
Lecture Notes on
Linear Cache Optimization & Vectorization

15-411: Compiler Design
André Platzer

Lecture 25

1 Introduction

The big missing questions on cache optimization are how and when gen-
erally to transform loops? What is the best choice to find a loop transfor-
mation? Is there a big common systematic picture? How to get fast by
vectorizing and/or parallelizing loops after the loop transformations have
made some loops parallelizable? And, finally, how can we use more fancy
transformations for complicated problems.

2 Linear Loop Transformations

We have seen a number of loop transformations, but they all have been dif-
ferent, needing different analysis and implementation. However, a closer
look reveals that the previous list of loop transformations (permutation, re-
versal, skewing) all follow a general pattern of linear loop transformations.
Each of those transformations (and combinations and many others) can be
represented by unimodular linear transformations. That is, such a trans-
formation on n loops corresponds to an n × n integer matrix U ∈ Zn×n

with determinant detU = ±1. Because of the unit determinant detU , they
actually form a group, because it contains inverses

GL(n,Z) := {U ∈ Zn×n : detU ∈ {1,−1}}

Because of | detU | = 1, these linear transformations are volume-preserving.
This makes intuitive sense. After all, if the volume would change during
a transformation, then the number of grid points in it changes too, which

LECTURE NOTES

L25.2 Linear Cache Optimization & Vectorization

would change the total number of iteration points of the loop incorrectly.
Linear transformations furthermore preserve the orientation (here of the
loop) if detU = 1, otherwise orientations change.

For instance, here are the unimodular transformations for loop permu-
tation (matrix Up) and loop reversal (matrix Ur) and loop skewing by fac-
tor f (matrix Uf):

Up =

1
. . .

1
0 1
1 0

1
. . .

1

Ur =

1
. . .

1
−1

1
. . .

1

Uf =

1
. . .

1
1 f
0 1

1
. . .

1

The corresponding inverse transformations are

U−1p = Up U−1r = Ur U−1f = U−f

Since unimodular transformations form a group, every combination of any
number of the above matrixes is again a unimodular transformation and
thus represents a possible loop transformation.

Given a unimodular matrix U ∈ GL(n,Z), we can apply the corre-
sponding transformation by multiplying the iteration vectors by U , which
may swap loops and transform their bounds as in the previous examples.
Using vectorial notation for the iteration vector i, the linear loop transfor-
mation by the unimodular matrix U can turn

for each vector<int> i in order ≺ do
A[Mi+c] = A[Ni+e] + 55

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.3

(for matrixM,N and vector c, e that correspond to the linear array accesses)
obviously into

for each vector<int> j in order ≺ do
k = U j
i = U−1k
A[Mi+c] = A[Ni+e] + 55

because U−1U = UU−1 = id. In particular, U−1Uj indeed equals j, hence
has the same value as the original iteration variable that we previously
called i. Now, if we make sure that we actually change the perfectly nested
loops so that they directly iterate over k = Uj instead of j (e.g., by swap-
ping/reversing/skewing according to U) so that k walks in the linearly
transformed order U≺, then we can use copy propagation to reach the fol-
lowing result of linear loop transformation:

for each vector<int> k in order U≺ do
A[MU−1k+c] = A[NU−1k+e] + 55

Note that the matrix product MU−1 and NU−1 can be computed statically
by the compiler and does not happen at runtime. Thus the overall effect of
the linear loop transformation is to apply transformationU to the loops and
make up for that by multiplying all uses of the induction vector by U−1.

This linear loop transformation with U is admissible if, for all iterations
i, i′ ∈ Zn and all data dependencies δ:

iδi′ ⇒ Ui ≺ Ui′

That is, whenever there is a data dependency between i and i′, then, after
the transformation U , the transformed Ui should come before the trans-
formed Ui′ in the iteration order.

3 Data Dependency Analysis

What we need is a checkable criterion which we can use to decide if two
array references lead to a dependency or not. In practice, we restrict our
attention to affine array references in perfectly nested loops. That is, given
two array accesses A[Mi + c] and A[M ′i + c′] we need to find instances
i, i′ ∈ Zd of the iteration vector with i ≺ i′ such that Mi + c = M ′i′ + c′.
If such instances i, i′ exist that have integer values and are within the loop
bounds, then the two references have a data dependency. For perfectly

LECTURE NOTES

L25.4 Linear Cache Optimization & Vectorization

nesting forward iterating loops, the condition i ≺ i′ on loop iteration order
is defined as

(i1, . . . , id) ≺ (i′1, . . . , i
′
d) iff ∃k : i1 = i′1, . . . , ik−1 = i′k−1, ik < i′k

It is of slightly minor relevance, because a data dependency still exists even
if i = i′, except that it is not loop carried. That is why it is sometimes
ignored. Likewise, when i′ ≺ i, the conditionMi+c = M ′i′+c′ results in an
anti-dependency. Unfortunately, the problem of finding integer solutions
ofMi+c = M ′i′+c′ is that of solving linear Diophantine equation systems,
which is NP-complete. The problem of finding integer solutions ofMi+c =
M ′i′ + c′, i ≺ i′ is that of solving linear Diophantine inequality systems,
which can still be solved with IP solvers and is NP-complete.

In order to find a reasonable approximation of the dependency analy-
sis, we first pretend all references were dependent (which is a conservative
overapproximation) and then remove some dependencies if we can show
that they are independent. A simple (approximate) independency check is
the gcd test. Suppose we have the loop

for (i =0 ; i <10; i ++)
A[m∗ i +c] = A[m’ ∗ i +c ’]+7

The question is, whether there are two positions of the iteration vector (here
just ǐ, î ∈ Z1 for the write iteration ǐ and the read iteration î) such that the
array accesses interfere because m ∗ ǐ+ c = m′ ∗ î+ c′.

m ∗ ǐ+ c = m′ ∗ î+ c′

⇔ m ∗ ǐ−m′ ∗ î = c′ − c

The last linear Diophantine equation can only have an integer solution if
gcd(m,m′) divides c′ − c. The reason for this is that, for integers ǐ, î, the
term m ∗ ǐ−m′ ∗ î can only take on exactly the values that are multiples of
the gcd(m,m′). (More formally, this is a simple property of principal ideals
in Euclidean domains.)

For instance, consider

for (i =0 ; i <10; i ++)
A[2∗ i +2] = A[2∗ i −2]+7

with the gcd check

2 ∗ ǐ+ 2 = 2 ∗ î− 2

⇔ 2 ∗ ǐ− 2 ∗ î = −4

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.5

We see that gcd(2, 2) divides −4. Thus, there could be a dependency. We
read off by dividing both sides by the gcd 2 that ǐ− î = −2. This could be

1. A true dependency δt (read after write) of the form ǐ+ 2 = î, i.e., with
dependency distance 2. “The array position that we read at iteration
î is the same one that we have written 2 iterations before at ǐ.”
This dependency survives the check for loop bounds and is a real
dependency.

2. And/or an anti-dependency δa (write after read) of the form î−2 = ǐ.
“The array position that we write at iteration ǐ is the same one that we
have read 2 iterations before at î.” This dependency is incompatible
with the constraint that î < ǐ, because we need data to use from pre-
vious iterations before we can use it for subsequent definitions.

More conservatively, one can consider all resulting dependencies as depen-
dencies, without checking for feasibility with the loop bounds. Many more
details and optimizations and accuracy improvements of the gcd test can
be found in [Muc97, Sections 9.3,9.4].

More precise but computationally more involved algorithms exist, for
instance, Fourier-Motzkin elimination for linear systems of inequalities.

4 Loop Sectioning / Section Striping

Loop sectioning is a simple transformation that turns a loop into two nested
loops, where the inner loop traverses one section or block at a time. That is
we turn a loop

for (i n t i = 0 ; i < N; i ++)
S

into two loops, where the inner one iterates over blocks of size B

for (i n t b = 0 ; b < N; b+=B)
for (i n t i = b ; i < b+B && i<N; i ++)

S

For SIMD it is useful to pick block size B to be the size of the 128bit chunk
size or whatever size the vector instructions support. Then the inner loop
can be turned into a SIMD vector instruction.

The inverse transformation is possible too (turn nested perfect loops
into a single loop) and called loop product transformation.

LECTURE NOTES

L25.6 Linear Cache Optimization & Vectorization

5 Loop Fusion

If two loops have the same index range and no tricky data dependencies
exist between the loops, then loop fusion can turn two sequential loops

for (i n t i = 0 ; i < N; i ++) {
B [i] = A[i] + C[i]

}
for (i n t i = 0 ; i < N; i ++) {

R[i] = B [i] ∗ (D[i] + A[i])
}

into a single loop

for (i n t i = 0 ; i < N; i ++) {
B [i] = A[i] + C[i]
R[i] = B [i] ∗ (D[i] + A[i])

}

After fusion, the latter loop body can then be optimized to remove the array
B altogether if it is dead afterwards

for (i n t i = 0 ; i < N; i ++) {
R[i] = (A[i] + C[i]) ∗ (D[i] + A[i])

}

In combination with loop sectioning, that loop can further be turned into
SIMD instructions that add A[i] to C[i] with a single vector instruction and
then multiply the result to the result of vectorially adding D[i] to A[i] with a
single vector instruction. Another pleasant effect of loop fusion here is that
this is a cache optimization, because the same element A[i] will be loaded
into the cache only once, decreasing cache misses by half for large N.

Generally, loop fusion can also have a bad effect on caches for indepen-
dent arrays where a lot of extra data will suddenly need to be stored in the
cache, possibly leading to unnecessary cache spilling.

Bad data dependencies arise, e.g., if iteration i of the second loop al-
ready uses data like A[i+1] that the first loop writes in iteration i + 1 or
if the second loop uses scalar data that the first loop defines, because the
value of those scalars may be different after the first loop ran in full than in
between.

Again, the inverse transformation is possible too and called loop split-
ting. Loop splitting can be useful to reduce the data load, possibly leading
to reduced cache misses. It can help pulling parallelizable parts of a loop

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.7

body out of the loop. Loop splitting can also be used to turn imperfectly
nested loops into perfectly nested loops.

6 Loop Tiling

The loop blocking or loop tiling optimization partitions multidimensional
loops into rectangles (or, more generally hypercubes), walking one rect-
angle at a time. This optimization can reduce cache capacity misses by
making sure that the full cache line data within the rectangle will already
be used before the data in the cache line is replaced by other information.
That is useful if loop swapping doesn’t solve the cache locality issues, e.g.,
because there are other operations that prevent it. In matrix multiplication,
for instance, arrays are traversed in both column and row order, leading to
bad cache effects regardless. Loop tiling is an extremely useful optimiza-
tion for matrix multiplication and similar problems of mixed array itera-
tion.

LECTURE NOTES

L25.8 Linear Cache Optimization & Vectorization

for (i 1 =1; i1<=n ; i 1 ++)
for (i 2 =1; i2<=n ; i 2 ++)

A[i1 , i 2] = A[i1 −1, i2 −1] + 2

i1

i2

Dependency distance d=(1,1)
Lots of cache misses for large n
Swapping doesn’t solve this problem

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.9

for (B1 =1; B1<=n ; B1+=3) / / l o o p t i l i n g
for (B2 =1; B2<=n ; B2+=3) / / l o o p t i l i n g

for (i 1 =B1 ; i1<B1 +3; i 1 ++)
for (i 2 =B2 ; i2<B2 +3; i 2 ++)

A[i1 , i 2] = A[i1 −1, i2 −1] + 2

i1

i2

After loop tiling, the loops iterate one block tile at a time
This simple loop tiling assumes that n is divisible by block size 3
Otherwise use loop peeling
Loop tiling combines 2 loop sectioning and loop swapping

As a very useful application of loop tiling, consider, for instance, matrix
multiplication, which has both column and row traversal so that no loop
swapping helps:

for (i =0 ; i<n ; i ++)
for (j =0 ; j<n ; j ++)

LECTURE NOTES

L25.10 Linear Cache Optimization & Vectorization

for (k =0; k<n ; k++)
R[i] [j] = R[i] [j] + A[i] [k] ∗ B [k] [j]

If all data fits into the cache and there are no problems with small associa-
tivity, then the innermost k loop may run fast because there are almost no
cache misses (only once per cache line). If the matrix is too large then the
data will have been flushed from the cache already before it’s used next.

Loop tiling with a constant c that is just large enough for all the c × c
matrix blocks to fit into the cache turns matrix multiplication into:

for (B=0; B<n ; B+=c) / / l o o p t i l i n g
for (C=0; C<n ; C+=c) / / l o o p t i l i n g

for (i =B ; i<B+c&&i<n ; i ++)
for (j =C; j<C+c&&j<n ; j ++)

for (k =0; k<n ; k++)
R[i] [j] = R[i] [j] + A[i] [k] ∗ B [k] [j]

The innermost R[i][j] access will be a cache hit every time but once. Nev-
ertheless, it is an almost loop-invariant expression for the innermost loop
k. Its address arithmetic is loop-invariant and can be moved out by loop-
invariant code motion. Yet R[i][j] itself is not loop-invariant. After all it’s
assigned to all the time. One step better, however, we can even replace the
assignment to R[i][j] by a scalar accumulator (favorably placed in a register
as a very busy expression).

for (B=0; B<n ; B+=c) / / l o o p t i l i n g
for (C=0; C<n ; C+=c) / / l o o p t i l i n g

for (i =B ; i<B+c&&i<n ; i ++)
for (j =C; j<C+c&&j<n ; j ++) {

a = R[i] [j] / / s c a l a r o p t i m i z a t i o n
for (k =0; k<n ; k++)

s = s + A[i] [k] ∗ B [k] [j]
R[i] [j] = s

}

This also reduces the number of load/stores in the loop body to 2, which is
good, because almost no architecture supports 3 load/stores very well.

Finally, strength reduction can be used to replace the respective address
arithmetic by simple addition.

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.11

Quiz

1. How can you implement the gcd test efficiently and which approxi-
mations make most sense computationally?

References

[Muc97] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

LECTURE NOTES

	Introduction
	Linear Loop Transformations
	Data Dependency Analysis
	Loop Sectioning / Section Striping
	Loop Fusion
	Loop Tiling

