
15-819M: Data, Code, Decisions
01: Introduction

André Platzer

aplatzer@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 1 / 33

Outline

1 Organisation

2 Motivation

3 Formalisation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 1 / 33

Outline

1 Organisation

2 Motivation

3 Formalisation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 1 / 33

Organisational Stuff

Course Web

http://symbolaris.com/course/dcd.html

Passing Criteria

Homework assignments

Midterm

Project (e.g., practical programming, applications, theory, seminar)

Homework assignments / Exercise

Two weeks for homework assignments

Assignments include practical part

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 2 / 33

http://symbolaris.com/course/dcd.html

Organisational Stuff: Course Structure

Course Structure

Introduction

Propositional Logic

First-Order Logic

Modeling & Verification with JML & KeY

Decision Procedures

Real arithmetic

Integer arithmetic

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 3 / 33

Suggested Course Literature

Ben-Ari Mordechai Ben-Ari. Mathematical Logic for Computer
Science, Springer, 2003.
Author received ACM award for outstanding Contributions
to CS Education.

KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach, vol 4334
of LNCS. Springer, 2006.

BZ A.R. Bradley and Z. Manna. The Calculus of Computation:
Decision Procedures with Applications to Verification,
Springer, 2007.

Ben-Ari Mordechai Ben-Ari: Principles of the Spin Model Checker,
Springer, 2008(!).

Acknowledgment

Slides based on Reiner Hähnle’s course “Software Engineering using
Formal Methods” at Chalmers University

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 4 / 33

Outline

1 Organisation

2 Motivation

3 Formalisation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 4 / 33

Motivation: Software Defects cause Big Failures

Tiny faults in technical systems can have catastrophic consequences

Especially for software bugs

Ariane 5

Mars Climate Orbiter, Mars Sojourner

Denver Airport Luggage Handling System

Pentium-Bug

USS Yorktown

F-22 jet crash

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 5 / 33

Achieving Reliability in Engineering

Reliability means in engineering

Precise calculations/estimations of forces, stress, etc.

Hardware redundancy (“make it a bit stronger than necessary”)

Robust design (single fault not catastrophic)

Clear separation of subsystems
Any air plane flies with dozens of known and minor defects

Design follows patterns that are proven to work

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 6 / 33

Why This Does Not Work For Software

Software systems compute discontinuous functions
Single bit-flip may change behavior completely

Redundancy as replication doesn’t help against bugs
Redundant SW development only viable in extreme cases

No clear separation of subsystems
Local failures often affect whole system

Software designs have very high logic complexity

Most SW engineers untrained to address correctness

Cost efficiency favored over reliability

Design practice for reliable software in immature state
for complex systems

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 7 / 33

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, sandboxing, . . .)

Testing against inherent SW errors / bugs

design test configurations that are hopefully representative and

ensure that the system behaves as intended on these tests

Testing against external faults

Inject faults (memory, communication) by simulation or radiation

Issues: In both cases spot error by

Visual inspection of output

Expected result (input 9, then output 3)

Test procedure for output (output o = sqrt(i) good if o2 = i)

Assertions throughout the code

(it’s getting formal)

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 8 / 33

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, sandboxing, . . .)

Testing against inherent SW errors / bugs

design test configurations that are hopefully representative and

ensure that the system behaves as intended on these tests

Testing against external faults

Inject faults (memory, communication) by simulation or radiation

Issues: In both cases spot error by

Visual inspection of output

Expected result (input 9, then output 3)

Test procedure for output (output o = sqrt(i) good if o2 = i)

Assertions throughout the code

(it’s getting formal)

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 8 / 33

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, sandboxing, . . .)

Testing against inherent SW errors / bugs

design test configurations that are hopefully representative and

ensure that the system behaves as intended on these tests

Testing against external faults

Inject faults (memory, communication) by simulation or radiation

Issues: In both cases spot error by

Visual inspection of output

Expected result (input 9, then output 3)

Test procedure for output (output o = sqrt(i) good if o2 = i)

Assertions throughout the code

(it’s getting formal)

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 8 / 33

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, sandboxing, . . .)

Testing against inherent SW errors / bugs

design test configurations that are hopefully representative and

ensure that the system behaves as intended on these tests

Testing against external faults

Inject faults (memory, communication) by simulation or radiation

Issues: In both cases spot error by

Visual inspection of output

Expected result (input 9, then output 3)

Test procedure for output (output o = sqrt(i) good if o2 = i)

Assertions throughout the code

(it’s getting formal)

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 8 / 33

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, sandboxing, . . .)

Testing against inherent SW errors / bugs

design test configurations that are hopefully representative and

ensure that the system behaves as intended on these tests

Testing against external faults

Inject faults (memory, communication) by simulation or radiation

Issues: In both cases spot error by

Visual inspection of output

Expected result (input 9, then output 3)

Test procedure for output (output o = sqrt(i) good if o2 = i)

Assertions throughout the code

(it’s getting formal)

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 8 / 33

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, sandboxing, . . .)

Testing against inherent SW errors / bugs

design test configurations that are hopefully representative and

ensure that the system behaves as intended on these tests

Testing against external faults

Inject faults (memory, communication) by simulation or radiation

Issues: In both cases spot error by

Visual inspection of output

Expected result (input 9, then output 3)

Test procedure for output (output o = sqrt(i) good if o2 = i)

Assertions throughout the code (it’s getting formal)

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 8 / 33

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, sandboxing, . . .)

Testing against inherent SW errors / bugs

design test configurations that are hopefully representative and

ensure that the system behaves as intended on these tests

Testing against external faults

Inject faults (memory, communication) by simulation or radiation

Issues: In both cases spot error by

Visual inspection of output

Expected result (input 9, then output 3)

Test procedure for output (output o = sqrt(i) good if o2 = i)

Assertions throughout the code (it’s getting formal)

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 8 / 33

Limitations of Testing

Testing shows the presence of errors, in general not their absence
(exhaustive testing viable only for trivial systems)

Representativeness of test cases/injected faults subjective
How to test for the unexpected? Rare cases?

Testing is labor intensive, hence expensive

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 9 / 33

Formal Methods: The Scenario

Rigorous methods used in system design and development

Mathematics and symbolic logic ⇒ formal

Increase confidence in a system

Two aspects:

System implementation
System requirements

Make formal model of both and use tools to prove mechanically
that formal execution model satisfies formal requirements

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 10 / 33

Formal Methods: The Vision

Complement other analysis and design methods

Are good at finding bugs
(in code and specification)

Reduce development (and test) time

Can ensure certain properties of the system model

Should ideally be as automatic as possible

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 11 / 33

Formal Methods: Relation with Testing

Run the system at chosen inputs and observe its behavior

Random test data (no real guarantees, but can find bugs)
Intelligent test data (by hand, expensive)
Automatic test data (need formal spec)

What about other inputs? (test coverage)

What about the observation? (test oracle)

Challenges can be solved using formal methods

Automatic (model-based) test case generation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 12 / 33

Specification: What a System Should Do

Simple properties
Safety properties
Something bad will never happen(e.g., simultaneous access)
Liveness properties
Something good will happen eventually(e.g., finally answer request)

General properties of concurrent/distributed systems

deadlock-free, no starvation, fairness

Non-functional properties

Runtime, memory, usability, . . .

Full behavioral specification
Code satisfies a contract that describes its functionality
Data consistency, system invariants
(in particular for efficient, i.e. redundant, data representations)
Modularity, encapsulation
Program equivalence
Program refinement

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 13 / 33

The Main Point of Formal Methods is Not

To show “correctness” of entire systems
What IS correctness? Always go for specific properties!

To replace testing entirely

Formal methods work on models, on source code, or, at most, on
bytecode level
Non-formalizable properties

To replace good design practices

There is no silver bullet!

No correct system w/o clear requirements & good design

One can’t formally verify messy code with unclear specs

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 14 / 33

But . . .

Formal proof can replace (infinitely) many test cases

Formal methods can be used in automatic test case generation

Formal methods improve the quality of specs
(even without formal verification)

Formal methods guarantee specific properties of a specific system
model

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 15 / 33

Formal Methods Aim at:

Saving money
Intel Pentium bug
Smart cards in banking

Saving time
otherwise spent on heavy testing and maintenance

More complex products
Modern µ-processors
Fault tolerant software

Saving human lives
Avionics
X-by-wire

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 16 / 33

Outline

1 Organisation

2 Motivation

3 Formalisation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 16 / 33

A Fundamental Fact

Formalisation of system requirements is hard

Let’s see why . . .

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 17 / 33

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

Abstraction

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 18 / 33

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

oversimplification

e.g., zero delay

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 18 / 33

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

missing requirement

e.g., max stack size

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 18 / 33

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

wrong modeling

e.g., ZZ vs int

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 18 / 33

Formalization Helps to Find Bugs in Specs

Wellformedness and consistency of formal specs machine-checkable

Failed verification of implementation against spec
gives feedback on erroneous formalization

Errors in specifications are at least as common as errors in code

but their discovery gives deep insights in (mis)conceptions of the system.

Proving properties of systems can be hard for non-trivial systems

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 19 / 33

Formalization Helps to Find Bugs in Specs

Wellformedness and consistency of formal specs machine-checkable

Failed verification of implementation against spec
gives feedback on erroneous formalization

Errors in specifications are at least as common as errors in code
but their discovery gives deep insights in (mis)conceptions of the system.

Proving properties of systems can be hard for non-trivial systems

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 19 / 33

Formalization Helps to Find Bugs in Specs

Wellformedness and consistency of formal specs machine-checkable

Failed verification of implementation against spec
gives feedback on erroneous formalization

Errors in specifications are at least as common as errors in code
but their discovery gives deep insights in (mis)conceptions of the system.

Proving properties of systems can be hard for non-trivial systems

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 19 / 33

Level of System (Implementation) Description

Abstract level

Finitely many states (finite data)
Tedious to program and maintain
Over-simplification, unfaithful modeling
sometimes inevitable
Relationship to concrete implementation
Automatic proofs are (in principle) possible

Concrete level

Infinite data
(pointer chains, dynamic arrays, streams)
Complex datatypes and control structures,
general programs
Realistic programming model (e.g., Java)
Automatic proofs (in general) impossible!

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 20 / 33

Expressiveness of Specification

Simple

Simple or general properties
Finitely many case distinctions
Approximation, low precision
Automatic proofs are (in principle) possible

Complex

Full behavioral specification
Quantification over infinite domains
High precision, tight modeling
Automatic proofs (in general) impossible!

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 21 / 33

Main Approaches

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY

Spin

Abstract
Interpretation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 22 / 33

Main Approaches

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY

Spin

Abstract
Interpretation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 22 / 33

Main Approaches

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY

Spin

Abstract
Interpretation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 22 / 33

Main Approaches

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY

Spin

Abstract
Interpretation

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 22 / 33

Proof Automation

“Automatic” Proof
Perhaps better called “batch-mode” proof

No interaction during verification necessary
Proof may fail or result inconclusive
Tuning of tool parameters necessary
Formal specification still “by hand”

“Semi-Automatic” Proof
Perhaps better called “interactive” proof

Interaction may be required during proof
Need certain knowledge of tool internals
Intermediate inspection can be helpful, too
Proof is checked by tool

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 23 / 33

Model Checking

System Model

byte n = 0;
active proctype P() {

n = 1;
}
active proctype Q() {

n = 2;
}

System Property

[] ! (criticalSectP && criticalSectQ)

Model
Checker

48

criticalSectP= 0 1 1
criticalSectQ= 1 0 1

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 24 / 33

Model Checking in Industry

Hardware verification

Good match between limitations of technology and application
Intel, Motorola, AMD, . . .

Software verification

Specialized software: control systems, protocols
Typically no checking of executable source code, but of abstraction
Bell Labs, Ericsson, Microsoft

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 25 / 33

Deductive Verification

Java Code Formal specification

correct?

Program Verification Tool

correct4

Proof rules establish relation “implementation conforms to specs”

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

5.000 proof steps

200 case distinctions

2 human interactions, 1 minute computing time

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 26 / 33

Deductive Verification

Java Code Formal specification

correct?

Program Verification Tool

correct4

Proof rules establish relation “implementation conforms to specs”

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

5.000 proof steps

200 case distinctions

2 human interactions, 1 minute computing time

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 26 / 33

Deductive Verification

Java Code Formal specification

correct?

Program Verification Tool

correct4

Proof rules establish relation “implementation conforms to specs”

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

5.000 proof steps

200 case distinctions

2 human interactions, 1 minute computing time

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 26 / 33

Deductive Verification

Java Code Formal specification

correct?

Program Verification Tool

correct4

Proof rules establish relation “implementation conforms to specs”

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

5.000 proof steps

200 case distinctions

2 human interactions, 1 minute computing time

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 26 / 33

Deductive Verification

Java Code Formal specification

correct?

Program Verification Tool

correct4

Proof rules establish relation “implementation conforms to specs”

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

5.000 proof steps

200 case distinctions

2 human interactions, 1 minute computing time

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 26 / 33

Deductive Verification in Industry

Hardware verification

For complex systems, most of all floating-point processors
Intel, Motorola, AMD, . . .

Software verification
Safety critical systems:

Paris driverless metro (Meteor)
Emergency closing system in North Sea

Libraries
Implementations of protocols

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 27 / 33

A Major Case Study with Spin

Checking feature interaction for telephone call processing software

Software for PathStarTM server from Lucent Technologies

Automated abstraction of unchanged C code into Promela

Web interface, with Spin as back-end, to:

track properties (ca. 20 temporal formulas)
invoke verification runs
report error traces

Finds shortest possible error trace, reported as C execution trace

Model checking on 16 computers, daily with overnight runs

18 months, 300 versions of system model, 75 bugs found

strength: detection of undesired feature interactions
(difficult with traditional testing)

Main challenge: defining meaningful properties

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 28 / 33

A Major Case Study with KeY

Mondex Electronic Purse

Specified and implemented by NatWest ca. 1996

Original formal specs in Z and proofs by hand

Reformulated specs in JML, implementation in Java Card

Can be run on actual smart card

Full functional verification

Total effort 4 person months

With correct invariants: proofs fully automatic

Main challenge: loop invariants, getting specs right

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 29 / 33

Tool Support is Essential

Some Reasons for Using Tools

Automate repetitive tasks

Avoid clerical errors, etc.

Cope with large/complex programs

Make verification certifiable

Tools

KeY to verify Java (Card) programs against contracts in JML

Spin to verify Promela programs against Temporal Logic specs

jSpin as a Java interface for Spin

Both are free and run on Windows/Unixes/Mac)
Install on your computer!

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 30 / 33

Future Trends

Design for formal verification

Combining semi-automatic methods with SAT, theorem provers

Combining static analysis of programs
with automatic methods and with theorem provers

Combining test and formal verification

Integration of formal methods into SW development process

Integration of formal method tools into CASE tools

Applying formal methods to dependable systems design

Formal verification for cyber-physical, embedded, real-time, hybrid
systems

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 31 / 33

Summary

Formal Methods . . .

Are (more and more) used in practice

Can shorten development time

Can push the limits of feasible complexity

Can increase quality/reliability of systems dramatically

Responsible software/system management should consider formal
methods, especially for safety-critical / security-critical / cost-intensive

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 32 / 33

Summary

Formal Methods . . .

Are (more and more) used in practice

Can shorten development time

Can push the limits of feasible complexity

Can increase quality/reliability of systems dramatically

Responsible software/system management should consider formal
methods, especially for safety-critical / security-critical / cost-intensive

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 32 / 33

You will gain experience in ...

... more than Formal Methods

modeling, and modeling languages

specification, and specification languages

in depth analysis of possible system behavior

typical types of errors

reasoning about system (mis)behavior

reasoning principles and logic

decision procedures

...

André Platzer (CMU) 15-819M/01: Data, Code, Decisions 33 / 33

	Organisation
	Motivation
	Formalisation

