15-819M: Data, Code, Decisions 08: First-Order Logic

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA

15-819M/08: Data, Code, Decisions

Outline

Formal Modeling

2 First-Order Logic

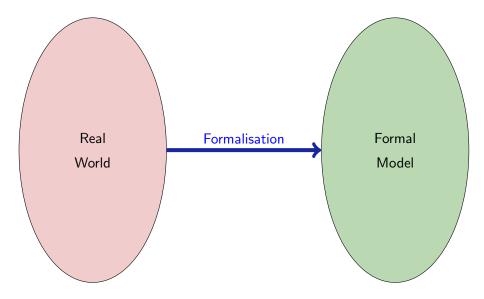
- Signature
- Terms
- Formulas
- 3 Semantics
 - Domain
 - Model
 - Variable Assignment
 - Term Valuation
 - Formula Valuation
 - Semantic Notions
- ④ Untyped Logic
- 5 Modeling with FOL
 - Summary

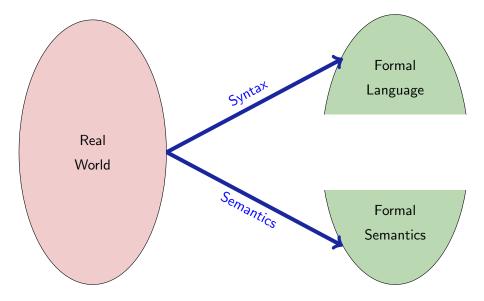
Outline

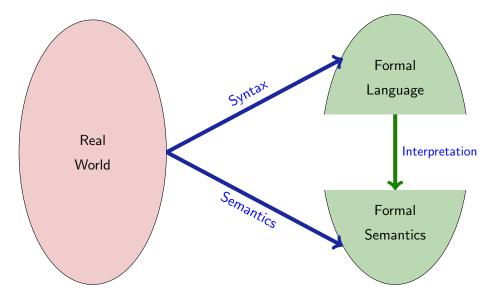
Formal Modeling

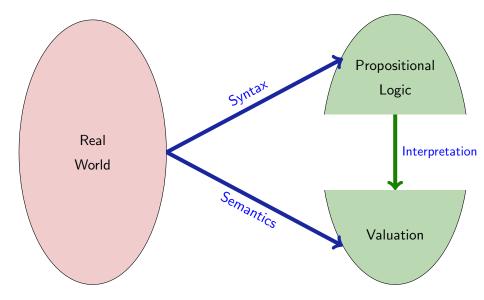
- First-Order Logic
 - Signature
 - Terms
 - Formulas
- 3 Semantics
 - Domain
 - Model
 - Variable Assignment
 - Term Valuation
 - Formula Valuation
 - Semantic Notions
- 4 Untyped Logic
- 5 Modeling with FOL
- 6 Summary

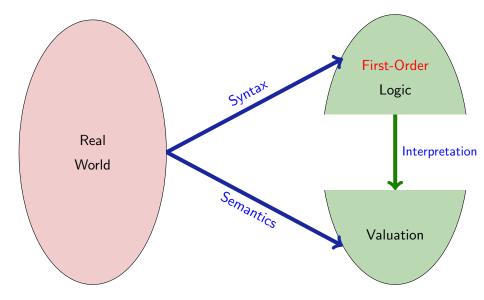
Formalisation







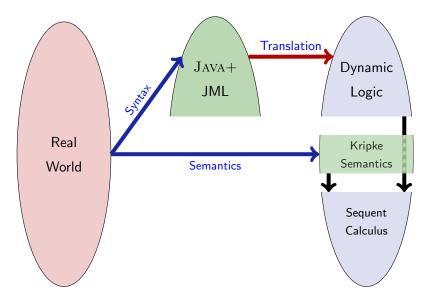


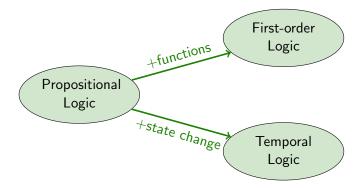


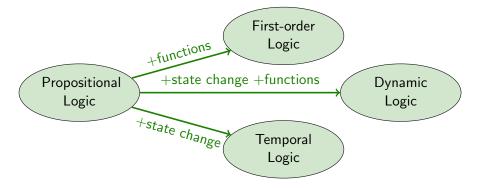
Approaches to Formal Software Verification

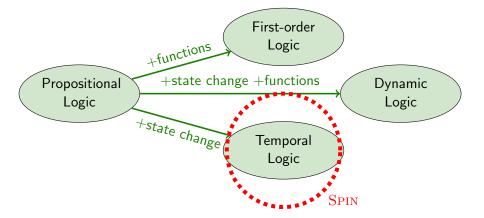
Concrete programs, Complex properties	Concrete programs, Simple properties
Abstract programs,	Abstract programs,
Complex properties	Simple properties

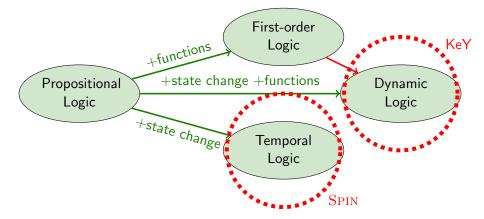
Formal Verification: Deduction

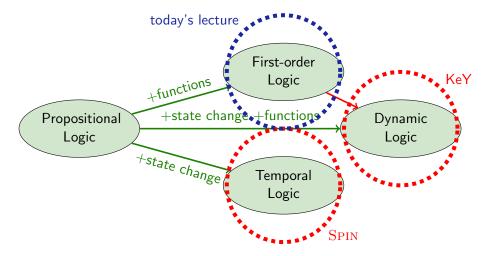




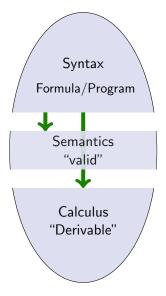




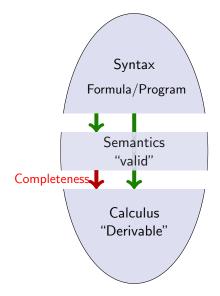




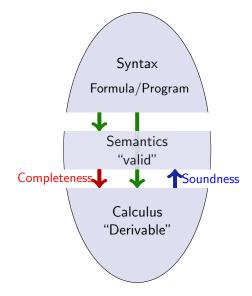
Syntax, Semantics, Calculus



Syntax, Semantics, Calculus



Syntax, Semantics, Calculus



Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

- \checkmark Can express: finite function/relation table with indexed variables p_{ij}
- Cannot express: properties of function/relation on all arguments: "+" associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc. Propositional formulas look at one single interpretation at a time

Outline

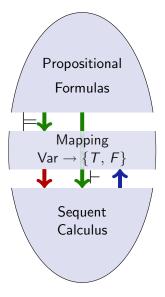
2 First-Order Logic

- Signature
- Terms
- Formulas

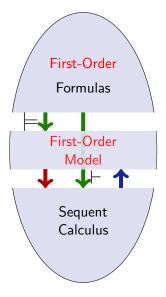
3 Semantics

- Domain
- Model
- Variable Assignment
- Term Valuation
- Formula Valuation
- Semantic Notions
- 4 Untyped Logic
- 5 Modeling with FOL
- 6 Summary

Propositional Logic



First-Order Logic



Syntax of First-Order Logic: Signature

Definition (First-Order Signature)

First-order signature $\Sigma = (\mathsf{PSym}, \mathsf{FSym}, \alpha)$

Predicate or Relation Symbols $\mathsf{PSym} = \{p_i \mid i \in \mathbb{N}\}$ Function Symbols $\mathsf{FSym} = \{f_i \mid i \in \mathbb{N}\}$

Typing function α , set of types T

•
$$\alpha(p) \in \mathcal{T}^*$$
 for all $p \in \mathsf{PSym}$

•
$$\alpha(f) \in \mathcal{T}^* imes \mathcal{T}$$
 for all $f \in \mathsf{FSym}$

Definition (Variables)

 $VSym = \{x_i \mid i \in \mathbb{N}\}$ set of typed variables

- In contrast to "standard" FOL, our symbols are typed Necessary to model a typed programming language such as JAVA!
- Allow any non-reserved name for symbols, not merely p_3, f_{17}, \ldots

André Platzer (CMU)

Syntax of First-Order Logic: Signature

Declaration of signature symbols

- Write T x; to declare variable x of type T
- Write $p(T_1, ..., T_r)$; for $\alpha(p) = (T_1, ..., T_r)$
- Write $T f(T_1, \ldots, T_r)$; for $\alpha(f) = ((T_1, \ldots, T_r), T)$

Similar convention as in JAVA, no overloading of symbols Case r = 0 is allowed, then write p instead of p(), etc.

Declaration of signature symbols

- Write T x; to declare variable x of type T
- Write $p(T_1, ..., T_r)$; for $\alpha(p) = (T_1, ..., T_r)$
- Write T $f(T_1, \ldots, T_r)$; for $\alpha(f) = ((T_1, \ldots, T_r), T)$

Similar convention as in JAVA, no overloading of symbols Case r = 0 is allowed, then write p instead of p(), etc.

Example

Variables boolean b; int i;

```
Predicates isEmpty(List); alertOn;
```

Functions int arrayLookup(int); java.lang.Object o;

We want to model the behavior of JAVA programs Admissible types \mathcal{T} form object-oriented type hierarchy

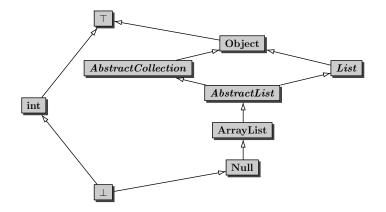
We want to model the behavior of JAVA programs Admissible types \mathcal{T} form object-oriented type hierarchy

Definition (OO Type Hierarchy)

- T is finite set of types (not parameterized)
- Given subtype relation \sqsubseteq , assume ${\mathcal T}$ has all supertypes, i.e., ${\mathcal T}$ is $\sqcap\text{-closed}$
- Dynamic types $\mathcal{T}_d \subseteq \mathcal{T}$, where $\top \in \mathcal{T}_d$
- Abstract types $\mathcal{T}_a \subseteq \mathcal{T}$, where $\perp \in \mathcal{T}_a$
- $\mathcal{T}_d \cap \mathcal{T}_a = \emptyset$
- $\mathcal{T}_d \cup \mathcal{T}_a = \mathcal{T}$
- $\perp \sqsubseteq T \sqsubseteq \top$ for all $T \in \mathcal{T}$

Example

Using UML notation



- Dynamic types are those with direct elements
- Abstract types for abstract classes and interfaces
- JAVA 1.5+ is \sqcap -closed
- In JAVA primitive (value) and object types incomparable
- ⊥ is abstract and hence no object ever can have this type
 ⊥ cannot occur in declaration of signature symbols
- $\bullet\,$ Each abstract type except \perp has a non-empty dynamic subtype
- $\bullet\,$ In ${\rm JAVA}\,\top$ is chosen to have no direct elements
- JAVA has infinitely many types: int[], int[][],... Restrict \mathcal{T} to the finitely many types that occur in a given program

- Dynamic types are those with direct elements
- Abstract types for abstract classes and interfaces
- JAVA 1.5+ is □-closed
- In JAVA primitive (value) and object types incomparable
- \perp is abstract and hence no object ever can have this type \perp cannot occur in declaration of signature symbols
- $\bullet\,$ Each abstract type except \perp has a non-empty dynamic subtype
- $\bullet\,$ In ${\rm JAVA}\,\top$ is chosen to have no direct elements
- JAVA has infinitely many types: int[], int[][],... Restrict T to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

 $\mathcal{T} = \{\bot, \, \top\}$

All signature symbols have same type \top : drop type, untyped logic

Reserved Signature Symbols

Reserved signature symbols

- Equality symbol ≐ ∈ PSym declared as ≐ (⊤, ⊤)
 Written infix: x ≐ 0
- Type predicate symbol $\equiv T \in \mathsf{PSym}$ for each $T \in T$

```
Declared as \equiv T(\top)
```

Written prefix: i∈int — read "instance of"

• Type cast symbol (T) \in FSym for each $T \in T$

Declared as $T(T)(\top)$ Written prefix: (String) \circ — read "cast o to String"

Reserved Signature Symbols

Reserved signature symbols

- Equality symbol ≐ ∈ PSym declared as ≐ (⊤, ⊤)
 Written infix: x ≐ 0
- Type predicate symbol $\equiv T \in \mathsf{PSym}$ for each $T \in T$

```
Declared as \equiv T(\top)
```

Written prefix: i∈int — read "instance of"

• Type cast symbol $(T) \in \mathsf{FSym}$ for each $T \in \mathcal{T}$

Declared as $T(T)(\top)$ Written prefix: (String) \circ — read "cast o to String"

So far, we have a type system and a signature — where is the logic?

First-order terms, informally

- Think of first-order terms as expressions in a programming language Built up from variables, constants, function symbols
- First-order terms have no side effects (like PROMELA, unlike JAVA)
- First-order terms have a type and must respect type hierarchy
 - type of f(g(x)) is result type in declaration of function f
 - in f(g(x)) the result type of g is subtype of argument type of f, etc.

First-order terms, informally

- Think of first-order terms as expressions in a programming language Built up from variables, constants, function symbols
- First-order terms have no side effects (like PROMELA, unlike JAVA)
- First-order terms have a type and must respect type hierarchy
 - type of f(g(x)) is result type in declaration of function f
 - in f(g(x)) the result type of g is subtype of argument type of f, etc.

Definition (First-Order Terms {Term_T}_{$T \in T$} with type $T \in T$)

- x is term of type T for variable declared as T x;
- $f(t_1, \ldots, t_r)$ is term of type T for
 - function symbol declared as $T f(T_1, \ldots, T_r)$; and
 - terms t_i of type $T'_i \sqsubseteq T_i$ for $1 \le i \le r$
- There are no other terms (inductive definition)

Example

Signature: int i; short j; List l; int f(int);

- f(i) has result type int and is contained in Termint
- f(j) has result type int (when $short \sqsubseteq int$)
- f(1) is ill-typed (when int, List incomparable)
- f(i,i) is not a term (doesn't match declaration)
- (int) j is term of type int
- even (int)1 is term of type int (type cast always well-formed)

Example

Signature: int i; short j; List l; int f(int);

- \bullet f(i) has result type \mathbf{int} and is contained in $\mathsf{Term}_{\mathbf{int}}$
- f(j) has result type int (when $short \sqsubseteq int$)
- f(1) is ill-typed (when int, List incomparable)
- f(i,i) is not a term (doesn't match declaration)
- (int) j is term of type int
- even (int)1 is term of type int (type cast always well-formed)
- If f is constant (r = 0) write f instead of f()
- Use infix notation liberally, where appropriate: declare int +(int, int); then write i+j, etc.
- Use brackets to disambiguiate parsing: (i+j)*i

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

 $p(t_1,\ldots,t_r)$ is atomic first-order formula for

- predicate symbol declared as $p(T_1, \ldots, T_r)$; and
- terms t_i of type $T'_i \sqsubseteq T_i$ for $1 \le i \le r$

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

 $p(t_1,\ldots,t_r)$ is atomic first-order formula for

- predicate symbol declared as $p(T_1, \ldots, T_r)$; and
- terms t_i of type $T'_i \sqsubseteq T_i$ for $1 \le i \le r$

Example

Signature: int i; short j; List l; <(int, int);</pre>

- i < i is an atomic first-order formula
- i < j is an atomic first-order formula (when short \sqsubseteq int)
- i < 1 is ill-typed (when int, List incomparable)
- $i \doteq j$ and even $i \doteq 1$ are atomic first-order formulas
- i⊟short is an atomic first-order formula

First-Order Formulas

Definition (Set of First-Order Formulas For)

- Truth constants true, false and all first-order atomic formulas are first-order formulas
- If ϕ and ψ are first-order formulas then

 $! \phi$, $(\phi \And \psi)$, $(\phi \mid \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$

are also first-order formulas

 If *T* x is a variable declaration, φ a first-order formula, then ∀ *T* x; φ and ∃ *T* x; φ are first-order formulas Any occurrence of x in φ must be well-typed

- $\forall T x; \phi$ called universally quantified formula
- $\exists T x; \phi$ called existentially quantified formula

- In $\forall T x$; ϕ and $\exists T x$; ϕ call ϕ the scope of x bound by \forall/\exists
- Variables bound in quantified formulas similar to program locations declared as local variables/formal parameters

Example

- \forall int *i*; \exists int *j*; *i* < *j* is a first-order formula
- \forall int *i*; \exists List *I*; *i* < *I* is ill-typed
- ∀ int i; i < j is a first-order formula if j is a constant compatible with int
- (∀ int i; ∀ int j; i < j) | (∀ int i; ∀ int j; i > j) is a first-order formula

Remark on Concrete Syntax

	Text book	Spin	KeY	JAVA
Negation	_	ļ	!	!
Conjunction	\wedge	&&	&	&&
Disjunction	\vee			
Implication	ightarrow, ightarrow	->	->	n/a
Equivalence	\leftrightarrow	<->	<->	n/a
Universal Quantifier	$\forall x; \phi$	n/a	\forall T x; ϕ	n/a
Existential Quantifier	$\exists x; \phi$	n/a	\exists T x; ϕ	n/a
Value equality	÷	==	=	==

Remark on Concrete Syntax

	Text book	Spin	KeY	JAVA
Negation	–	!	!	!
Conjunction	\wedge	&&	&	&&
Disjunction	\vee			
Implication	ightarrow, ightarrow	->	->	n/a
Equivalence	\leftrightarrow	<->	<->	n/a
Universal Quantifier	$\forall x; \phi$	n/a	\forall T x; ϕ	n/a
Existential Quantifier	$\exists x; \phi$	n/a	\exists T x; ϕ	n/a
Value equality	÷	==	=	==

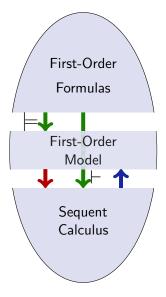
For quantifiers we normally use textbook syntax and suppress type information to ease readability

For propositional connectives we use KeY syntax

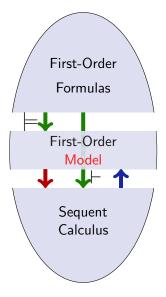
Outline

- Formal Modeling
 - First-Order Logic
 - Signature
 - Terms
 - Formulas
- 3 Semantics
 - Domain
 - Model
 - Variable Assignment
 - Term Valuation
 - Formula Valuation
 - Semantic Notions
- 4 Untyped Logic
- Modeling with FOL
- 5 Summary

First-Order Semantics



First-Order Semantics



First-Order Semantics

From propositional to first-order semantics

- In prop. logic, interpretation of variables with $\{T, F\}$
- In first-order logic we must assign meaning to:
 - variables bound in quantifiers
 - constant and function symbols
 - predicate symbols
- Each variable or function value may denote a different object
- Respect typing: int i, List 1 must denote different objects

What we need (to interpret a first-order formula)

- A collection of typed universes of objects (akin to heap objects)
- A mapping from variables to objects
- A mapping from function arguments to function values
- The set of argument tuples where a predicate is true

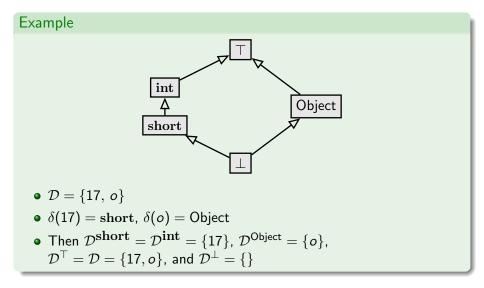
A collection of typed universes of objects

Definition (Universe/Domain)

A non-empty set \mathcal{D} of objects is a universe or domain Each element of \mathcal{D} has a fixed type given by $\delta : \mathcal{D} \to \mathcal{T}_d$

- Like heap objects and values in JAVA
- Notation for the domain elements type-compatible with $T \in T$: $\mathcal{D}^T = \{ d \in \mathcal{D} \mid \delta(d) \sqsubseteq T \}$
- For each dynamic type $T \in T_d$ there must be at least one domain element type-compatible with it: $D^T \neq \emptyset$

First-Order Universes



- A mapping from function arguments to function values
- The set of argument tuples where a predicate is true

Definition (First-Order Model)

Let \mathcal{D} be a domain with typing function δ Let f be declared as T $f(T_1, \ldots, T_r)$; Let p be declared as $p(T_1, \ldots, T_r)$; Let $\mathcal{I}(f) : \mathcal{D}^{T_1} \times \cdots \times \mathcal{D}^{T_r} \to \mathcal{D}^T$ Let $\mathcal{I}(p) \subseteq \mathcal{D}^{T_1} \times \cdots \times \mathcal{D}^{T_r}$

Then $\mathcal{M} = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order model

First-Order Models

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$\mathcal{I}(i)$	= 17		
$\mathcal{I}(j)$		$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
$\mathcal{I}(obj)$) = 0	(2,2)	F
	τ	(2,17)	T
$\mathcal{D}^{\mathbf{m}}$	$\mathcal{L}(t)$	(17,2)	F
2	2	(17, 17)	F
17	2		L]

One of uncountably many possible first-order models!

Semantics of Reserved Signature Symbols

Definition

• Equality symbol \doteq declared as \doteq (\top , \top)

Model is fixed as $\mathcal{I}(\doteq) = \{(d, d) \mid d \in \mathcal{D}\}$ "Referential Equality" (holds if arguments refer to identical object) Exercise: write down the predicate table for example domain

• Type predicate symbol $\equiv T$ for any T, declared as $\equiv T(\top)$

 $\mathcal{I}(\in T) = \mathcal{D}^T$

Exercise: what is $\mathcal{I}(\equiv Object)$?

• Type cast symbol (T) for each T, declared as $T(T)(\top)$

$$\mathcal{I}((T))(x) = \begin{cases} x & \text{if cast succeeds } (\delta(x) \sqsubseteq T) \\ d & \text{otherwise, for an arbitrary fixed } d \in \mathcal{D}^T \end{cases}$$

Exercise: what is $\mathcal{I}((int))(17)$?

- Domain elements are not just the terms representing them
- First-order formulas and terms have no access to domain
- As in JAVA: identity and memory layout of values/objects hidden
- Think of a first-order model as a "heap" of first-order logic

Example

```
Signature: Object obj1, obj2;
Domain: \mathcal{D} = \{o\}
```

In this model, necessarily $\mathcal{I}(obj1) = \mathcal{I}(obj2) = o$ Effect similar to aliasing in JAVA with reference types

A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type T then $\beta(x) \in D^T$

Definition (Modified Variable Assignment)

Let y be variable of type T, β variable assignment, $d \in \mathcal{D}^T$:

$$\beta_y^d(x) := \begin{cases} \beta(x) & \text{if } x \neq y \\ d & \text{if } x = y \end{cases}$$

Given a first-order model \mathcal{M} and a variable assignment β it is possible to evaluate first-order terms under \mathcal{M} and β

Analogy

Evaluating an expression in a programming language with respect to a given heap (\mathcal{M}) and binding of local variables (β)

Definition (Valuation of Terms)

 $val_{\mathcal{M},\beta}$: Term $\rightarrow \mathcal{D}$ such that $val_{\mathcal{M},\beta}(t) \in \mathcal{D}^{\mathcal{T}}$ for $t \in \text{Term}_{\mathcal{T}}$:

• $val_{\mathcal{M},\beta}(x) = \beta(x)$ (recall that β respects typing)

•
$$val_{\mathcal{M},\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{\mathcal{M},\beta}(t_1),\ldots,val_{\mathcal{M},\beta}(t_r))$$

Example

$\mathcal{I}(\mathtt{i}) = 17$	$\mathcal{D}^{\mathbf{int}}$	$\mathcal{I}(\mathtt{f})$	Var	β
I(j) = 17 I(j) = 17	2	17	obj	0
$\mathcal{L}(\mathbf{j}) = 1$	17	2	х	17

- $val_{\mathcal{M},\beta}(f(f(i)))$?
- $val_{\mathcal{M},\beta}(x)$?
- $val_{\mathcal{M},\beta}((int)obj)$?

Example

$\mathcal{I}(\mathtt{i}) = 17$	$\mathcal{D}^{\mathbf{int}}$	$\mathcal{I}(\mathtt{f})$	Var	β
I(j) = 17 I(j) = 17	2	17	obj	0
$\mathcal{L}(\mathbf{j}) = 1$	17	2	х	17

- $val_{\mathcal{M},\beta}(f(f(i)))$? = 17
- $val_{\mathcal{M},\beta}(x)$?
- $val_{\mathcal{M},\beta}((int)obj)$?

Example

$\mathcal{I}(\mathtt{i}) = 17$	$\mathcal{D}^{\mathbf{int}}$	$\mathcal{I}(\mathtt{f})$	Var	β
I(j) = 17 I(j) = 17	2	17	obj	0
$\mathcal{L}(\mathbf{j}) = 1$	17	2	х	17

- $val_{\mathcal{M},\beta}(f(f(i)))$? = 17
- $val_{\mathcal{M},\beta}(x)$? = 17
- $val_{\mathcal{M},\beta}((int)obj)$?

Example

$\mathcal{I}(\mathtt{i}) = 17$	$\mathcal{D}^{\mathbf{int}}$	$\mathcal{I}(f)$	Var	β
$\mathcal{I}(\mathbf{j}) = 17$ $\mathcal{I}(\mathbf{j}) = 17$	2	17	obj	0
$\mathcal{L}(\mathbf{J}) = \mathbf{I}$	17	2	х	17

•
$$val_{\mathcal{M},\beta}(f(f(i)))$$
 ? = 17

•
$$val_{\mathcal{M},\beta}(x)$$
 ? = 17

•
$$\mathit{val}_{\mathcal{M},eta}((\mathrm{int}) \mathtt{obj})$$
 ? $=$ 2 , say

Formulas are true or false A validity relation is more convenient than a function

Definition (Validity Relation for Formulas) $\mathcal{M}, \beta \models \phi$ for $\phi \in For \ \ \mathcal{M}, \beta$ models ϕ " • $\mathcal{M}, \beta \models p(t_1, \dots, t_r)$ iff $(val_{\mathcal{M},\beta}(t_1), \dots, val_{\mathcal{M},\beta}(t_r)) \in \mathcal{I}(p)$ • $\mathcal{M}, \beta \models \phi \& \psi$ iff $\mathcal{M}, \beta \models \phi$ and $\mathcal{M}, \beta \models \psi$ • ... as in propositional logic • $\mathcal{M}, \beta \models \forall T x; \phi$ iff $\mathcal{M}, \beta_x^d \models \phi$ for all $d \in \mathcal{D}^T$ • $\mathcal{M}, \beta \models \exists T x; \phi$ iff $\mathcal{M}, \beta_x^d \models \phi$ for at least one $d \in \mathcal{D}^T$

Example

Signature: short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$\mathcal{I}(j)$		$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
$\mathcal{I}(\texttt{obj}$) = 0	(2,2)	F
$\mathcal{D}^{\mathrm{int}}$	$\mathcal{I}(f)$	(2, 17)	Т
2	2	(17,2)	F
17	2	(17, 17)	F

Semantic Notions

Definition (Satisfiability, Truth, Validity) $\mathcal{M}, \beta \models \phi$ (ϕ is satisfiable) $\mathcal{M} \models \phi$ iff for all β : $\mathcal{M}, \beta \models \phi$ (ϕ is true in \mathcal{M}) $\models \phi$ iff for all \mathcal{M} : $\mathcal{M} \models \phi$ (ϕ is valid)

Closed formulas that are satisfiable are also true: one top-level notion

Semantic Notions

Definition (Satisfiability, Truth, Validity) $\mathcal{M}, \beta \models \phi$ (ϕ is satisfiable) $\mathcal{M} \models \phi$ iff for all β : $\mathcal{M}, \beta \models \phi$ (ϕ is true in \mathcal{M}) $\models \phi$ iff for all \mathcal{M} : $\mathcal{M} \models \phi$ (ϕ is valid)

Closed formulas that are satisfiable are also true: one top-level notion

Example

- f(j) < j is true in \mathcal{M}
- $\exists int x; i \doteq x is valid$
- $\exists int x; !(x \doteq x) is not satisfiable$

Outline

- Formal Modeling
 - First-Order Logic
 - Signature
 - Terms
 - Formulas
- 3 Semantics
 - Domain
 - Model
 - Variable Assignment
 - Term Valuation
 - Formula Valuation
 - Semantic Notions
- ④ Untyped Logic
 - Modeling with FOL
 - 5 Summary

Most logic textbooks introduce untyped logic

How to obtain untyped logic as a special case

- Minimal Type Hierarchy: $\mathcal{T} = \{\perp, \top\}$
- $\mathcal{D} = \mathcal{D}^{\top} \neq \emptyset$: only one populated type \top , drop all typing info
- Signature merely specifies arity of functions and predicates: Write f/1, < /2, i/0, etc.
- Untyped logic is suitable whenever we model a uniform domain
- Typical applications: pure mathematics such as algebra

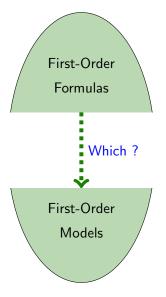
Example (Axiomatization of a group in first-order logic) Signature Σ_G : FSym = { $\circ/2$, $\mathbf{e}/0$ }, PSym = { $\doteq/2$ } Let *G* be the following formulas:

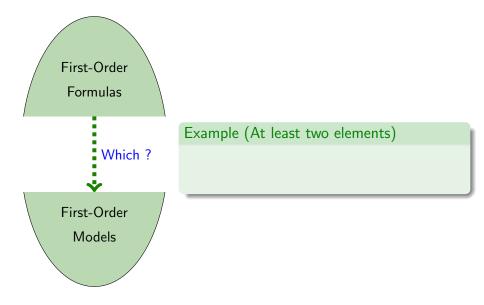
> Left identity $\forall x; \mathbf{e} \circ x \doteq x$ Left inverse $\forall x; \exists y; y \circ x \doteq \mathbf{e}$ Associativity $\forall x; \forall y; \forall z; (x \circ y) \circ z \doteq x \circ (y \circ z)$

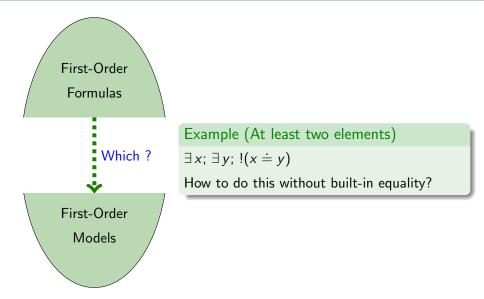
Let ϕ be Σ_G -formula. Whenever $\models G \rightarrow \phi$, then ϕ is a theorem of group theory

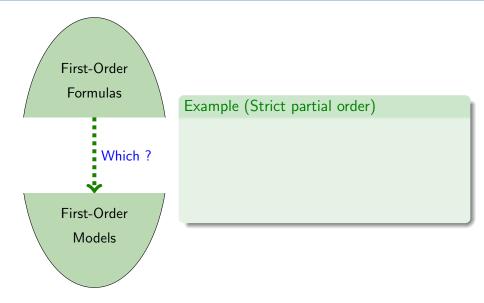
Outline

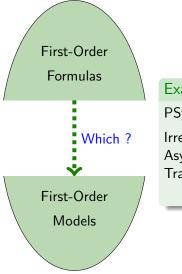
- Formal Modeling
 - First-Order Logic
 - Signature
 - Terms
 - Formulas
- 3 Semantics
 - Domain
 - Model
 - Variable Assignment
 - Term Valuation
 - Formula Valuation
 - Semantic Notions
- 4 Untyped Logic
- 5 Modeling with FOL
 - 5 Summary



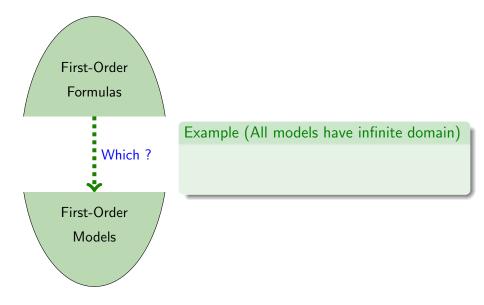


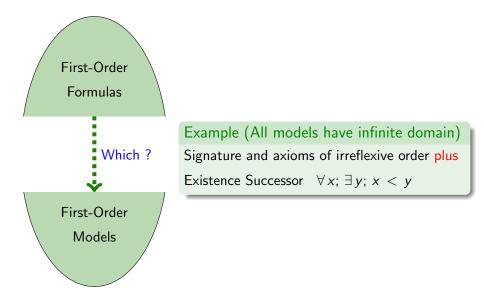


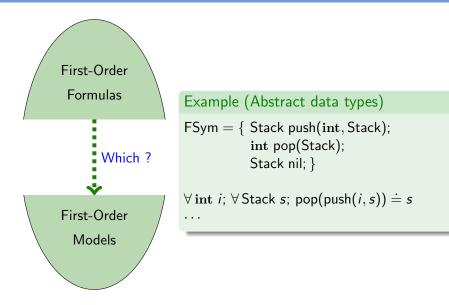




Example (Strict partial order) PSym = $\{ < /2 \}$ Irreflexivity $\forall x; !(x < x)$ Asymmetry $\forall x; \forall y; (x < y \rightarrow !(y < x))$ Transitivity $\forall x; \forall y; \forall z;$ $(x < y \& y < z \rightarrow x < z)$







Why such a Complicated First-Order Semantics?

Why not take terms and properties at their "face value"?

Definition (Herbrand Model (untyped logic))

A first-order model where

- \bullet Domain ${\cal D}$ are all variable-free (i.e., ground) terms
- Each domain element is represented as a term
- Interpretation of function symbols is identity: $\mathcal{I}(f)(d_1, \ldots, d_r) = f(d_1, \ldots, d_r)$

Why such a Complicated First-Order Semantics?

Why not take terms and properties at their "face value"?

Definition (Herbrand Model (untyped logic))

A first-order model where

- \bullet Domain ${\cal D}$ are all variable-free (i.e., ground) terms
- Each domain element is represented as a term
- Interpretation of function symbols is identity: $\mathcal{I}(f)(d_1, \ldots, d_r) = f(d_1, \ldots, d_r)$

Major limitations of Herbrand models

- Too many different domain elements: 1 + 2, 2 + 1
- Natural to represent program locations as terms and domain elements as their values whose exact representation we don't know
- There are theoretical limitations as well

Outline

- Formal Modeling
 - First-Order Logic
 - Signature
 - Terms
 - Formulas
- 3 Semantics
 - Domain
 - Model
 - Variable Assignment
 - Term Valuation
 - Formula Valuation
 - Semantic Notions
- 4 Untyped Logic
- Modeling with FOL

Summary and Outlook

Summary

- First-order formulas defined over a signature of typed symbols
- Hierarchical OO type system with abstract and dynamic types
- Quantification over variables, no "free" variables in formulas
- Semantic domain like objects in a JAVA heap
- First-order model assigns semantic value to terms and formulas
- Semantic notions satisfiability and validity

Summary and Outlook

Summary

- First-order formulas defined over a signature of typed symbols
- Hierarchical OO type system with abstract and dynamic types
- Quantification over variables, no "free" variables in formulas
- Semantic domain like objects in a JAVA heap
- First-order model assigns semantic value to terms and formulas
- Semantic notions satisfiability and validity

Semantic evaluation is not feasible in practice

- Infinite (uncountable) number of first-order models
- Evaluation of quantified formula may involve infinitely many cases
- Next goal: a syntactic calculus allowing mechanical validity checking

KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented Software: The KeY Approach, vol 4334 of LNCS. Springer, 2006. Chapter 2: First-Order Logic

- Fitting Melvin Fitting. First-Order Logic and Automated Theorem Proving, 2nd edn., Springer 1996
- Ben-Ari Mordechai Ben-Ari. *Mathematical Logic for Computer Science*, Springer, 2003.
- Huth & Ryan Michael Huth and Mark Ryan. Logic in Computer Science, Cambridge University Press, 2nd edn., 2004