
15-819M: Data, Code, Decisions
05: Proving Theorems in First-Order Logic with KeY

André Platzer

aplatzer@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 1 / 30

Outline

1 Sequent Calculus
Proving First-Order Validity
KeY Theorem Prover
First-Order KeY Input Syntax
Symbols with Fixed Semantics

2 Example

3 Proof Search

4 Failed Proofs

5 Literature

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 1 / 30

Outline

1 Sequent Calculus
Proving First-Order Validity
KeY Theorem Prover
First-Order KeY Input Syntax
Symbols with Fixed Semantics

2 Example

3 Proof Search

4 Failed Proofs

5 Literature

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 1 / 30

Syntax, Semantics, Calculus

x

Syntax

Formula/Program

Calculus
“Derivable”

Semantics
“valid”

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 2 / 30

Syntax, Semantics, Calculus

x

Syntax

Formula/Program

Calculus
“Derivable”

Semantics
“valid”

Completeness

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 2 / 30

Syntax, Semantics, Calculus

x

Syntax

Formula/Program

Calculus
“Derivable”

Semantics
“valid”

Completeness Soundness

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 2 / 30

Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

φ, ψ, . . . match formulas, Γ,∆, . . . match sets of formulas
Characterize infinitely many sequents with a single schematic sequent

Γ =⇒ ∆, φ & ψ

Matches any sequent with occurrence of conjunction in succedent

Call φ & ψ main formula and Γ,∆ side formulas of sequent

Any sequent of the form Γ, φ =⇒ ∆, φ is logically valid: axiom

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 3 / 30

Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

φ, ψ, . . . match formulas, Γ,∆, . . . match sets of formulas
Characterize infinitely many sequents with a single schematic sequent

Γ =⇒ ∆, φ & ψ

Matches any sequent with occurrence of conjunction in succedent

Call φ & ψ main formula and Γ,∆ side formulas of sequent

Any sequent of the form Γ, φ =⇒ ∆, φ is logically valid: axiom

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 3 / 30

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

RuleName

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

Sound rule (essential): |= (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r) −> (Γ =⇒ ∆)

Complete rule (desirable):|= (Γ =⇒ ∆) −> (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r)
Admissible to have no premisses (iff conclusion is valid, eg axiom)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 4 / 30

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

RuleName

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

Sound rule (essential): |= (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r) −> (Γ =⇒ ∆)

Complete rule (desirable):|= (Γ =⇒ ∆) −> (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r)
Admissible to have no premisses (iff conclusion is valid, eg axiom)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 4 / 30

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

RuleName

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

Sound rule (essential): |= (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r) −> (Γ =⇒ ∆)

Complete rule (desirable):|= (Γ =⇒ ∆) −> (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r)
Admissible to have no premisses (iff conclusion is valid, eg axiom)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 4 / 30

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

RuleName

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

Sound rule (essential): |= (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r) −> (Γ =⇒ ∆)

Complete rule (desirable):|= (Γ =⇒ ∆) −> (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r)
Admissible to have no premisses (iff conclusion is valid, eg axiom)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 4 / 30

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ, !φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ !φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ | ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 5 / 30

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ, !φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ !φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ | ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 5 / 30

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ, !φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ !φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ | ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 5 / 30

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ, !φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ !φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ | ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 5 / 30

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ, !φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ !φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ | ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 5 / 30

Sequent Calculus in KeY

Reduce a given sequent by applying rules and producing simpler subgoals
until all leaves of proof tree are “axioms”

Example (KeY input syntax for propositional validity problem)

\predicates {
p;
q;

}
\problem {

(p & (p -> q)) -> q
}

Demo
Examples/lect09/prop.key

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 6 / 30

Proving Validity of First-Order Formulas

Proving a universally quantified formula

∀T x ; φ is true in any model M
How is such a claim proven in mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) −> divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 even(c) −> divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀T x ; φ,∆

[x/c]φ is result of replacing each occurrence of x in φ with c

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 7 / 30

Proving Validity of First-Order Formulas

Proving a universally quantified formula

∀T x ; φ is true in any model M
How is such a claim proven in mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) −> divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 even(c) −> divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀T x ; φ,∆

[x/c]φ is result of replacing each occurrence of x in φ with c

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 7 / 30

Proving Validity of First-Order Formulas

Proving a universally quantified formula

∀T x ; φ is true in any model M
How is such a claim proven in mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) −> divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 even(c) −> divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀T x ; φ,∆

[x/c]φ is result of replacing each occurrence of x in φ with c

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 7 / 30

Proving Validity of First-Order Formulas

Proving a universally quantified formula

∀T x ; φ is true in any model M
How is such a claim proven in mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) −> divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 even(c) −> divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀T x ; φ,∆

[x/c]φ is result of replacing each occurrence of x in φ with c

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 7 / 30

Proving Validity of First-Order Formulas

Proving a universally quantified formula

∀T x ; φ is true in any model M
How is such a claim proven in mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) −> divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 even(c) −> divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀T x ; φ,∆

[x/c]φ is result of replacing each occurrence of x in φ with c

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 7 / 30

Proving Validity of First-Order Formulas

Proving an existentially quantified formula

∃T x ; φ is true in any model M
How is such a claim proven in mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆

t ′ any variable-free term with declared type T ′vT

Proof might not work with t ′! Need to keep premise to try again

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 8 / 30

Proving Validity of First-Order Formulas

Proving an existentially quantified formula

∃T x ; φ is true in any model M
How is such a claim proven in mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆

t ′ any variable-free term with declared type T ′vT

Proof might not work with t ′! Need to keep premise to try again

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 8 / 30

Proving Validity of First-Order Formulas

Proving an existentially quantified formula

∃T x ; φ is true in any model M
How is such a claim proven in mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆

t ′ any variable-free term with declared type T ′vT

Proof might not work with t ′! Need to keep premise to try again

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 8 / 30

Proving Validity of First-Order Formulas

Proving an existentially quantified formula

∃T x ; φ is true in any model M
How is such a claim proven in mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆

t ′ any variable-free term with declared type T ′vT

Proof might not work with t ′! Need to keep premise to try again

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 8 / 30

Proving Validity of First-Order Formulas

Proving an existentially quantified formula

∃T x ; φ is true in any model M
How is such a claim proven in mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆

t ′ any variable-free term with declared type T ′vT

Proof might not work with t ′! Need to keep premise to try again

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 8 / 30

Proving Validity of First-Order Formulas

Using a universally quantified formula

∀T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

We know that “all” primes are odd ∀ int x ; (prime(x) −> odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) −> odd(17)

Sequent rule ∀-left

forallLeft
Γ,∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀T x ; φ =⇒ ∆

t ′ any variable-free term with declared type T ′vT

We might need other instances besides t ′! Keep premise

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 9 / 30

Proving Validity of First-Order Formulas

Using a universally quantified formula

∀T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

We know that “all” primes are odd ∀ int x ; (prime(x) −> odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) −> odd(17)

Sequent rule ∀-left

forallLeft
Γ,∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀T x ; φ =⇒ ∆

t ′ any variable-free term with declared type T ′vT

We might need other instances besides t ′! Keep premise

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 9 / 30

Proving Validity of First-Order Formulas

Using a universally quantified formula

∀T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

We know that “all” primes are odd ∀ int x ; (prime(x) −> odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) −> odd(17)

Sequent rule ∀-left

forallLeft
Γ,∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀T x ; φ =⇒ ∆

t ′ any variable-free term with declared type T ′vT

We might need other instances besides t ′! Keep premise

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 9 / 30

Proving Validity of First-Order Formulas

Using a universally quantified formula

∀T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

We know that “all” primes are odd ∀ int x ; (prime(x) −> odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) −> odd(17)

Sequent rule ∀-left

forallLeft
Γ,∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀T x ; φ =⇒ ∆

t ′ any variable-free term with declared type T ′vT

We might need other instances besides t ′! Keep premise

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 9 / 30

Proving Validity of First-Order Formulas

Using a universally quantified formula

∀T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

We know that “all” primes are odd ∀ int x ; (prime(x) −> odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) −> odd(17)

Sequent rule ∀-left

forallLeft
Γ, ∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀T x ; φ =⇒ ∆

t ′ any variable-free term with declared type T ′vT

We might need other instances besides t ′! Keep premise

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 9 / 30

Proving Validity of First-Order Formulas

Using an existentially quantified formula

∃T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

Every set s can be well-ordered ∃ OSet x ; (sameElem(s, x) & wellOrder(x))

Let s ′ be a well-order of s s ′ new constant of type OSet

We know: s ′ is well-order of s sameElem(s, s ′) & wellOrder(s ′)

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ,∃T x ; φ =⇒ ∆

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 10 / 30

Proving Validity of First-Order Formulas

Using an existentially quantified formula

∃T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

Every set s can be well-ordered ∃ OSet x ; (sameElem(s, x) & wellOrder(x))

Let s ′ be a well-order of s s ′ new constant of type OSet

We know: s ′ is well-order of s sameElem(s, s ′) & wellOrder(s ′)

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ,∃T x ; φ =⇒ ∆

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 10 / 30

Proving Validity of First-Order Formulas

Using an existentially quantified formula

∃T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

Every set s can be well-ordered ∃ OSet x ; (sameElem(s, x) & wellOrder(x))

Let s ′ be a well-order of s s ′ new constant of type OSet

We know: s ′ is well-order of s sameElem(s, s ′) & wellOrder(s ′)

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ,∃T x ; φ =⇒ ∆

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 10 / 30

Proving Validity of First-Order Formulas

Using an existentially quantified formula

∃T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

Every set s can be well-ordered ∃ OSet x ; (sameElem(s, x) & wellOrder(x))

Let s ′ be a well-order of s s ′ new constant of type OSet

We know: s ′ is well-order of s sameElem(s, s ′) & wellOrder(s ′)

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ,∃T x ; φ =⇒ ∆

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 10 / 30

Proving Validity of First-Order Formulas

Using an existentially quantified formula

∃T x ; φ is true in any model M
How is such a fact used in a mathematical proof?

Every set s can be well-ordered ∃ OSet x ; (sameElem(s, x) & wellOrder(x))

Let s ′ be a well-order of s s ′ new constant of type OSet

We know: s ′ is well-order of s sameElem(s, s ′) & wellOrder(s ′)

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ, ∃T x ; φ =⇒ ∆

c new constant of type T

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 10 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗
p(c , d) =⇒ p(c, d)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Untyped logic: let static type of x and y be >

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗
p(c , d) =⇒ p(c, d)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃-left: substitute new constant c of type > for x

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗
p(c , d) =⇒ p(c, d)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∀-right: substitute new constant d of type > for y

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗
p(c , d), ∀ y ; p(c , y) =⇒ p(c , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c, y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∀-left: free to substitute any term of type > for y , choose d

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗
p(c , d) =⇒ p(c, d)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∀-left not needed anymore (hide)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗

p(c , d) =⇒ p(c , d), ∃ x ; p(x , y)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃-right: free to substitute any term of type > for x , choose c

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗

p(c , d) =⇒ p(c, d)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃-right not needed anymore (hide)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗
p(c , d) =⇒ p(c, d)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Close

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Example (A simple theorem about binary relations)

∗
p(c , d) =⇒ p(c, d)

p(c , d) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Demo
Examples/lect09/relSimple.key

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 11 / 30

Proving Validity of First-Order Formulas

Using an equation between terms

t
.

= t ′ is true in any model M
How is such a fact used in a mathematical proof?

Use x
.

= y−1 to simplify x+1/y x
.

= y−1 =⇒ 1
.

= x+1/y

Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y−1+1/y x
.

= y−1 =⇒ 1
.

= y−1+1/y

Sequent rule
.

=-left

applyEq
Γ, t

.
= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t
.

= t ′, ψ =⇒ φ,∆

Always replace left- with right-hand side (use eqSymm if necessary)

Replacing term must be type-compatible wity replaced term

t any variable-free term with declared type T , t ′ with type T ′vT

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 12 / 30

Proving Validity of First-Order Formulas

Using an equation between terms

t
.

= t ′ is true in any model M
How is such a fact used in a mathematical proof?

Use x
.

= y−1 to simplify x+1/y x
.

= y−1 =⇒ 1
.

= x+1/y

Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y−1+1/y x
.

= y−1 =⇒ 1
.

= y−1+1/y

Sequent rule
.

=-left

applyEq
Γ, t

.
= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t
.

= t ′, ψ =⇒ φ,∆

Always replace left- with right-hand side (use eqSymm if necessary)

Replacing term must be type-compatible wity replaced term

t any variable-free term with declared type T , t ′ with type T ′vT

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 12 / 30

Proving Validity of First-Order Formulas

Using an equation between terms

t
.

= t ′ is true in any model M
How is such a fact used in a mathematical proof?

Use x
.

= y−1 to simplify x+1/y x
.

= y−1 =⇒ 1
.

= x+1/y

Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y−1+1/y x
.

= y−1 =⇒ 1
.

= y−1+1/y

Sequent rule
.

=-left

applyEq
Γ, t

.
= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t
.

= t ′, ψ =⇒ φ,∆

Always replace left- with right-hand side (use eqSymm if necessary)

Replacing term must be type-compatible wity replaced term

t any variable-free term with declared type T , t ′ with type T ′vT

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 12 / 30

Proving Validity of First-Order Formulas

Using an equation between terms

t
.

= t ′ is true in any model M
How is such a fact used in a mathematical proof?

Use x
.

= y−1 to simplify x+1/y x
.

= y−1 =⇒ 1
.

= x+1/y

Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y−1+1/y x
.

= y−1 =⇒ 1
.

= y−1+1/y

Sequent rule
.

=-left

applyEq
Γ, t

.
= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t
.

= t ′, ψ =⇒ φ,∆

Always replace left- with right-hand side (use eqSymm if necessary)

Replacing term must be type-compatible wity replaced term

t any variable-free term with declared type T , t ′ with type T ′vT

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 12 / 30

Proving Validity of First-Order Formulas

Using an equation between terms

t
.

= t ′ is true in any model M
How is such a fact used in a mathematical proof?

Use x
.

= y−1 to simplify x+1/y x
.

= y−1 =⇒ 1
.

= x+1/y

Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y−1+1/y x
.

= y−1 =⇒ 1
.

= y−1+1/y

Sequent rule
.

=-left

applyEq
Γ, t

.
= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t
.

= t ′, ψ =⇒ φ,∆

Always replace left- with right-hand side (use eqSymm if necessary)

Replacing term must be type-compatible wity replaced term

t any variable-free term with declared type T , t ′ with type T ′vT

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 12 / 30

Proving Validity of First-Order Formulas

Closing a subgoal in a proof

We derived a sequent that is obviously valid

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

We derived an equation that is obviously valid

eqClose
Γ =⇒ t

.
= t,∆

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 13 / 30

Features of the KeY Theorem Prover

Demo
Examples/lect09/rel.key

Feature List

Can work on multiple proofs simultaneously (task list)

Proof trees visualized as Java Swing tree

Point-and-click navigation within proof

Undo proof steps, prune proof trees

Pop-up menu with proof rules applicable in pointer focus

Preview of rule effect as tool tip

Quantifier instantiation and equality rules by drag-and-drop

Possible to hide (and unhide) parts of a sequent

Saving and loading of proofs

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 14 / 30

Sequent Calculus for FOL at One Glance

left side, antecedent right side, succedent

∀
Γ,∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀T x ; φ =⇒ ∆

Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀T x ; φ,∆

∃
Γ, [x/c]φ =⇒ ∆

Γ,∃T x ; φ =⇒ ∆

Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆

.
=

Γ, t
.

= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t
.

= t ′, ψ =⇒ φ,∆ Γ =⇒ t
.

= t,∆

[t/t ′]φ is result of replacing each occurrence of t in φ with t ′

t any variable-free term with declared type T
t ′ any variable-free term with declared type T ′vT

c new constant of type T (occurs not on current proof branch)

Equations can be reversed by commutativity

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 15 / 30

First-Order Validity Problems in KeY Syntax

\sorts { // types are called ‘‘sorts’’

Person; // one declaration per line

}
\functions {

int age(Person); // ‘‘int’’ predefined type

}
\predicates {

parent(Person,Person);
}
\problem { // Formula to be proven valid

\forall Person son; \forall Person father;
(parent(father,son) -> age(father) > age(son))

}

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 16 / 30

Types and Symbols with Fixed Meaning

When doing Java verification, we want many function and predicate
symbols to have the semantics prescribed by the JLS in all models

Reserved symbols with fixed meaning so far:
.

=, @−T , (T)

Types & symbols with fixed meaning in context of modeling Java

Dint = {d ∈ D | δ(d) = int} = ZZ

KeY can switch to {Integer.MIN_VALUE, . . . , Integer.MAX_VALUE}
Default interpretation (and always used in first-order) is ZZ

Similar for short, byte

Value types incomparable to reference types

Dboolean = {d ∈ D | δ(d) = boolean} = {F , T}
Usual operators in expressions as pre-defined signature symbols:
Fixed meaning: I(+) = +ZZ, I(*) = ∗ZZ, . . .
+,-,*,/,%,mod,...,-1,0,1,...,<,<=,>,>=,TRUE,FALSE

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 17 / 30

Types and Symbols with Fixed Meaning

When doing Java verification, we want many function and predicate
symbols to have the semantics prescribed by the JLS in all models

Reserved symbols with fixed meaning so far:
.

=, @−T , (T)

Types & symbols with fixed meaning in context of modeling Java

Dint = {d ∈ D | δ(d) = int} = ZZ

KeY can switch to {Integer.MIN_VALUE, . . . , Integer.MAX_VALUE}
Default interpretation (and always used in first-order) is ZZ

Similar for short, byte

Value types incomparable to reference types

Dboolean = {d ∈ D | δ(d) = boolean} = {F , T}
Usual operators in expressions as pre-defined signature symbols:
Fixed meaning: I(+) = +ZZ, I(*) = ∗ZZ, . . .
+,-,*,/,%,mod,...,-1,0,1,...,<,<=,>,>=,TRUE,FALSE

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 17 / 30

Rules for Type Casts and Type Predicates

Type predicate formulas t @− T

true iff dynamic type δ(valM(t)) is subtype of T

Type cast terms (T)t

yields valM(t) (identity) if cast succeeds, arb. element otherwise

Typical typing rule

The run-time type of a term is always compatible to its declared type

typeStatic
Γ, t @− T =⇒ ∆

Γ =⇒ ∆
T declared type of t

Ensures type-safety of typed first-order logic

KeY first-order strategy applies suitable typing rules automatically

All rules in KeY-Book Chapter 2, p59

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 18 / 30

Outline

1 Sequent Calculus
Proving First-Order Validity
KeY Theorem Prover
First-Order KeY Input Syntax
Symbols with Fixed Semantics

2 Example

3 Proof Search

4 Failed Proofs

5 Literature

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 18 / 30

An Example with Types

Schubert’s Steamroller
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also, there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants.

Therefore, there is an animal that likes to eat a grain-eating animal.

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 19 / 30

An Example with Types

any

⊥

Plant

Grain

Animal

Bird Fox Wolf Snail Caterpillar

\sorts { Animal;
Wolf \extends Animal;
Bird \extends Animal;
Fox \extends Animal;
Caterpillar \extends Animal;
Snail \extends Animal;
Plant;
Grain \extends Plant; }

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 20 / 30

An Example with Types

Schubert’s Steamroller
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also, there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants.

Therefore, there is an animal that likes to eat a grain-eating animal.

\predicates {
eats(Animal,any);
smaller(any,any);

}

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 21 / 30

An Example with Types

Schubert’s Steamroller
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also, there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants.

Therefore, there is an animal that likes to eat a grain-eating animal.

(\forall Caterpillar c; \forall Bird b; smaller(c,b)) &
(\forall Snail s; \forall Bird b; smaller(s,b)) &
(\forall Bird b; \forall Fox f; smaller(b,f)) &
(\forall Fox f; \forall Wolf w; smaller(f,w))

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 22 / 30

An Example with Types

Schubert’s Steamroller
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also, there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants.

Therefore, there is an animal that likes to eat a grain-eating animal.

(\forall Wolf w; \forall Fox f; !eats(w,f)) &
(\forall Wolf w; \forall Grain g; !eats(w,g)) &
(\forall Bird b; \forall Caterpillar c; eats(b,c)) &
(\forall Bird b; \forall Snail s; !eats(b,s))
(\forall Caterpillar c; \exists Plant p; eats(c,p)) &
(\forall Snail s; \exists Plant p; eats(s,p)) &

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 23 / 30

An Example with Types

Schubert’s Steamroller
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also, there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants.

Therefore, there is an animal that likes to eat a grain-eating animal.

(\forall Animal a;
((\forall Plant p; eats(a,p)) |
(\forall Animal as;

((smaller(as,a) &
\exists Plant p; eats(as,p)) -> eats(a,as)))))

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 24 / 30

An Example with Types

Schubert’s Steamroller
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also, there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants.

Therefore, there is an animal that likes to eat a grain-eating animal.

(...) ->
(\exists Animal a;
\exists Animal ga; ((\exists Grain g; eats(ga,g)) &

eats(a,ga)))

Demo
Examples/lect09/sr.key

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 25 / 30

An Example with Types

Schubert’s Steamroller
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them. Also, there are some grains, and grains are plants. Every animal
either likes to eat all plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than wolves. Wolves
do not like to eat foxes or grains, while birds like to eat caterpillars but not
snails. Caterpillars and snails like to eat some plants.

Therefore, there is an animal that likes to eat a grain-eating animal.

(...) ->
(\exists Animal a;
\exists Animal ga; ((\exists Grain g; eats(ga,g)) &

eats(a,ga)))

Demo
Examples/lect09/sr.key

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 25 / 30

Outline

1 Sequent Calculus
Proving First-Order Validity
KeY Theorem Prover
First-Order KeY Input Syntax
Symbols with Fixed Semantics

2 Example

3 Proof Search

4 Failed Proofs

5 Literature

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 25 / 30

Automated Proof Search

KeY has built-in heuristics to apply FO rules automatically

Select Proof Search Strategy “FOL”

Specify Max. Rule Applications or Time limit

Run/Stop button

See Goals tab

Look out for common problems

Long branches with same rule applied to quantified formulas

Too low bound on proof search

If search doesn’t terminate:

Check Java DL Proof Search Strategy
Instantiate quantifiers “by-hand”
(might need to declare suitable constant in problem)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 26 / 30

Automated Proof Search

KeY has built-in heuristics to apply FO rules automatically

Select Proof Search Strategy “FOL”

Specify Max. Rule Applications or Time limit

Run/Stop button

See Goals tab

Look out for common problems

Long branches with same rule applied to quantified formulas

Too low bound on proof search

If search doesn’t terminate:

Check Java DL Proof Search Strategy
Instantiate quantifiers “by-hand”
(might need to declare suitable constant in problem)

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 26 / 30

Outline

1 Sequent Calculus
Proving First-Order Validity
KeY Theorem Prover
First-Order KeY Input Syntax
Symbols with Fixed Semantics

2 Example

3 Proof Search

4 Failed Proofs

5 Literature

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 26 / 30

Failed Proofs

Sometimes (often) interactive or automatic proof attempts fail

Reasons for failed proofs

Automatically:

The automatic proof strategy of KeY is too weak
Did you check Proof Strategy FOL?

Manually:

Did you use the right instantiations?
Perhaps you need to apply an equality?

Your goal is not a valid formula!
An unsuccessful proof can give important clues why!

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 27 / 30

Learning from Failed Proofs

Theorem

Let the formula G be the goal of a sequent proof.
Assume there is an open leaf L = Γ =⇒ ∆ in a sequent proof such that:

1 L is not closed
2 There is a first-order model M that:

M |= γ for all γ ∈ Γ
M |= ! δ for all δ ∈ ∆

Then M |= ! G , i.e., M is a counter example for G .

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 28 / 30

Learning from Failed Proofs

How to proceed

1 Java DL Proof Search Strategy with
Quantifier Treatment unrestricted

2 Run prover, inspect open Goals L

3 If necessary, instantiate ∀-left, ∃-right by hand

4 Find model that makes L’s antecedent true and succedent false

5 Go back to G and find out was was wrong
Often, the patch is to add a γ ∈ L or a ! δ ∈ L to the premise of G

Demo
Examples/lect09/model.key

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 29 / 30

Learning from Failed Proofs

How to proceed

1 Java DL Proof Search Strategy with
Quantifier Treatment unrestricted

2 Run prover, inspect open Goals L

3 If necessary, instantiate ∀-left, ∃-right by hand

4 Find model that makes L’s antecedent true and succedent false

5 Go back to G and find out was was wrong
Often, the patch is to add a γ ∈ L or a ! δ ∈ L to the premise of G

Demo
Examples/lect09/model.key

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 29 / 30

Outline

1 Sequent Calculus
Proving First-Order Validity
KeY Theorem Prover
First-Order KeY Input Syntax
Symbols with Fixed Semantics

2 Example

3 Proof Search

4 Failed Proofs

5 Literature

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 29 / 30

Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 10: Using KeY (up to and incl. 10.2.2)

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 2: First-Order Logic

Recommended/Background

Huth & Ryan Logic in Computer Science, 2nd edn., Cambridge
University Press, 2004

Fitting First-Order Logic and Automated Theorem Proving, 2nd
edn., Springer 1996

André Platzer (CMU) 15-819M/05: Data, Code, Decisions 30 / 30

	Sequent Calculus
	Proving First-Order Validity
	KeY Theorem Prover
	First-Order KeY Input Syntax
	Symbols with Fixed Semantics

	Example
	Proof Search
	Failed Proofs
	Literature

