André Platzer (CMU)

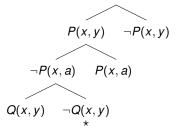
Meta-Level Strategy: Lifted data structures



Meta-Level Strategy: Lifted data structures

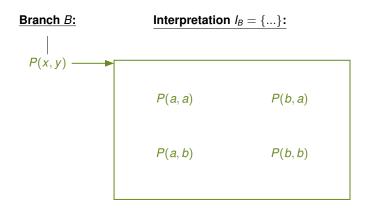


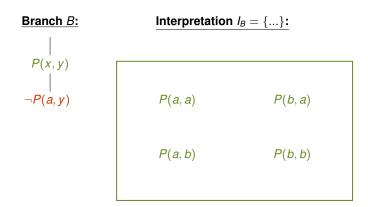
First-Order Semantic Trees

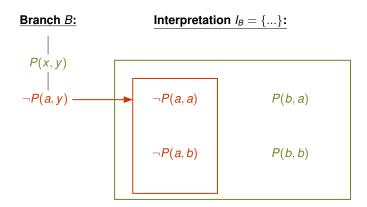


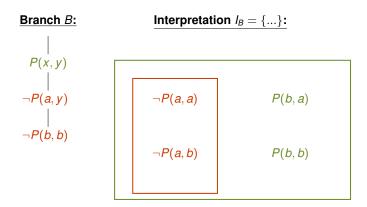
Issues:

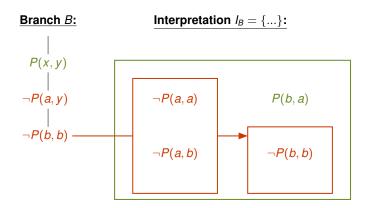
- How are variables treated?
 (a) Universal?, (b) Rigid?, (c) Schematic!
- What is the interpretation represented by a branch? Clue to understanding of FDPLL (as is for Inst-Gen)

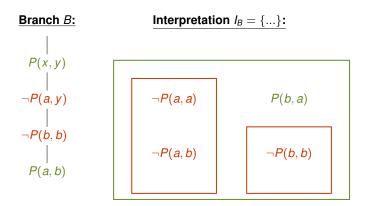


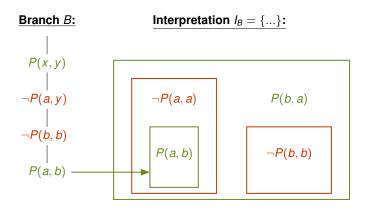


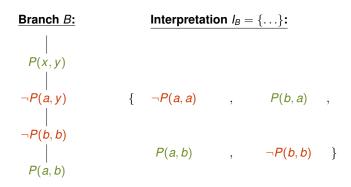












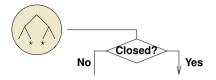
- A branch literal specifies the truth values for all its ground instances, unless there is a more specific literal specifying the opposite truth value
- The order of literals does not matter

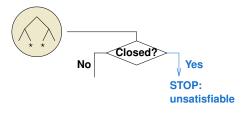
André Platzer (CMU)

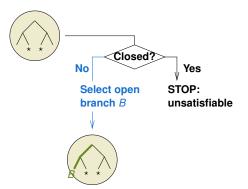
Input: a clause set S

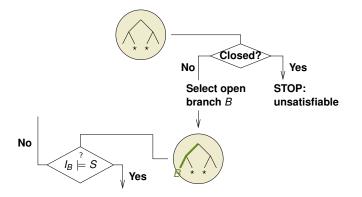
Output: "unsatisfiable" or "satisfiable" (if it terminates)

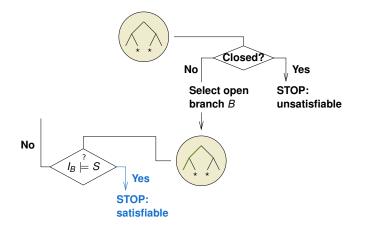
Note: Strategy much like in *inner* loop of propositional DPLL:

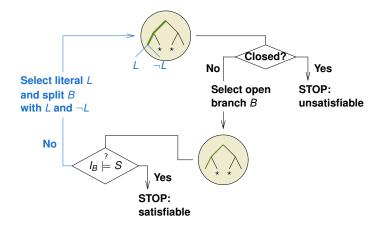




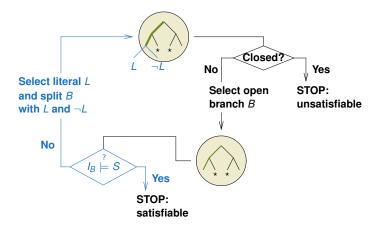








Input: a clause set *S Output:* "unsatisfiable" or "satisfiable" (if it terminates) Note: Strategy much like in *inner* loop of propositional DPLL:



Not here: FDPLL derivation rules for testing $I_B \models S$ and Splitting

André Platzer (CMU)

FDPLL – Model Computation Example

Computed Model (as output by Darwin implementation)

- (1) train(X,Y) ; flight(X,Y).
- (2) -flight(sb,X).
- (3) flight(X,Y) :- flight(Y,X). %% flight is symmetric
- (4) connect(X,Y) :- flight(X,Y). %% a flight is a connection
- (5) connect(X,Y) :- train(X,Y). %% a train is a connection

%% train from X to Y or flight.

%% no flight from sb to anywhere

FDPLL – Model Computation Example

Computed Model (as output by Darwin implementation)

- (1) train(X,Y) ; flight(X,Y).
- (2) -flight(sb,X).
- (3) flight(X,Y) :- flight(Y,X). %% flight is symmetric
- (4) connect(X,Y) :- flight(X,Y). %% a flight is a connection
- (5) connect(X,Y) :- train(X,Y). %% a train is a connection

%% train from X to Y or flight.

%% no flight from sb to anywhere

- + flight(X, Y)
- flight(sb, X)
- flight(X, sb)
- + train(sb, Y)
- + train(Y, sb)
- + connect(X, Y)

FDPLL Model Computation Example - Derivation

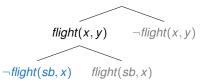
Clause instance used in inference: $train(x, y) \lor flight(x, y)$

André Platzer (CMU)

FDPLL Model Computation Example - Derivation

Clause instance used in inference: $\neg flight(sb, x)$

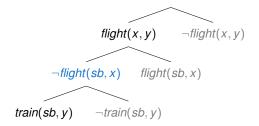
André Platzer (CMU)



Clause instance used in inference: $train(sb, y) \lor flight(sb, y)$

André Platzer (CMU)

15-819M/14: Data, Code, Decisions

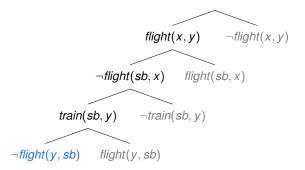


Clause instance used in inference:

 $flight(sb, y) \lor \neg flight(y, sb)$

André Platzer (CMU)

15-819M/14: Data, Code, Decisions

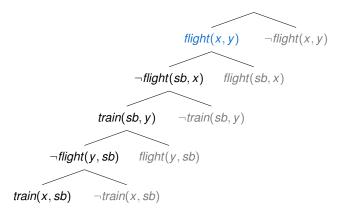


Clause instance used in inference:

 $train(x, sb) \lor flight(x, sb)$

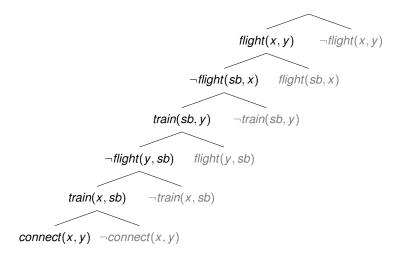
André Platzer (CMU)

15-819M/14: Data, Code, Decisions



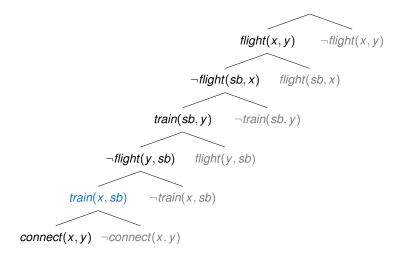
Clause instance used in inference:

 $connect(x, y) \lor \neg flight(x, y)$



Done. Return "satisfiable with model {*flight*(x, y),..., *connect*(x, y)}"

André Platzer (CMU)



Done. Return "satisfiable with model {*flight*(x, y),..., *connect*(x, y)}"

André Platzer (CMU)

Model Evolution (ME) Calculus

- Same motivation as for FDPLL: lift propositional DPLL to first-order
- Loosely based on FDPLL, but not really an "extension"
- Extension of Tinelli's sequent-style DPLL [Tinelli, 2002]
- See [Baumgartner and Tinelli, 2003] for calculus, [?] for implementation "Darwin"

Difference to FDPLL

- Systematic treatment of universal and schematic variables
- Includes first-order versions of unit simplification rules
- Presentation as a sequent-style calculus, to cope with dynamically changing branches and clause sets due to simplification

FDPLL/ME vs. OSHL

Recall OSHL:

- Incrementally modify *I*₀
 Modified interpretation represented as *I*₀(*L*₁,..., *L_m*)
- Find next ground instance C_γ by unifying subclause of C against (L₁,..., L_m) and guess Herbrand-instantiation of rest clause, so that I₀(L₁,..., L_m) ⊭ C_γ

FDPLL/ME

- Initial interpretation I₀ is a trival one (e.g. "false everywhere")
- But (L_1, \ldots, L_m) is a set of first-order literals now
- Find next (possibly) non-ground instance $C\sigma$ by unifying C against (L_1, \ldots, L_m) so that $(L_1, \ldots, L_m) \not\models C\sigma$

FDPLL/ME vs. Inst-Gen

FDPLL/ME and Inst-Gen temporarily switch to propositional reasoning. But:

Inst-Gen (and other two-level calculi)

- Use the \perp -version S_{\perp} of the current clause set S
- \Rightarrow Works globally on clause sets
 - Flexible: may switch focus all the time but memory problem (?)

FDPLL/ME (and other one-level calculi)

- Use the \$-version of the current branch
- ⇒ Works locally in context of current branch
 - Not so flexible but don't expect memory problems: FDPLL/ME need not keep any clause instance
 DCTP needs to keep clause instances only along current branch

- Comparison: Resolution vs. Tableaux vs. IMs
- Conclusions from that

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Resolution

Resolution may generate clauses of unbounded length:

$$\begin{array}{l} P(x,z') \leftarrow P(x,y) \land P(y,z) \land P(z,z') \\ P(x,z'') \leftarrow P(x,y) \land P(y,z) \land P(z,z') \land P(z',z'') \end{array}$$

- Does not decide function-free clause sets
- Complicated to extract model
- + (Ordered) Resolution very good on some classes, Equality

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Rigid Variables Approaches (Tableaux, Connection Methods)

• Have to use unbounded number of variants per clause:

$$\begin{array}{l} \mathsf{P}(x',z') \leftarrow \mathsf{P}(x',y') \land \mathsf{P}(y',z') \\ \mathsf{P}(x'',z'') \leftarrow \mathsf{P}(x'',y'') \land \mathsf{P}(y'',z'') \end{array}$$

- Weak redundancy criteria
- Difficult to exploit proof confluence Usual calculi backtrack more than theoretically necessary But see [Giese, 2001], [Baumgartner *et al.*, 1999], [Beckert, 2003]
- Model Elimination: goal-orientedness compensates drawback

Difficulty with Rigid Variable Methods

Rigid variable methods "destructively" modify data structure

S:
$$\forall \mathbf{x}(P(\mathbf{x}) \lor Q(\mathbf{x}))$$
 (1) $P(\mathbf{X}) \lor Q(\mathbf{X})$ (2) $P(\mathbf{X}) \lor Q(\mathbf{X})$
 $\neg P(a)$
 $\neg P(b)$
 $\neg Q(b)$
(3) $P(a) \lor Q(a)$ (5) $P(a) \lor Q(a)$ (7) $P(a) \lor Q(a)$

$$\neg P(a) \qquad \neg P(a) \qquad \neg P(a) \\ P(X') \lor Q(X') \qquad P(b) \lor Q(b) \\ \neg P(b) \qquad \neg P(b) \\ \neg Q(b) \qquad \neg Q(b)$$

- Connection method (and tableaux) proof confluent: no deadends
- Difficulty to find fairness criterion due to "destructive" nature
- All IMs are non-destructive no problem here

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Instance Based Methods

• May need to generate and keep proper instances of clauses:

$$\begin{array}{l} P(x,z) \leftarrow P(x,y) \land P(y,z) \\ P(a,z) \leftarrow P(a,y) \land P(y,b) \end{array}$$

- Cannot use subsumption: weaker than Resolution
- Clauses do not grow in length, no recombination of clauses: better than Resolution, same as in rigid variables approaches
- + Need not keep variants: better than rigid variables approaches

Suggested applicability for IMs:

- Near propositional clause sets
- Clause sets without function symbols (except constants)
 E.g. Translation from basic modal logics, Datalog
- Model computation (sometimes)

Other methods (currently?) better at:

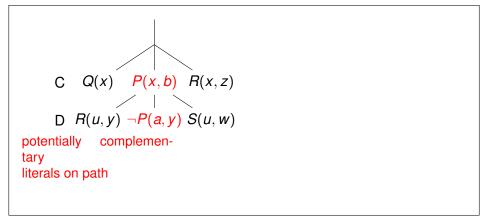
- Goal orientation
- Equality, theory reasoning
- Many decidable fragments (Guarded fragment, two-variable fragment)

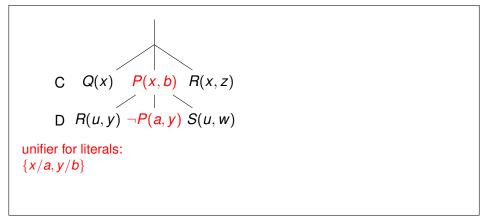
Part II: A Closer Look

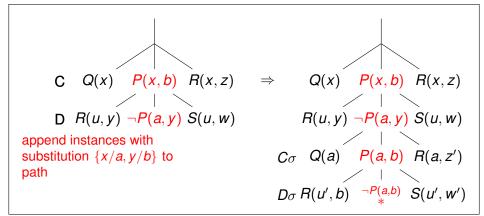
- Disconnection calculus
- Theory Reasoning and Equality
- Implementations and Techniques
 - Available Implementations
 - Proof Procedures
 - Exploiting SAT techniques

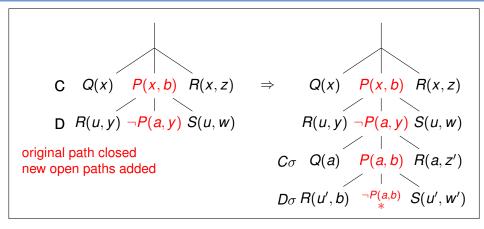
Disconnection Tableaux

- Analytic tableau calculus for first order clause logic
- Introduced by J.-P. Billon (1996)
- Special characteristics of calculus:
 - No rigid variables
 - No variants in tableau
 - Proof confluence: One proof tree only, no backtracking in search
 - Saturated branches as indicator of satisfiability
 - Decision procedure for certain classes of formulae
- Related methods: hyper linking, hyper tableaux, first order Davis-Putnam ...









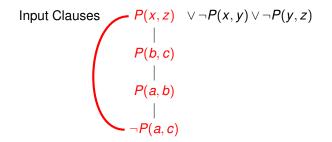
 Concept of ∀-closure of branches closure by simultaneous instantiation of all variables by the same constant: path with P(x, y) and ¬P(z, z) is closed

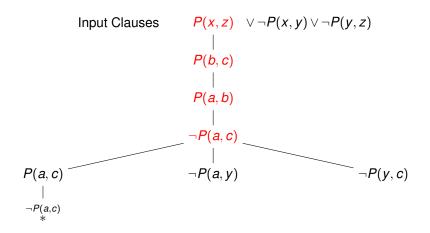
Proof Search in the Disconnection Calculus

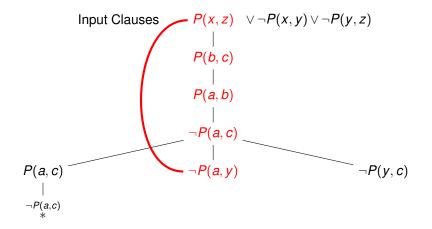
- Proof process in two phases:
 - An initial active path through the formula is don't-care nondeterministically selected
 - Using the links contained in the active path, instances of linked clauses are used to build a tableau
- An open tableau path may be selected don't-care nondeterministically, it becomes the next active path
- Each link can be used only once on a path (explains the name "disconnection")
- Absence of usable links (saturation of a path) indicates satisfiability of the formula
- Only requirement for (strong) completeness: fairness of link selection

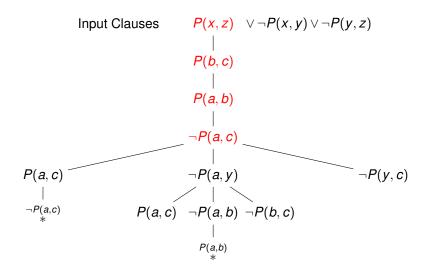
Input Clauses

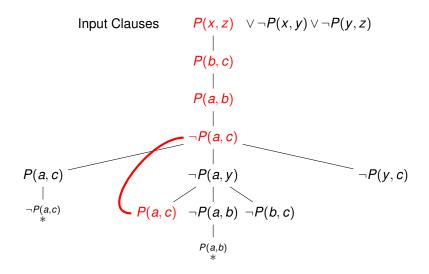
$$\begin{array}{ccc}
P(x,z) & \lor \neg P(x,y) \lor \neg P(y,z) \\
& | \\
P(b,c) \\
& | \\
P(a,b) \\
& | \\
\neg P(a,c)
\end{array}$$

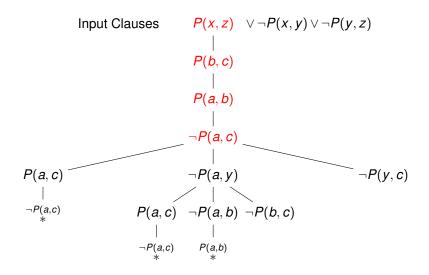


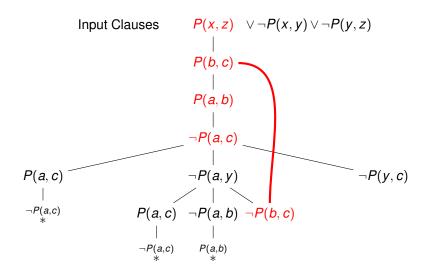


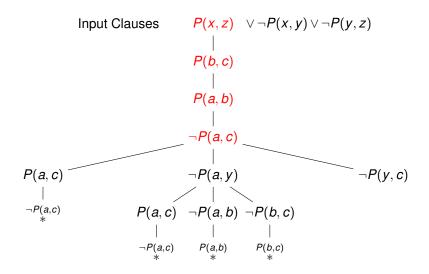


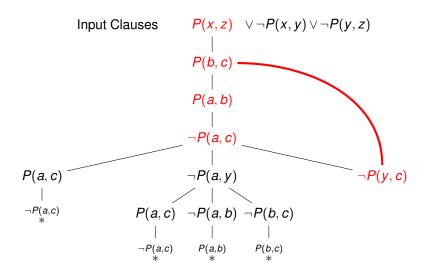


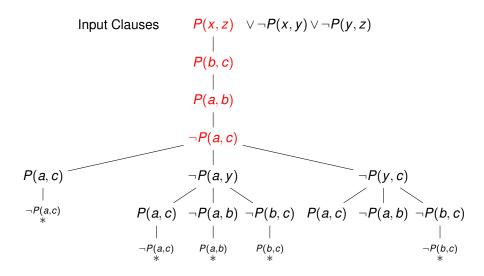


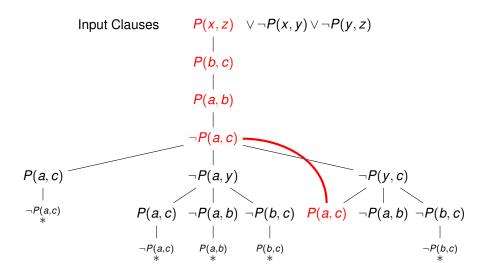


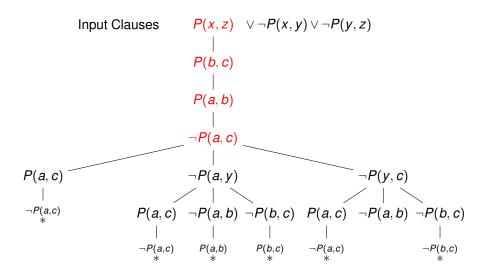




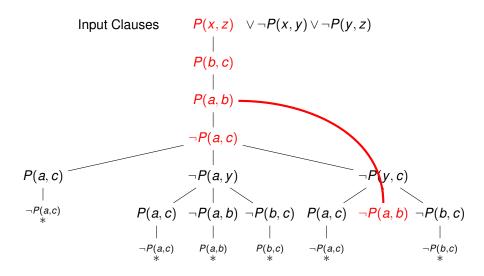




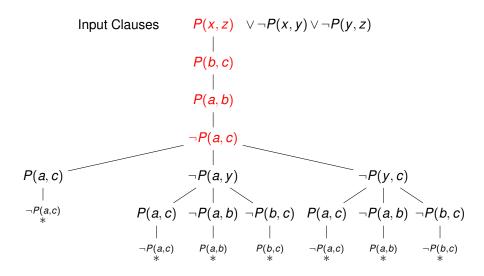




An Example Proof



An Example Proof



- Two clauses are *variants* if they can be obtained from each other by variable renaming
- A tableau is *variant-free* if no branch contains literals *I* and *k* where the clauses of *I* and *k* are variants
- All disconnection tableaux are required to be variant-free
- Variant-freeness provides essential pruning (weak form of subsumption)
- Vital for model generation
- Implies the idea of *branch saturation*:
 A branch is *saturated* if it cannot be extended in a variant-free manner

Failed Proof Attempts

• Proof attempts may fail - what happens then?

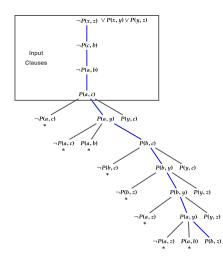
Proof attempts may fail - what happens then?

• In order to show this, we will change one clause in the previous example: the signs are inverted Input Clauses $\neg P(x,z) \lor V(x,y) \lor P(y,z)$ |P(b,c)|P(a,b)

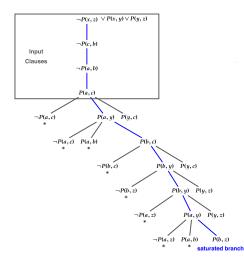
 $\neg P(a, c)$

Proof attempts may fail - what happens then?

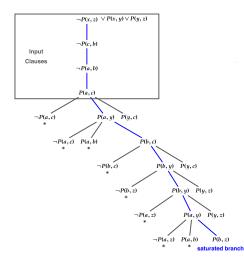
- In order to show this, we will change one clause in the previous example: the signs are inverted Input Clauses $\neg P(x,z) \lor V(x,y) \lor P(y,z)$ |P(b,c)|P(a,b)| $\neg P(a,c)$
- Again, we attempt to find a proof



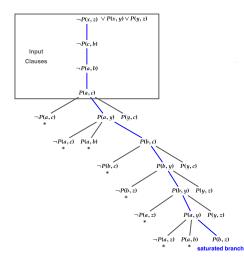
• This open tableau cannot be closed



- This open tableau cannot be closed
- Indicated branch is saturated



- This open tableau cannot be closed
- Indicated branch is saturated
- Saturated open branch provides model



- This open tableau cannot be closed
- Indicated branch is saturated
- Saturated open branch provides model
- How to extract model?

Instance Preserving Enumerations

- Instance Preserving Enumerations: lists of literal occurrences on a path
- Path literals are partially ordered in enumeration (not unique)
- Each literal must occur before all more general instances of itself
- Instance preserving enumeration of a saturated open branch implies model
- Example: For the open (sub-) branch

 $\neg P(a)$ | P(x) | $\neg P(c)$

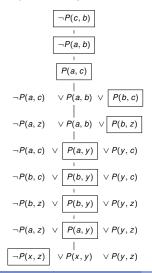
With Herbrand universe $\{a, b, c, d, e\}$ and enumeration

$$\begin{bmatrix} \neg P(a) & \neg P(c) & P(x) \end{bmatrix}$$

the model implied is $\{\neg P(a), P(b), \neg P(c), P(d), P(e)\}$

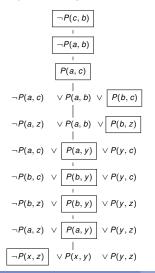
Model Extraction

We extract an instance preserving enumeration for the open branch of the preceding tableau:



Model Extraction

We extract an instance preserving enumeration for the open branch of the preceding tableau:



From which we get the finite Herbrand model: P(z, k) = P(z, k) = P(z, k)

$$\{ \neg P(c,b), \neg P(a,b), P(a,c),$$

P(b, c), P(b, a), P(b, b),

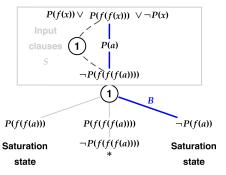
$$P(a, a), \neg P(c, a), \neg P(c, c) \}$$

Infinite Herbrand Models

Model extraction also works for infinite Herbrand universes

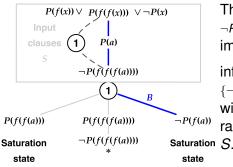
Infinite Herbrand Models

Model extraction also works for infinite Herbrand universes Given a saturated tableau with open branch B:



Infinite Herbrand Models

Model extraction also works for infinite Herbrand universes Given a saturated tableau with open branch B:



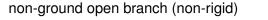
The enumeration for B $\neg P(f(f(f(a)))), \neg P(f(a)), P(a), P(f(f(x)))$ implies a finite representation of an

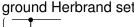
infinite Herbrand model:

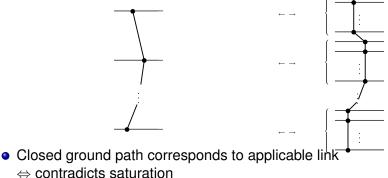
 $\{\neg P(f(f(a)))), \neg P(f(a)), P(a)\}, \{P(f(f(s)))\}$ with the constraint $s \neq f(a)$, where sranges over the Herbrand universe of *S*.

Completeness

- Basic concept: open saturated branch represents partial model
- Non-equational case: branch determines path through Herbrand set

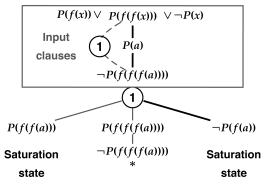






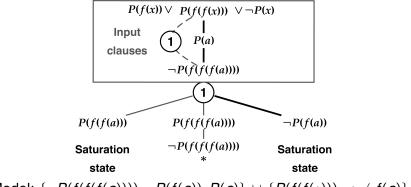
The Saturation Property

- Saturated open branch specifies a model (only such a branch)
- Model characterised as blue exception-based representation (EBR)



The Saturation Property

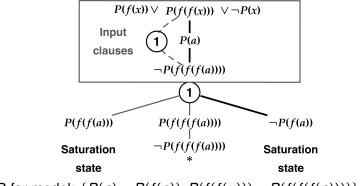
- Saturated open branch specifies a model (only such a branch)
- Model characterised as blue exception-based representation (EBR)



• Model: $\{\neg P(f(f(a)))), \neg P(f(a)), P(a)\} \cup \{P(f(f(s))) : s \neq f(a)\}$

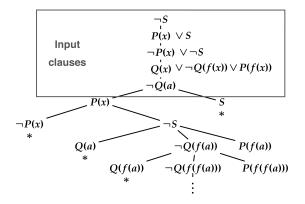
The Saturation Property

- Saturated open branch specifies a model (only such a branch)
- Model characterised as blue exception-based representation (EBR)



■ EBR for model: {*P*(*a*), ¬*P*(*f*(*a*)), *P*(*f*(*f*(*x*))), ¬*P*(*f*(*f*(*f*(*a*))))}

An Example for Non-Termination



- The above problem is obviously satisfiable (P true, S and Q false)
- However, in general, the disconnection calculus does not terminate
- Termination fragile, depends on branch selection function

André Platzer (CMU)

15-819M/14: Data, Code, Decisions

- Here, the model is approximated, but not finitely represented $\{P(x), \neg S, \neg Q(a), \neg Q(f(a)), \neg Q(f(f(a))), \neg Q(f(f(f(a)))) \dots\}$
- Observation: linking instances are subsumed by path literal P(x)
- But: general subsumption does not work
- What can we do?

Link Blocking

- Original idea of model characterisation:
 - Currently considered branch is seen as an interpretation I
 - If a literal *L* is on branch, all instances of *L* are considered true in *I*
 - if a conflict occurs (a link is on the branch), the link is applied and *I* is modified

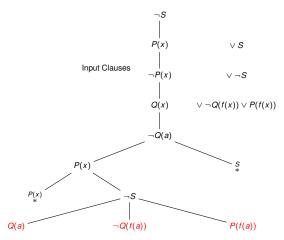
Link Blocking

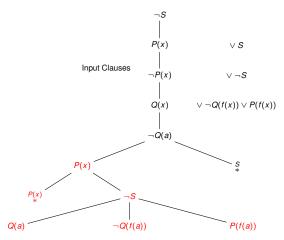
- Original idea of model characterisation:
 - Currently considered branch is seen as an interpretation I
 - If a literal *L* is on branch, all instances of *L* are considered true in *I*
 - if a conflict occurs (a link is on the branch), the link is applied and *I* is modified
- Consequence: Ignore clauses subsumed by /
- Concept of temporary link blocking
 - Path subgoal *L* will disable all links producing literals $K = L\sigma$
 - Unblocking of links occurs when a conflict involving *L* is resolved, i.e. the interpretation *I* is changed

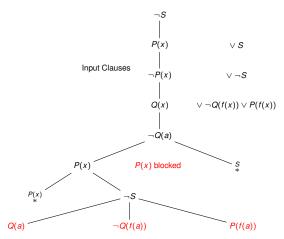
Link Blocking

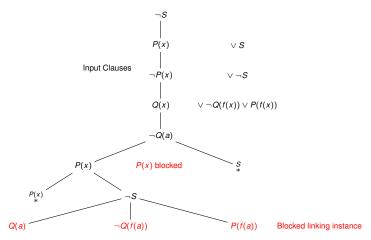
- Original idea of model characterisation:
 - Currently considered branch is seen as an interpretation I
 - If a literal *L* is on branch, all instances of *L* are considered true in *I*
 - if a conflict occurs (a link is on the branch), the link is applied and *I* is modified
- Consequence: Ignore clauses subsumed by /
- Concept of temporary link blocking
 - Path subgoal *L* will disable all links producing literals $K = L\sigma$
 - Unblocking of links occurs when a conflict involving *L* is resolved, i.e. the interpretation *I* is changed
- Similar to productivity restriction in ME

- Precise criteria needed to find out whether a literal is blocking
- EBRs are lists of branch literals partially sorted according to respective specialisation
- Candidate model (CM): EBR enhanced by link blockings
- Blockings require a modified ordering on CMs, not necessarily based on instantiation
- Interpretation of a literal L given by CM-matcher: the rightmost literal in CM subsuming L or ~ L

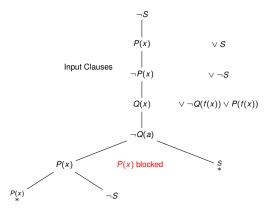








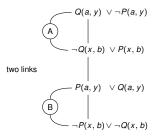
The non-termination example revisited



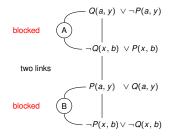
Saturation state

- Use of link blocking allows termination
- Largely independent of selection functions

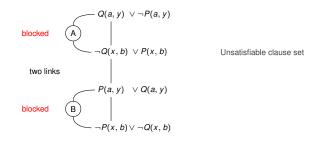
$$\begin{array}{c} Q(a, y) \lor \neg P(a, y) \\ \\ \neg Q(x, b) \lor P(x, b) \\ \\ P(a, y) \lor Q(a, y) \\ \\ \neg P(x, b) \lor \neg Q(x, b) \end{array}$$
Unsatisfiable clause set



Unsatisfiable clause set



Unsatisfiable clause set



no link applicable

- For the above clause set, using blockings no refutation can be found
- Reason: The blocking relation for the clause set is cyclic
- To preserve completeness, blocking cycles must be avoided
- Well-founded ordering imposed on link blockings based on branch position

Cyclic Link Blocking Resolved

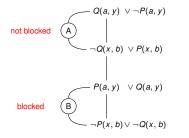
• We try again, this time with a blocking ordering

$$\begin{array}{c|c} Q(a,y) \lor \neg P(a,y) \\ A & \\ & \\ \neg Q(x,b) \lor P(x,b) \\ & \\ & \\ P(a,y) \lor Q(a,y) \\ B & \\ & \\ \neg P(x,b) \lor \neg Q(x,b) \end{array}$$

Unsatisfiable clause set

Cyclic Link Blocking Resolved

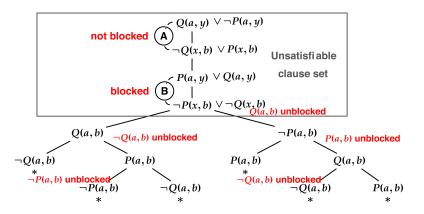
• We try again, this time with a blocking ordering



Unsatisfiable clause set

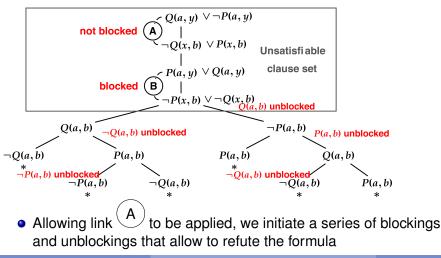
Cyclic Link Blocking Resolved

• We try again, this time with a blocking ordering



Cyclic Link Blocking Resolved

We try again, this time with a blocking ordering



André Platzer (CMU)

15-819M/14: Data, Code, Decisions

The Basic Idea behind Completeness

• Completeness approach as in classical disconnection calculus:

saturated open tableau branch B^+

consistent path *P** through Herbrand set

- *P** path literal in each ground clause is determined by CM-matcher
- Tricky part: There exists a matched literal in each ground clause
- Partial order of CM dynamically evolving with the branch
- Acyclicity of blocking relation ensures that partial order exists

FDPLL/ME vs. DCTP - Conceptual Difference

FDPLL/ME and DCTP use propositional version of current branch to determine branch closure. But:

DCTP

- Branch is closed if it contains both $L\perp$ and $\overline{L}\perp$ (two clauses involved)
- Inference rule guided syntactically: find connection among branch literals
- *n*-way branching on literals of clause instance L₁ ∨ ··· ∨ L_n Can simulate FDPLL/ME binary branching to some degree (folding up)
- Need to keep clause instances along current branch

FDPLL/ME

- Branch is closed if \$-version falsifies some single clause
- Inference rule guided semantically: find falsified clause instance
- Binary branching on literals $L \overline{L}$ taken from falsified clause instance Can simulate *n*-way branching clause literals in ground case
- Need not keep any clause instance, but better cache certain subclauses (remainders) to support heuristics

Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus.

In Franz Baader, editor, *CADE-19 – The 19th International Conference on Automated Deduction*, volume 2741 of *Lecture Notes in Artificial Intelligence*, pages 350–364. Springer, 2003.

 Peter Baumgartner and Cesare Tinelli.
 The model evolution calculus with equality.
 In Robert Nieuwenhuis, editor, CADE-20 – The 20th International Conference on Automated Deduction, volume 3632 of Lecture Notes in Artificial Intelligence, pages 392–408. Springer, 2005.

 Peter Baumgartner, Norbert Eisinger, and Ulrich Furbach.
 A confluent connection calculus.
 In Harald Ganzinger, editor, CADE-16 – The 16th International Conference on Automated Deduction, volume 1632 of Lecture Notes in Artificial Intelligence, pages 329–343, Trento, Italy, 1999.
 Springer.

Peter Baumgartner.

André Platzer (CMU)

Hyper Tableaux — The Next Generation.

In Harry de Swaart, editor, *Automated Reasoning with Analytic Tableaux and Related Methods*, volume 1397 of *Lecture Notes in Artificial Intelligence*, pages 60–76. Springer, 1998.

Peter Baumgartner.

FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Procedure.

In David McAllester, editor, *CADE-17 – The 17th International Conference on Automated Deduction*, volume 1831 of *Lecture Notes in Artificial Intelligence*, pages 200–219. Springer, 2000.

Bernhard Beckert.

Depth-first proof search without backtracking for free-variable clausal tableaux.

Journal of Symbolic Computation, 36:117–138, 2003.

🔋 Jean-Paul Billon.

The Disconnection Method.

In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, *Theorem Proving with Analytic Tableaux and Related Methods*, number 1071 in Lecture Notes in Artificial Intelligence, pages 110–126. Springer, 1996.

Alan Bundy, editor.

Automated Deduction — CADE 12, LNAI 814, Nancy, France, June 1994. Springer-Verlag.

- T.J. Chinlund, M. Davis, P.G. Hinman, and M.D. McIlroy. Theorem-Proving by Matching. Technical report, Bell Laboratories, 1964.
- Heng Chu and David A. Plaisted.
 Semantically Guided First-Order Theorem Proving using Hyper-Linking.
 In Bundy [1994], pages 192–206.
- Koen Claessen and Niklas Sörensson. New techniques that improve mace-style finite model building.

In Peter Baumgartner and Christian G. Fermüller, editors, *CADE-19 Workshop: Model Computation – Principles, Algorithms, Applications*, 2003.

- Martin Davis and Hilary Putnam. A computing procedure for quantification theory. *Journal of the ACM*, 7(3):201–215, July 1960.
- M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. *Communications of the ACM*, 5(7), 1962.
- Martin Davis, George Logemann, and Donald Loveland.
 A machine program for theorem proving.
 Communications of the ACM, 5(7):394–397, July 1962.

Martin Davis.

Eliminating the irrelevant from mechanical proofs. In Proceedings of Symposia in Applied Amthematics – Experimental Arithmetic, High Speed Computing and *Mathematics*, volume XV, pages 15–30. American Mathematical Society, 1963.

Harald Ganzinger and Konstantin Korovin. New directions in instance-based theorem proving. In LICS - Logics in Computer Science, 2003.

Martin Giese.

Incremental closure of free variable tableaux.

In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, *Proc. Intl. Joint Conf. on Automated Reasoning IJCAR, Siena, Italy*, volume 2083 of *LNCS*, pages 545–560. Springer-Verlag, 2001.

Matthew L. Ginsberg and Andrew J. Parkes. Satisfiability algorithms and finite quantification. In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors, *Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference (KR'2000)*, pages 690–701. Morgan Kauffman, 2000. J.N. Hooker, G. Rago, V. Chandru, and A. Shrivastava. Partial Instantiation Methods for Inference in First Order Logic. *Journal of Automated Reasoning*, 28(4):371–396, 2002.

Swen Jacobs and Uwe Waldmann. Comparing Instance Generation Methods for Automated Reasoning. In Bernhard Beckert, editor, *Proc. of TABLEAUX 2005.* Springer,

2005.

- Shie-Jue Lee and David A. Plaisted. Reasoning with Predicate Replacement, 1989.
- S.-J. Lee and D. Plaisted.

Eliminating Duplicates with the Hyper-Linking Strategy. *Journal of Automated Reasoning*, 9:25–42, 1992.

Reinhold Letz and Gernot Stenz. Proof and Model Generation with Disconnection Tableaux. In Robert Nieuwenhuis and Andrei Voronkov, editors, *LPAR*, volume 2250 of *Lecture Notes in Computer Science*. Springer, 2001.

William McCune.

A davis-putnam program and its application to finite first-order model search: Qusigroup existence problems. Technical report, Argonne National Laboratory, 1994.

David A. Plaisted and Yunshan Zhu. Ordered Semantic Hyper Linking. In Proceedings of Fourteenth National Conference on Artificial Intelligence (AAAI-97), 1997.

David A. Plaisted and Yunshan Zhu. Ordered Semantic Hyper Linking. Journal of Automated Reasoning, 25(3):167–217, 2000.

David Plaisted.

The Search Efficiency of Theorem Proving Strategies. In Bundy [1994].

André Platzer (CMU)

Cesare Tinelli.

A DPLL-based calculus for ground satisfiability modulo theories. In Giovambattista Ianni and Sergio Flesca, editors, *Proceedings of the 8th European Conference on Logics in Artificial Intelligence (Cosenza, Italy)*, volume 2424 of *Lecture Notes in Artificial Intelligence*. Springer, 2002.

Adnan Yahya and David Plaisted. Ordered Semantic Hyper-Tableaux. Journal of Automated Reasoning, 29(1):17–57, 2002.