
ConstLog: Constructive Logic

Lecture Notes on
Types as Predicates

Frank Pfenning André Platzer

Carnegie Mellon University ‖ Karlsruhe Institute of Technology
Lecture 16

1 Introduction

One of the significant problems in using Prolog is the lack of static typing. Prolog
inherited this feature from predicate calculus, where it roots lie. In the foundational
study of propositions and quantification, types are often omitted because it is said
they can already be expressed. For example, instead of saying ∀x:nat. A(x) we can
say ∀x. nat(x) ⊃ A(x) if we have a predicate nat that expresses the type nat. Similarly,
we can express ∃x:nat. A(x) as ∃x. nat(x)∧A(x). Predicates that provide an extensional
representation of types are not difficult to come by. For example, we can define (and
have defined) the natural numbers with two constructors z and s and the rules

nat(z) true
natz

nat(N) true
nat(s(N)) true

nats

Foundationally, this approach may have some merit, but it also has some problems.
One is that propositions such as ∀x:nat. append(x, nil, x) which are meaningless become
either true or false when written in an untyped way: ∀x. nat(x)⊃ append(x, nil, x). In a
language like Prolog this has dire consequences because we compute with intuitively
meaningless propositions and bogus proofs, leading to unexpected behavior. A sec-
ond problem is that the untyped approach does not extend well to higher-order logic,
where we want to quantify over propositions and not just data. In fact, several times in
history well-regarded researchers such as Frege or Church have attempted to avoid the
organizing principles of types, leading to inconsistent logics.

In this lecture we explore the question if we may still be able to use the idea of defin-
ing types via (unary) predicates and obtain something we can statically check and that
executes efficiently at the same time. The answer is “yes”, and the lessons learned from

CONSTLOG LECTURE NOTES 13.7.2023 FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog.html


L16.2 Types as Predicates

this has also had some impact on functional programming in the guise of refinement
types [FP91, DP03, Dav97].

There have been multiple approaches to types in the logic programming community
(see [Pfe92] for various articles and technical realizations). We will not go into a specific
decidable language of types, although much of what we show in this lecture applies to
several systems that are different in their respective technical details.

2 Modes and Types

Let’s reconsider something simple like addition on unary natural numbers.

nat(z)
natz

nat(N)

nat(s(N))
nats

plus(z, N,N)
pz

plus(M,N,P )

plus(s(M), N, s(P ))
ps

Now we want to show the combined mode and type specification:1

plus(+nat,+nat,−nat)

which we interpret as follows: if proof search is initiated with a goal plus(m,n, P ) where
nat(m) and nat(n) and proof search succeeds, then P = p with nat(p).

Rigorously, we would have to prove this by induction over the structure of compu-
tation (that is, proof search). In the absence of such an operational semantics, we prove
it by induction over the structure of the rules. Assume we are searching for a proof of
plus(m,n, P ) for a variable P and terms m and n with nat(m) and nat(n).

Case: Rule pz. We know nat(z) (which adds no new information because natz already
knew this) and nat(n). Applying the rule will succeed and instantiate P = n and
so nat(P ).

Case: Rule ps. We know m = s(m′) and nat(s(m′)) and also nat(n). From the first fact,
by inversion (only rule nats could be used to prove this) we obtain nat(m′). Now
we can appeal to the induction hypothesis: if the subgoal plus(m′, n, P ′) succeeds,
then P ′ = p′ for some term p′ and nat(p′). Then nat(s(p′)) by rule nats.

So far, there is not much new or interesting in this when compared to types as we
know them from functional languages. But we can define new and interesting types as
predicates and reason about them in the same style. For example, we can distinguish
the even and odd numbers and reason about the properties of addition.

even(z)
evz

odd(N)

even(s(N))
evs

even(N)

odd(s(N))
ods

1Don’t confuse the + in plus(+nat,+nat,−nat) with plus for addition. It refers to the mode where that
argument is given as input natural number while − is the mode where that argument is computed as
a natural number result.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Types as Predicates L16.3

Let’s try to check that adding two even numbers results in an even number.

plus(z, N,N)
pz

plus(M,N,P )

plus(s(M), N, s(P ))
ps

plus(+even,+even,−even)

Case: Rule pz.

even(z) mode +even of first arg.
even(N) mode +even of second arg.
even(N) previous line

Case: Rule ps.

even(s(M)) mode +even of first arg.
odd(M) by inversion from previous line
even(N) mode +even of second arg.

At this point we are stuck because we cannot apply the induction hypothesis,
only knowing that M is odd.

So we need to generalize our declaration to the pair

(i) plus(+even,+even,−even)
(ii) plus(+odd,+even,−odd)

and restart our proof whose beginning is unchanged.

Case (i): Rule pz.

even(z) mode +even of first arg.
even(N) mode +even of second arg.
even(N) previous line

Case (i): Rule ps.

even(s(M)) mode +even of first arg.
odd(M) by inversion from previous line
even(N) mode +even of second arg.
odd(P ) by i.h.(ii)
even(s(P )) by rule evs

Case (ii): Rule pz.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L16.4 Types as Predicates

odd(z) mode +odd of first arg.
Contradiction by inversion (no rule concluding odd(z))

Case (ii): Rule ps.

odd(s(M)) mode +odd of first arg.
even(M) by inversion from previous line
even(N) mode +even of second arg.
even(P ) by i.h.(i)
odd(s(P )) by rule ods

Note there that the case pz in the proof of (ii) is impossible: the rule pz cannot apply
if the first argument of plus is odd. From the contradiction in this case we can infer
anything, in particular that the third argument will be odd if the search succeeds, which
it never will.

We see two differences here already to a system of types for functional languages
such as ML: types as predicates have a natural notion of multiple related types (such as
the mutually recursive even and odd numbers, as well as arbitrary natural numbers),
and a given predicate such as plus may have multiple types, all of them necessary for
type-checking purposes. We have to check for even and odd simultaneously.

3 Subtyping

Types defined as predicates come with a natural notion of subtyping. For two predicates
s and t we write s ≤ t if ∀x. s(x)⊃ t(x), that is, every element satisfying s satisfies t.

To appreciate the need for subtyping, we consider once again binary numbers start-
ing with least-significant bit and numbers in standard form (no leading zeros). We
defined this slightly differently from last lecture by stipulating that in a term b0(N),
N must be positive. This enforces that it cannot be e, which represents zero and is
therefore not positive.

std(e)
stde

pos(N)

std(b0(N))
std0

std(N)

std(b1(N))
std1

no rule pose

pos(N)

pos(b0(N))
pos0

std(N)

pos(b1(N))
pos1

We now recall the increment predicate and try to verify that, if given a standard number
it will construct a positive one.

inc(e, b1(e))
ince

inc(b0(M), b1(M))
inc0

inc(M,N)

inc(b1(M), b0(N))
inc1

inc(+std,−pos)

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Types as Predicates L16.5

Case: Rule ince.

pos(b1(e)) by rules pos1 and stde

Case: Rule inc0.

std(b0(M)) first arg.
pos(M) by inversion
std(M) by pos ≤ std, see below
pos(b1(M)) by rule pos1

Case: Rule inc1.

std(b1(M)) first arg.
std(M) by inversion
pos(N) by i.h.
pos(b0(N)) by rule pos0

At this point the proof is complete, if we can show that pos ≤ std. This is now a property
that no longer requires appeal to the definition of predicate inc; it is just a property of
the two types. We can proceed by induction (actually, just a proof by cases is required)
on the definition of pos.

Case: Rule pos0.

pos(N) premise
std(b0(N)) by rule std0

Case: Rule pos1.

std(N) premise
std(b0(N)) by rule std1

Next we see how this kind of static type checking (phrased here as theorem proving)
can help uncover errors. For example, we may want to check that

inc(−std,+std)

Case: Rule ince. Then std(e).

Case: Rule inc0.

std(b1(N)) second arg. of inc
std(N) by inversion
Need: pos(N) not true in general!
std(b0(N)) by rule std0

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L16.6 Types as Predicates

There is no way to fix the missing step in the second case (we didn’t even get around to
the third case). std(N) does not imply pos(N), with N = e as a counterexample. Indeed,
one solution for

?- inc(M, b1(e))

is M = b0(e) which is not in standardard form.
At this point we might consider some other properties. Let’s define some new types,

such as zero(N), and empty(N) which never succeeds:

zero(e)
zeroe

no rule for empty(N)

Now we can show, with type checking that a query inc(M, e) cannot succeed. The type
we ascribe is

inc(−empty,+zero)

which expresses that if a query inc(M,n) with zero(n) succeeds with M = m, then
empty(m). Since there is no such m, this means if inc has the given type then decrementing
zero can not succeed. This means it either doesn’t terminate or it fails after a finite
number of steps.

Now to the type checking:

Case: Rule ince.

zero(b1(e)) second argument
Contradiction by inversion (no rule concludes zero(b1(e)))

Case: Rule inc0.

zero(b1(M)) second argument
Contradiction by inversion

Case: Rule inc1.

zero(b0(M)) second argument
Contradiction by inversion

All cases are impossible, so the type inc(−empty,+zero) is correct.
As a last example we revisited the even/odd distinction, now on binary numbers.

We could just look at the least significant bit, but we arrange it such that even ≤ std and
odd ≤ pos to ease working with these types.

pos(N)

even(b0(N))
ev0

std(N)

odd(b1(N))
od1

We leave it to the reader to now verify that

inc(+even,−odd)
inc(+odd,−even)

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Types as Predicates L16.7

4 Refinement types for functional languages

The idea that we have more precise types than just nat (like even and odd) or binary
numbers (like std, pos, zero, empty) could be a priori useful for functional languages as
well, not just for logic programming.

The main complication is that we also need to include intersection types [CDCV81,
Rey91] to make this work. We retain the usual data types, but we add data sort declara-
tions that declare refinements [FP91]. The examples in this section and many more can
be found in a conservative extension of Standard ML with datasort refinements called
Cidre [Dav97], available on GitHub2.

For example, we can define even and odd unary numbers as follows:

datatype nat = z | s of nat

datasort even = z | s of odd

and odd = s of even

But now if we have a simple function such as

fun succ x = s(x)

we find that it has multiple function types at once:

succ : (nat -> nat) & (even -> odd) & (odd -> even)

So we need to be able to ascribe multiple types to a function or expression. This is what
the intersection type operator A u B achieves, which we write as A & B in concrete
syntax. Sometimes, several types are needed. For example

fun twice f x = f (f x)

then we should be able to show (among many other types)

twice : ((nat -> nat) -> nat -> nat)

& (((even -> odd) & (odd -> even)) -> (even -> even))

& (((even -> odd) & (odd -> even)) -> (odd -> odd))

The resulting system has some remarkable properties, such as decidability of type
inference, bidirectional type checking, and conservative extension over ML. It is imple-
mented in the Cidre front end, which accepts the full syntax of Standard ML and uses
stylized comments to assign refinement types that are then checked.

You probably have seen one example where this might have been helpful. For exam-
ple, for propositions with implication and conjunction, one can define proof terms via
the following data type

2https://github.com/rowandavies/sml-cidre

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

https://github.com/rowandavies/sml-cidre


L16.8 Types as Predicates

datatype term = Fun of var * term

| Pair of term * term

| Var of var

| App of term * term

| Fst of term

| Snd of term

In a way, this was a compromise, since we distinguished, in the problem statement
and the algorithm, between checkable and synthesizing terms. The corresponding data
type declaration would be something like

datatype cterm = Fun of var * cterm

| Pair of cterm * cterm

| Syn of sterm

and sterm = Var of var

| App of sterm * cterm

| Fst of sterm

| Snd of sterm

but there are two drawbacks: (1) we need to make the transition from synthesizing to
checkable terms explicit (see Syn constructor), which complicates practical examples,
and (2) now everywhere that terms are used, even in places where the distinction would
be insignificant, we have to be cognizant and specific about whether we are working
with checkable or synthesizing terms. With refinement types, we would first declare
the type of terms, and then think of checkable and synthesizing terms as refinements.

datasort cterm = Fun of var * cterm

| Pair of cterm * cterm

| sterm

and sterm = Var of var

| App of sterm * cterm

| Fst of sterm

| Snd of sterm

We can now freely use either term (where it doesn’t matter) or cterm or sterm where
the distinction is significant.

References

[CDCV81] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Func-
tional characters of solvable terms. Mathematical Logic Quarterly, 27(2-6):45–
58, 1981.

[Dav97] Rowan Davies. A practical refinement-type checker for Standard ML. In
Michael Johnson, editor, Algebraic Methodology and Software Technology Sixth
International Conference (AMAST’97), pages 565–566, Sydney, Australia, De-
cember 1997. Springer-Verlag LNCS 1349.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Types as Predicates L16.9

[DP03] Joshua Dunfield and Frank Pfenning. Type assignment for intersections and
unions in call-by-value languages. In A.D. Gordon, editor, Proceedings of the
6th International Conference on Foundations of Software Science and Computa-
tion Structures (FOSSACS’03), pages 250–266, Warsaw, Poland, April 2003.
Springer-Verlag LNCS 2620.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings
of the SIGPLAN ’91 Symposium on Language Design and Implementation, pages
268–277, Toronto, Ontario, June 1991. ACM Press.

[Pfe92] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cambridge,
Massachusetts, 1992.

[Rey91] John C. Reynolds. The coherence of languages with intersection types. In
Takayasu Ito and Albert R. Meyer, editors, Theoretical Aspects of Computer
Software, volume 526 of Lecture Notes in Computer Science, pages 675–700,
Berlin, 1991. Springer-Verlag.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER


	Introduction
	Modes and Types
	Subtyping
	Refinement types for functional languages

