
Lecture Notes on
More Abstract Interpretation

15-411: Compiler Design
André Platzer

Lecture 29

1 Introduction

In this lecture, we continue our short overview of abstract interpretation
uses and their connections with compilation and program analysis. This
is a wide field and easily the topic of a whole semester. More information
on abstract interpretation can be found in [CC92, CC77, CC79] and [WM95,
Chapter 10]. Simple examples of abstract interpretation type ideas in more
classical situations include sign abstraction of values into {−, 0,+, ?} or ab-
straction of values by remainders mod 4 [WM95, Chapter 10].

2 Abstract Interpretation by Example

Consider the following simple program

0
1 x = 1
2
3 while (x<1000) {
4
5 x = x + 1
6
7 }
8
9 y = x

A run in the concrete semantics of the above program would start with
the concrete state x = ⊥, y = ⊥ where the initial value of x, y in line 0

LECTURE NOTES

L29.2 More Abstract Interpretation

is unknown. The program would do 999 iterations through the loop after
which it terminates with the state y = x = 1000. Concrete execution just
does not help much for static analysis of programs in general, because we
won’t know the dynamic data until runtime.

Instead, let us consider an abstract run in an abstract semantics where
variables take on intervals as values (due to Cousot and Cousot [CC77]):

L = {[a, b] : a, b ∈ N ∪ {+∞,−∞}}

To unify notation, we write [−∞, 5] for the left-open interval (−∞, 5] here.
Now a run of the above program in the interval abstract domain gives after
1 iteration

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1, 1], y = [−∞,∞]}
5 x = x + 1
6 {x = [2, 2], y = [−∞,∞]}
7 }
8
9 y = x

and after 2 iterations

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1, 2], y = [−∞,∞]}
5 x = x + 1
6 {x = [2, 3], y = [−∞,∞]}
7 }
8
9 y = x

and after 3 iterations

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {

LECTURE NOTES

More Abstract Interpretation L29.3

4 {x = [1, 3], y = [−∞,∞]}
5 x = x + 1
6 {x = [2, 4], y = [−∞,∞]}
7 }
8
9 y = x

We could keep on iterating, but this takes an awfully large number of iter-
ations to figure out, since the loop count is 1000. If the bound is not com-
putable statically, we do not even know how often to iterate. But we can
iterate until we reach a fixedpoint. And we can also speed up convergence
by jumping ahead in the lattice using a widening operator ∇ : L× L→ L.
For intervals let us jump ahead to ±∞ whenever our interval bounds are
not inclusive:

[a, b] ∇ [a′, b′] :=

[{
a if a ≤ a′

−∞ otherwise

}
,

{
b if b′ ≤ b

+∞ otherwise

}]
So in the 4th iteration, instead of doing a standard iteration, let us widening
for computing line 4 from the previous two values [1, 3]∇ [1, 4]:

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1,∞], y = [−∞,∞]}
5 x = x + 1
6 {x = [2,∞], y = [−∞,∞]}
7 }
8
9 y = x

In iteration 5, we obtain precise information by intersection with the guards

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1, 999], y = [−∞,∞] s i n c e x = [1,∞] ∩ [1, 999] = [1, 999]}
5 x = x + 1
6 {x = [2, 1000], y = [−∞,∞]}
7 }
8 {x = [1000, 1000], y = [−∞,∞] s i n c e x = [2, 1000] ∩ [1000,∞] = [1000, 1000]}

LECTURE NOTES

L29.4 More Abstract Interpretation

9 y = x
10 {x = [1000, 1000], y = [1000, 1000]}

What we want the widening operator∇ to satisfy is that it is like a union
(∪) but could be a bigger element of the lattice:

x ≤ x∇y y ≤ x∇y

We also want iterated uses of the widening operator to become a fixedpoint
eventually. That is

x0∇x1∇x2∇x3∇ . . .

is a finite sequence, for any xi ∈ L.
This seems very powerful and it is, as a framework for static program

analysis. The particular abstract domain of intervals alone, however, is in-
sufficient. A simple variation of the above example shows that the example
is misleading and real programs more complicated:

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 y = 1
4 {x = [1, 1], y = [1, 1]}
5 while (x<1000) {
6 {x = [1, 999], y = [1,∞] s i n c e x = [1,∞] ∩ [1, 999] = [1, 999]}
7 x = x + 1
8 {x = [2, 1000], y = [1,∞]}
9 y = y + 1

10 {x = [2, 1000], y = [2,∞]}
11 }
12 {x = [1000, 1000], y = [1,∞] s i n c e x = [2, 1000] ∩ [1000,∞] = [1000, 1000]}

This result is perfectly correct but rather useless as far as y is concerned,
because it does not constrain the values of y, except for positivity, simply
because y did not occur directly in the loop exit condition.

But the abstract interpretation framework still applies. Abstract do-
mains that can handle the above example need correlations of variables, i.e,
they need to capture variable correlations like 0 ≤ x − y ≤ 1. Difference-
bounds matrix [Min01] are a fast abstract domain for this purpose. General
convex polyhedra can be useful too. This is possible but out of scope for
this lecture. We only show the cheaper difference logic, where a fast imple-
mentation are difference-bounds matrices. We adjoin an extra information

LECTURE NOTES

More Abstract Interpretation L29.5

of difference-bounds to the abstract domain L. As an optimization, we sim-
ply bootstrap from the converged values of x and y in our interval domain,
since those would be found after some number of iterations anyhow. Better
values are possible now, but not worse values. First, we need to figure out
what the effect of the assignment x = x + 1 will be on the abstract value
l ≤ x− y ≤ u in the difference-bounds.

l ≤ x− y ≤ u
x:=x+1
 l + 1 ≤ (x + 1)︸ ︷︷ ︸

xnew

−y ≤ u + 1

Similarly for the assignment y = y + 1:

l ≤ x− y ≤ u
y:=y+1
 l − 1 ≤ x− (y + 1)︸ ︷︷ ︸

ynew

−y ≤ u− 1

After the first iteration, we get

0 {x = [−∞,∞], y = [−∞,∞],∞ ≤ x− y ≤ ∞}
1 x = 1
2 {x = [1, 1], y = [−∞,∞],∞ ≤ x− y ≤ ∞}
3 y = 1
4 {x = [1, 1], y = [1, 1], 0 ≤ x− y ≤ 0}
5 while (x<1000) {
6 {x = [1, 999], y = [1,∞], 0 ≤ x− y ≤ 0}
7 x = x + 1
8 {x = [2, 1000], y = [1,∞], 1 ≤ x− y ≤ 1}
9 y = y + 1

10 {x = [2, 1000], y = [2,∞], 0 ≤ x− y ≤ 0}
11 }
12 {x = [1000, 1000], y = [1000, 1000], 0 ≤ x− y ≤ 0}

At which the fixpoint is reached immediately. Note that line 4 uses that the
abstract value x = [1, 1], y = [1, 1] in the interval domain is communicated
to the best corresponding constraint expressible as difference bounds: 0 ≤
x− y ≤ 0:

x = [a, b], y = [c, d] a− d ≤ x− y ≤ b− c

Hence, it is important that the abstract domains “talk” to each other. Con-
versely, in line 12, the abstract state 0 ≤ x− y ≤ 0 in the difference bounds
can “talk” to the interval domain and synchronize to the best constraint

LECTURE NOTES

L29.6 More Abstract Interpretation

that follows from the difference bounds in combination with the known
individual interval bounds as follows:

x = [a, b], y = [c, d], l ≤ x− y ≤ u x = [max(a, c + l),min(b, d + u)]

since l ≤ x − y implies x ≥ y + l, yet y ≥ c. Similarly x − y ≤ u implies
x ≤ y + u with y ≤ d.

When widening was too aggressive, a dual operator called narrowing
∆ : L×L→ L can be used as well. It is supposed to be like an intersection
(∩) but could be bigger:

x ∩ y ≤ x∆y

We also want iterated uses of the widening operator to become a fixedpoint
eventually. That is

x0∆x1∆x2∆x3∆ . . .

is a finite sequence, for any xi ∈ L.

Quiz

1. What would happen if you had initialized x = [−∞,∞] everywhere
to express that you don’t know initially what value x would have?
Would that be the same as initializing x = ⊥?

2. Can abstract interpretation with interval bounds be used to perform
analysis for possible occurrences of divisions by zero?

3. Show how abstract interpretation with the interval bounds domain
can be used to perform array bounds checking optimizations.

4. To convince yourself under which circumstance narrowing ∆ may
become necessary after widening, consider the example

0
1 x = 1
2
3 while (x<1000) {
4
5 x = x + 1
6
7 i f (x > 20) break ;
8
9 }

LECTURE NOTES

More Abstract Interpretation L29.7

5. Define a narrowing operator ∆ for the above case and show how to
use it successfully.

References

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In POPL, pages 238–252, 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In POPL, pages 269–282, 1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and
application to logic programs. J. Log. Program., 13(2&3):103–179,
1992.

[Min01] Antoine Miné. A new numerical abstract domain based on
difference-bound matrices. In Olivier Danvy and Andrzej Filin-
ski, editors, PADO, volume 2053, pages 155–172. Springer, 2001.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, 1995.

LECTURE NOTES

	Introduction
	Abstract Interpretation by Example

