André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

}

throw new NoSuchElementException();

© ML Expressions

@ First-Order Logic in Specifications
@ Result Values
@ Data Constraints
@ JML Invariants

© Advanced JML
@ Exceptional Method Behavior
@ Allowing Non-Termination
e JML Modifiers Il
@ Specification Inheritance

@ Tools and Hints
© Literature

© ML Expressions

@ each side-effect free boolean JAVA expression is a boolean JML
expression

@ if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
e !a (“nota”)
e afkb ("aandb”)
eallb (“aorbd’)

@ each side-effect free boolean JAVA expression is a boolean JML
expression

@ if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
e !a (“nota”)
e afkb ("aandb”)
all b ("aorbd”)
a ==>b (“aimpliesd”)
a <==> b (“ais equivalent to b")

How to express the following?

@ an array arr only holds values < 2

How to express the following?

@ an array arr only holds values < 2

@ the variable m holds the maximum entry of array arr

How to express the following?

@ an array arr only holds values < 2
@ the variable m holds the maximum entry of array arr

@ all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

How to express the following?

@ an array arr only holds values < 2
@ the variable m holds the maximum entry of array arr

@ all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

@ all created instances of class BankCard have different cardNumbers

JML boolean expressions extend JAVA boolean expressions by:

@ implication

@ equivalence

JML boolean expressions extend JAVA boolean expressions by:

@ implication
@ equivalence

@ quantification

boolean JML expressions are defined recursively:

@ each side-effect free boolean JAVA expression is a boolean JML

expression

@ if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

ta (“nota")

a&&b (“aandb”)
all b (“aorb”)

a==>b (“aimpliesb”)
a <==> b (“ais equivalent to b")

(\forall t x;
(\exists t x;

a)
a)

(“for all x of type t, a is true”)
(“there exists x of type t such that a")

boolean JML expressions are defined recursively:

@ each side-effect free boolean JAVA expression is a boolean JML
expression

@ if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

ta (“nota")

a&&b (“aandb”)
all b (“aorb”)
a ==>b (“aimpliesd")

a <==> b (“ais equivalent to b")
(“for all x of type t, a is true”)
(“there exists x of type t such that a")

(\forall t x;
(\exists t x;
(\forall t x;
(\exists t x;

a)
a)
a;
a;

b)
b)

(“for all x of type t fulfilling a, b is true")
(“there exists an x of type t fulfilling a,
such that b")

In
(\forall t x; a; b)
(\exists t x; a; b)

a is called “range predicate”

In
(\forall t x; a; b)
(\exists t x; a; b)

a is called “range predicate”

Range predicate forms are redundant:

(\forall t x; a; b)
equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9":

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9":

(\forall int i,j;

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9":

(\forall int i,j; O<=i && i<j && j<10;

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9":

(\forall int i,j; O<=i && i<j && j<10; arr[i] <= arr[jl)

How to express:

@ an array arr only holds values < 2

How to express:

@ an array arr only holds values < 2

(\forall int i;

How to express:

@ an array arr only holds values < 2

(\forall int i; O0<=i && i<arr.length;

How to express:

@ an array arr only holds values < 2

(\forall int i; O0<=i && i<arr.length; arr[i] <= 2)

How to express:

@ the variable m holds the maximum entry of array arr

How to express:

@ the variable m holds the maximum entry of array arr

(\forall int i; O0<=i && i<arr.length; m >= arr[i])

How to express:

@ the variable m holds the maximum entry of array arr

(\forall int i; O0<=i && i<arr.length; m >= arr[i])

is this enough?

How to express:

@ the variable m holds the maximum entry of array arr

(\forall int i; O0<=i && i<arr.length; m >= arr[i])

(\exists int i; 0<=i && i<arr.length; m == arr[i])

How to express:

@ the variable m holds the maximum entry of array arr

(\forall int i; O0<=i && i<arr.length; m >= arr[i])

arr.length>0 ==

(\exists int i; 0<=i && i<arr.length; m == arr[i])

How to express:

@ the variable m holds the maximum entry of array arr

(\forall int i; O0<=i && i<arr.length; m >= arr[i])

(\exists int i; 0<=i && i<arr.length; m == arr[i])

Careful! J

How to express:

@ all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

How to express:

@ all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0<=i && i<maxAccountNumber;
accountProxies[i] .accountNumber == i)

How to express:

@ all created instances of class BankCard have different cardNumbers

How to express:

@ all created instances of class BankCard have different cardNumbers

(\forall BankCard pl, p2;
\created(pl) && \created(p2);
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)

How to express:

@ all created instances of class BankCard have different cardNumbers

(\forall BankCard pl, p2;
\created(pl) && \created(p2);
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)

@ JML quantifiers range also over non-created objects

How to express:

@ all created instances of class BankCard have different cardNumbers

(\forall BankCard pl, p2;
\created(pl) && \created(p2);
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)

@ JML quantifiers range also over non-created objects

@ same for quantifiers in KeY!

How to express:

@ all created instances of class BankCard have different cardNumbers
(\forall BankCard pl, p2;

\created(pl) && \created(p2);
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)

@ JML quantifiers range also over non-created objects

@ same for quantifiers in KeY!

@ in JML, restrict to created objects with \created

How to express:

@ all created instances of class BankCard have different cardNumbers
(\forall BankCard pl, p2;

\created(pl) && \created(p2);
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)

@ JML quantifiers range also over non-created objects

@ same for quantifiers in KeY!
@ in JML, restrict to created objects with \created
@ in KeY?

How to express:

@ all created instances of class BankCard have different cardNumbers
(\forall BankCard pl, p2;

\created(pl) && \created(p2);
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)

@ JML quantifiers range also over non-created objects

@ same for quantifiers in KeY!
@ in JML, restrict to created objects with \created

@ in KeY? (= upcoming lecture)

@ First-Order Logic in Specifications
@ Result Values
@ Data Constraints
@ JML Invariants

public class LimitedIntegerSet {

public

final int limit;

private int arr[];
private int size = O;

public

this.
this.

b
public

public

public

LimitedIntegerSet (int limit) {
limit = limit;

arr = new int[limit];

boolean add(int elem) {/*...*/}

void remove(int elem) {/*...*/}

boolean contains(int elem) {/*...*/}

// other methods

public class LimitedIntegerSet {

public

final int limit;

private /*Q@ spec_public @/ int arr[];
private /*@ spec_public @/ int size = 0;

public

this.
this.

b
public

public

public

LimitedIntegerSet (int limit) {
limit = limit;

arr = new int[limit];

boolean add(int elem) {/*...*/}

void remove(int elem) {/*...*/}

/*@ pure @*/ boolean contains(int elem) {/*...*/}

// other methods

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains has no effect on state (pure)

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains has no effect on state (pure)

How to specify result value?

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior
@ ensures \result ==

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior
@ ensures \result == (\exists int i;
Q

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;
Q 0 <=1 && i < size;
Q

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

Q 0 <=1 && i < size;
@ arr[i] == elem);
Qx/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

/*@ public normal_behavior
requires size < limit &% !contains(elem);
ensures \result == true;
ensures contains(elem);
ensures (\forall int e;
e != elem;
contains(e) <==> \old(contains(e)));
ensures size == \old(size) + 1;

also

©@ 0 © © © © © © @ © ©

<spec-case2>
ex/
public boolean add(int elem) {/*...*/}

/*@ public normal_behavior
(¢
@ <spec-casel>
(¢
@ also
(¢
@ public normal_behavior
@ requires (size == 1limit) || contains(elem);
@ ensures \result == false;
@ ensures (\forall int e;
¢ contains(e) <==> \old(contains(e)));
@ ensures size == \old(size);
Qx*/

public boolean add(int elem) {/*...*/}

/*@ public normal_behavior

Q@ ensures !contains(elem);

@ ensures (\forall int e;

Q e != elem;

@ contains(e) <==> \old(contains(e)));
@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

Qx*/

public void remove(int elem) {/*...*/}

So far:
JML used to specify method specifics.

So far:
JML used to specify method specifics.

How to specify constraints on class data?

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:
@ consistency of redundant data representations (like indexing)

e restrictions for efficiency (like sortedness)

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:
@ consistency of redundant data representations (like indexing)

e restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

public class LimitedSortedIntegerSet {

public

final int limit;

private int arr[];
private int size = O;

public

this.
this.

b
public

public

public

LimitedSortedIntegerSet (int limit) {
limit = limit;

arr = new int[limit];

boolean add(int elem) {/*...*/}

void remove(int elem) {/*...*/}

boolean contains(int elem) {/*...*/}

// other methods

method contains

@ can employ binary search (logarithmic complexity)

method contains
@ can employ binary search (logarithmic complexity)
@ Why is that sufficient?

method contains
@ can employ binary search (logarithmic complexity)
@ Why is that sufficient?

@ |t assumes sortedness in pre-state

method contains
@ can employ binary search (logarithmic complexity)
@ Why is that sufficient?

@ |t assumes sortedness in pre-state

method add

@ searches first index with bigger element, inserts just before that

method contains
@ can employ binary search (logarithmic complexity)
@ Why is that sufficient?

@ |t assumes sortedness in pre-state

method add
@ searches first index with bigger element, inserts just before that

@ thereby tries to establish sortedness in post-state

method contains
@ can employ binary search (logarithmic complexity)
@ Why is that sufficient?

@ |t assumes sortedness in pre-state

method add
@ searches first index with bigger element, inserts just before that
@ thereby tries to establish sortedness in post-state
@ Why is that sufficient?

method contains
@ can employ binary search (logarithmic complexity)
@ Why is that sufficient?

@ |t assumes sortedness in pre-state

method add
@ searches first index with bigger element, inserts just before that
@ thereby tries to establish sortedness in post-state
@ Why is that sufficient?

@ It assumes sortedness in pre-state

method contains
@ can employ binary search (logarithmic complexity)
@ Why is that sufficient?

@ |t assumes sortedness in pre-state

method add
@ searches first index with bigger element, inserts just before that
@ thereby tries to establish sortedness in post-state
@ Why is that sufficient?

@ It assumes sortedness in pre-state

method remove

@ (accordingly)

recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(What's the value of this if size < 27)

recall class fields:
public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(What's the value of this if size < 27)

Where does the red expression belong in the spec?

can assume sortedness of pre-state

can assume sortedness of pre-state

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);
@ ensures \result == (\exists int i;

Q 0 <=1 && i < size;
6] arr[i] == elem);
Qx*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

can assume sortedness of pre-state

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;

Q arr[i-1] <= arrl[il);
@ ensures \result == (\exists int i;

Q 0 <=1 && i < size;
6] arr[i] == elem);
ex/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains () is pure
= sortedness of post-state trivially ensured

can assume sortedness of pre-state
must ensure sortedness of post-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arrl[il);
@ ensures !contains(elem);

@ ensures (\forall int e;

(C] e I= elem;

¢ contains(e) <==> \old(contains(e)));
@ ensures \old(contains(elem))

¢} ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arrl[il);
©ex/

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arrl[il);
@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e;

(C] e I= elem;

¢} contains(e) <==> \old(contains(e)));
@ ensures size == \old(size) + 1;

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[il);
Q

@ also <spec-case2>

ox/
public boolean add(int elem) {/*...*/}

/*@ public normal_behavior
Q
Q@ <spec-casel> also
Q
@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@ requires (size == limit) || contains(elem);
@ ensures \result == false;
@ ensures (\forall int e;
¢} contains(e) <==> \old(contains(e)));
@ ensures size == \old(size);
@ ensures (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[il);
Qx/

public boolean add(int elem) {/*...*/}
"~ AndréPlatzer (CMU) 15-819M/06b: Data, Code, Decisions | 26 /47

But: ‘sortedness’ has swamped our specification

But: ‘sortedness’ has swamped our specification

We can do better, using
JML Class Invariant

construct for specifying data constraints centrally

But: ‘sortedness’ has swamped our specification

We can do better, using
JML Class Invariant

construct for specifying data constraints centrally

© delete blue and red parts from previous slides

@ add ‘sortedness’ as JML class invariant instead

public class LimitedSortedIntegerSet {
public final int limit;

/*@ public invariant (\forall int i;

Q 0 < i && i < size;
@ arr[i-1] <= arr[il);
@x/

private /*Q@ spec_public @x/ int arr[];
private /*Q@ spec_public @/ int size = 0;

// constructor and methods,
// without sortedness in pre/post-conditions

@ JML class invariant can be placed anywhere in class
o (Contrast: method contract must be immediately before its method)

@ Custom: place class invariant in front of fields it talks about

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both

can refer to

— static fields

— instance fields via explicit reference, like ‘o.size’

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both

can refer to

— static fields

— instance fields via explicit reference, like ‘o.size’

instance is default
if instance or static is omitted = instance invariant!

public class BankCard {

/*@ public static invariant
@ (\forall BankCard pl, p2;
@ \created(pl) && \created(p2);
Q pl!=p2 ==> pl.cardNumber!=p2.cardNumber)
Qx/

private /*@ spec_public @/ int cardNumber;

// rest of class follows

© Advanced JML
@ Exceptional Method Behavior
@ Allowing Non-Termination
e JML Modifiers Il
@ Specification Inheritance

private /*Q@ spec_public @x/ BankCard insertedCard = null;

private /*Q@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @/ boolean customerAuthenticated
= false;

/*Q@ <spec-casel> also <spec-case2> also <spec-case3>
@x*/
public void enterPIN (int pin) { ...

private /*Q@ spec_public @x/ BankCard insertedCard = null;

private /*Q@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @/ boolean customerAuthenticated
= false;

/*Q@ <spec-casel> also <spec-case2> also <spec-case3>
@x*/
public void enterPIN (int pin) { ...

last lecture:
all 3 spec-cases were normal_behavior

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P
keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

Exceptions still have post-states in classes! J

/*Q@ <spec-casel> also <spec-case2> also <spec-case3> also

public exceptional_behavior

requires insertedCard==null;

signals_only ATMException;

signals (ATMException) !customerAuthenticated;
@x*/

public void enterPIN (int pin) { ...

©@ 0 © © ©

/*@ <spec-casel> also <spec-case2> also <spec-case3> also

public exceptional_behavior

requires insertedCard==null;

signals_only ATMException;

signals (ATMException) !customerAuthenticated;
@x*/

public void enterPIN (int pin) { ...

©@ 0 © © ©

in case insertedCard==null in pre-state
@ an exception must be thrown (‘exceptional_behavior’)

@ it can only be an ATMException (‘signals_only’)

@ method must then ensure !customerAuthenticated in post-state
(‘signals’)

An exceptional specification case can have one clause of the form
signals_only (E1,..., En);

where E1, ..., En are exception types

An exceptional specification case can have one clause of the form
signals_only (E1,..., En);

where E1, ..., En are exception types

Meaning:

if an exception is thrown, it is of type E1 or ... or En J

an exceptional specification case can have several clauses of the form
signals (E) b;

where E is exception type, b is boolean expression

an exceptional specification case can have several clauses of the form
signals (E) b;

where E is exception type, b is boolean expression

Meaning:
if an exception of type E is thrown, b holds in post-state J

By default, both:
@ normal_behavior
@ exceptional_behavior

specification cases enforce termination

By default, both:
@ normal_behavior
@ exceptional_behavior

specification cases enforce termination

In each specification case, nontermination can be permitted via the clause

diverges true;

By default, both:
@ normal_behavior
@ exceptional_behavior

specification cases enforce termination

In each specification case, nontermination can be permitted via the clause

diverges true;

Meaning:

given the precondition of the specification case holds in pre-state,
the method may or may not terminate

JML extends the JAvA modifiers by further modifiers:

@ class fields
@ method parameters

@ method return types

can be declared as
@ nullable: may or may not be null

@ non_null: must not be null

private /*@ spec_public non_null 0%/ String name;
implicit invariant

‘public invariant name != null;’

added to class

public void insertCard(/#@ non_null @/ BankCard card) {..
implicit precondition

‘requires card != null;’

added to each specification case of insertCard

public /*@ non_null @*/ String toString()
implicit postcondition

‘ensures \result != null;’

added to each specification case of toString

= same effect even without explicit ‘non_null’s J

private /*@ spec_public @*/ String name;
implicit invariant

‘public invariant name != null;’

added to class

public void insertCard(BankCard card) {..
implicit precondition

‘requires card != null;’

added to each specification case of insertCard

public String toString()

implicit postcondition

‘ensures \result != null;’

added to each specification case of toString

To prevent such pre/post-conditions and invariants: ‘nullable’ J

private /*@ spec_public nullable @*/ String name;
no implicit invariant added

public void insertCard(/*@ nullable @*/ BankCard card) {..
no implicit precondition added

public /*@ nullable @/ String toString()

no implicit postcondition added to specification cases of toString

public class LinkedList {
private Object elem;
private LinkedList next;

In JML this means:

public class LinkedList {
private Object elem;
private LinkedList next;

In JML this means:
@ All elements in the list are non_null

public class LinkedList {
private Object elem;
private LinkedList next;

In JML this means:
@ All elements in the list are non_null

@ Thus, the list is cyclic, or infinite!

Repair:

public class LinkedList {
private Object elem;
private /*@ nullable @*/ LinkedList next;

= Now, the list is allowed to end somewhere!

non_null as default in JML has been chosen recently.

= Not yet well reflected in literature and tools.

All JML contracts, i.e.
@ specification cases
@ class invariants

are inherited down from superclasses to subclasses.

A class has to fulfill all contracts of its superclasses. J

in addition, the subclass may add further specification cases,
starting with also:
/*@ also
(C]
Q@ <subclass-specific-spec—cases>
@x/
public void method () { ...

@ Tools and Hints

Many tools support JML (see www.eecs.ucf.edu/"leavens/JML/).
Most basic tool set:

@ jml, a syntax and type checker

@ jmlc, JML/Java compiler. Compile runtime assertion checks into
the code.

@ jmldoc, like javadoc for Java + JML
@ jmlunit, unit testing based on JML

This class does not require using the tools, but we recommend to use
jml to check the syntax.

© Literature

Essential reading:

in KeY Book A. Roth and Peter H. Schmitt: Formal Specification.
Chapter 5 only sections 5.1,5.3, In: B. Beckert, R. Hahnle, and
P. Schmitt, editors. Verification of Object-Oriented Software: The
KeY Approach, vol 4334 of LNCS. Springer, 2006.

Further reading:

JML Reference Manual Gary T. Leavens, Erik Poll, Curtis Clifton,
Yoonsik Cheon, Clyde Ruby, David Cok, Peter Miiller, and
Joseph Kiniry.
JML Reference Manual

JML Tutorial Gary T. Leavens, Yoonsik Cheon.
Design by Contract with JML

JML Overview Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design

http://www.eecs.ucf.edu/~leavens/JML/

http://www.eecs.ucf.edu/~leavens/JML/

	JML Expressions
	First-Order Logic in Specifications
	Result Values
	Data Constraints
	JML Invariants

	Advanced JML
	Exceptional Method Behavior
	Allowing Non-Termination
	JML Modifiers II
	Specification Inheritance

	Tools and Hints
	Literature

