
Lecture Notes on
Loop Transformations for Cache Optimization

15-411: Compiler Design
André Platzer

Lecture 24

1 Introduction

In this lecture we consider loop transformations that can be used for cache
optimization. The transformations can improve cache locality of the loop
traversal or enable other optimizations that have been impossible before
due to bad data dependencies. Those loop transformations can be used in
a very flexible way and are used repeatedly until the loop dependencies are
well aligned with the memory layout and cache effects are optimal. What
is most important, however, is to keep track carefully under which circum-
stances the loop transformations are actually correct. We will pay attention
to that. The same loop transformations are needed for loop parallelization
and vectorization. For more information, refer to [Muc97].

2 Loop Permutation

Loop permutation swaps the order of loops. The purpose is to pull the
loops out that actually carry the data dependencies, because the inner loops
will then be parallelizable. Another purpose is to swap such that the inner
loops traverse arrays according to the actual memory layout of the array
to reduce cache misses. This can also help to enable optimizations with
register use.

While irrelevant to the optimizations, we assume Fortran-style column
major order for illustrations, where B[i1,i2] is adjacent to B[i1+1,i2] in mem-
ory. Consider

LECTURE NOTES

L24.2 Loop Transformations for Cache Optimization

for (i 1 =0; i1<n1 ; i 1 ++)
for (i 2 =0; i2<n2 ; i 2 ++)

A[i 1] = A[i 1] + B [i1 , i 2]

From the n1 ∗n2 memory accesses to A[i1], we expect only n1 cache misses
out of n1∗n2 access. Here A[i1] can even constantly remain in a register for
n2 iterations of the inner loop. For B[i1,i2], however, the iteration order is
non-local compared to the memory layout, hence we expect n1 ∗ n2 cache
misses for large data.

In contrast, when we swap loops

for (i 2 =0; i2<n2 ; i 2 ++) / / l o o p s swapped
for (i 1 =0; i1<n1 ; i 1 ++)

A[i 1] = A[i 1] + B [i1 , i 2]

For A[i1], we expect n1 ∗ n2 ∗ s
cache size cache misses, where s is the data

size of the array elements, because we access n1 ∗ n2 times non-locally. For
B[i1,i2], we similarly expect only n1 ∗ n2 ∗ s

cache size cache misses, because
the loops traverse B locally along cache lines now.

Loop permutation can have quite a remarkable effect.

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] = A[i1 , i 2] + 5

i1

i2

1 2 3 4

1

2

3

4

This loop iterates against the memory
layout, which will lead to excessive
cache misses on larger data.

for (i 2 =1; i2 <=4; i 2 ++) / / swap
for (i 1 =1; i1 <=4; i 1 ++)

A[i1 , i 2] = A[i1 , i 2] + 5

i1

i2

1 2 3 4

1

2

3

4

This loop iterates with the memory layout
and uses the full cache line immediately.

LECTURE NOTES

Loop Transformations for Cache Optimization L24.3

Loop permutation doesn’t always have to be admissible, for instance,
if we violate data dependencies by swapping loops. The dependency dis-
tance vector is permuted just like the iteration vector is. The important side
condition is that the first non-zero sign of a dependency distance vector is
not allowed to change.

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] = A[i1 −1, i 2 +1] + 7

i1

i2

1 2 3 4

1

2

3

4

Dependency distance d=(1,-1)

for (i 2 =1; i2 <=4; i 2 ++) / / swap
for (i 1 =1; i1 <=4; i 1 ++)

A[i1 , i 2] = A[i1 −1, i 2 +1] + 7

i1

i2

1 2 3 4

1

2

3

4

Dependency distance d=(-1,1)
Has different signs, thus loop swap illegal.

3 Loop Reversal

The point of loop reversal is to change the order in which a loop iterates.
The primary advantage is that data dependencies change, which may en-
able other optimizations. Another advantage can be that the special ”jump
if zero” (JMPZ) machine instructions can be used when loops iterate down
to 0.

Loop reversal is admissible for loop q if all data dependencies are car-
ried by outer loops, i.e.

∀d dependency distance : dq = 0 ∨ ∃k < q : dk 6= 0

Otherwise, the direction of the dependency would be reversed by loop re-
versal. Take a look at the last loop permutation example again.

LECTURE NOTES

L24.4 Loop Transformations for Cache Optimization

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] = A[i1 −1, i 2 +1] + 7

i1

i2

1 2 3 4

1

2

3

4

Dependency distance d=(1,-1)

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =4; i2 >=1; i2−−) / / r e v .

A[i1 , i 2] = A[i1 −1, i 2 +1] + 7

i1

i2

1 2 3 4

1

2

3

4

Dependency distance d=(1,1)

Note that, unlike loop i2, the i1 loop cannot be reversed, because that
would lead to the bad dependency distance d=(-1,-1).

4 Loop Skewing

Loop skewing by a factor f adds f ∗ i1 to the upper and lower bounds of
inner loop i2 and makes up for that by subtracting f ∗ i1 again from all
array accesses of i2. The advantage of doing so is that the data dependency
direction changes from d to (d1, f ∗ (d1 + d2)). By a smart choice of f , this
change of the data dependency can enable other loop optimizations.

LECTURE NOTES

Loop Transformations for Cache Optimization L24.5

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] =
(A[i1 −1, i 2]+A[i 1 +1 , i 2]
+A[i1 , i2 −1]+A[i1 , i 2 +1])/4

i1

i2

1 2 3 4

1

2

3

4

Dependency distances d=(1,0), d=(0,1).
Other dependencies d=(-1,0), d=(0,-1).
No loop can parallelize.
We cannot swap to fix this.

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1+ i 1 ; i2<=4+i 1 ; i 2 ++) / / skew

A[i1 , i2−i 1] =
(A[i1 −1, i2−i 1]+A[i 1 +1 , i2−i 1]
+A[i1 , i2−i1 −1]+A[i1 , i2−i 1 +1])/4

i1

i2

1 2 3 4

2

3

4

5

6

7

8

Loop skew by factor f=1
Dependency distances d=(1,1), d=(0,1).
Other dependencies d=(-1,-1), d=(0,-1).
Swapping is admissible and leads to
Dependency distances d=(1,1), d=(1,0).
Thus inner loop parallelizable.

for (i 2 =2; i2 <=8; i 2 ++) / / skew , swap makes i 1 p a r a l l e l i z a b l e
for (i 1 =max(1 , i2 −4) ; i1<=min (i2 −1 ,4) ; i 1 ++)

A[i1 , i2−i 1] =
(A[i1 −1, i2−i 1]+A[i 1 +1 , i2−i 1]
+A[i1 , i2−i1 −1]+A[i1 , i2−i 1 +1])/4

LECTURE NOTES

L24.6 Loop Transformations for Cache Optimization

Quiz

1. Why do many libraries for scientific computing feature representa-
tions of matrices as one-dimensional arrays? Discuss the tradeoffs
for users and for compilers and for performance.

2. Develop a loop optimization that ignores cache optimization and just
uses loop reversal so that JMPZ instructions can be used. Give all side
conditions.

3. For each of the loop transformations in this lecture, give a natural
example where that loop transformation increases cache efficiency.
Give another natural example where that loop transformation would
be incorrect.

4. Give a natural example where multiple loop transformations are needed
to optimize cache efficiency.

5. Develop loop optimizations for the special case of loops that are uni-
form and have c = 0 for all array accesses A[Mi + c]? What are the
side conditions in those cases? For what kind of programs are these
special optimizations worth implementing?

6. In what kinds of natural examples does loop skewing play an impor-
tant role?

References

[Muc97] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

LECTURE NOTES

	Introduction
	Loop Permutation
	Loop Reversal
	Loop Skewing

