
Lecture Notes on
Cache Iteration & Data Dependencies

15-411: Compiler Design
André Platzer

Lecture 23

1 Introduction

Cache optimization can have a huge impact on program execution speed. It
can accelerate by a factor 2 to 5 for numerical programs. Loops are the parts
of the program that are generally executed most often. That is why cache
optimization usually focuses exclusively on handling loops. Especially for
loops that execute very often, optimizing small chunks of source code can
have a fairly significant effect. Furthermore, loops often use mathemati-
cally regular access to arrays which is amenable to mathematical analysis.
It turns out that the answers for cache optimization are exactly the ques-
tions that need to be answered for vectorization (into single-instruction
multiple data) and parallelization optimizations. So all techniques we de-
velop for one will help the others.

Some other information on cache optimization can be found in [App98,
Ch 21].

2 The Importance of Cache Optimization

For illustration purposes, take a look at a computer with a small cache of
two cache lines with two data entries per cache line.

We further assume a directly mapped cache (without associativity) to sim-
plify the presentation. We assume that a (small) array A with 8 elements
has the following memory layout and maps as indicated by the solid blue

LECTURE NOTES

L23.2 Cache Iteration & Data Dependencies

lines to the cache lines. We illustrate the cache to array field association in
blue:

Cache Capacity Miss Consider the following loop that repeats the same
data access in a one-dimensional array 8 times:

i n t A[8] ;
for (i = 0 ; i <8; i ++)

for (j = 0 ; j <8; j ++)
A[j] = . . .

As illustrated by the dashed red iteration order, even though every ar-
ray cell is used repeatedly, the data does not fit into the cache and will be
reloaded twice during each repetition of the outer loop.

These 100% cache misses are caused by insufficient cache capacity miss.
Hence, this loop should be cache-optimized to avoid suboptimal loop traver-
sal in the cache.

Cache Line Capacity Miss Next, consider the following program

i n t A[8] ;
for (i = 0 ; i <8; i ++)

for (j = 0 ; j <8; j +=2)
A[j] = . . .

As illustrated by the dashed red iteration order, even though every ar-
ray cell is used repeatedly, and even though the data would fit into the
cache, unnecessary data wastes cache line space that is never used. Thus,
the data will still be reloaded twice during each repetition of the outer loop.

These 100% cache misses are caused by insufficient cache line capacity
miss. Hence, this loop should be cache-optimized to avoid suboptimal loop
traversal in the cache. Here, possible cache optimizations for this partic-
ular loop traversal order also include reordering matrix elements, which
is sufficient here. But that does not work if the program accesses the data
in different ways in other parts of the program unless the compiler copies
the matrix before. Thus, loop traversal optimization usually makes more
sense.

LECTURE NOTES

Cache Iteration & Data Dependencies L23.3

Cache Conflict Miss Next, consider the following program

i n t A[2] [4] ;
for (i = 0 ; i <8; i ++)

for (j = 0 ; j <2; j ++)
for (k = 0 ; k<2; k++)

A[j , k] = . . .

As illustrated by the dashed red iteration order, even though every ar-
ray cell is used repeatedly, and even though the data would fit into the
cache, the same cache lines are always used for all accessed data. Thus, the
data will still be reloaded twice during each repetition of the outer loop.

These 100% cache misses are caused by cache conflict miss. Hence, this
loop should be cache-optimized to avoid suboptimal loop traversal in the
cache.

3 Data Dependencies

We use the following abbreviations for data dependencies between two lo-
cations ` and `′ in a program:

• `δt`′ true data dependency (read after write)

• `δo`′ output dependency (write after write)

• `δa`′ anti-dependency (write after read)

• `δi`′ input dependency (read after read)

These data dependencies can come in two flavors. Either just within a sin-
gle iteration of the loop or they can be loop-carried, i.e., data dependencies
between different loop iterations.

i n t A[8] ;
for (i = 1 ; i <8; i ++) {
`1 : A[i] = . . . ;
`2 : x = A[i] ; / / `1δt`2 l o op−i n d e p e n d e n t
`3 : y = A[i −1] ; / / `1δt`3 l o op−c a r r i e d

}

LECTURE NOTES

L23.4 Cache Iteration & Data Dependencies

4 Loop Iteration Vectors

In the following we simplify the presentation by starting to use the lan-
guage of linear algebra. We refer to previous lectures for guarding against
array access out of bounds and mostly ignore this here. We generally as-
sume that we have perfectly nested loops (outer loops have no other state-
ments than just the induction variable increment and the inner loop).

for (i 1 = o1 ; i 1 < n1 ; i 1 ++)
for (i 2 = o2 ; i 2 < n2 ; i 2 ++)

for (i 3 = o3 ; i 3 < n3 ; i 3 ++)
. . .

for (id = od ; id < nd ; id ++) {
loop body ;

}

We assume that we have already performed induction variable analysis
and found basic induction variables corresponding to the respective loop
nesting. We denote the above loop iteration by a single iteration vector

i =

i1
i2
i3
...
id

Loops determine an iteration order ≺ on the index set Zd. We generally
restrict attention to affine array references, i.e., those where the index expres-
sion is an affine linear function of the iteration vector i. That is all array
accesses are of the form A[Mi + c] for a matrix M and vector c. For in-
stance,

A[3∗i1+i2−1, 4∗i2+5, 2∗i3] corresponds to access of A at

3 1 0
0 4 0
0 0 2

 i+

−15
0

Two affine array accesses A[Mi + c] and A[M ′i + c′] are called uniform iff
M = M ′. If there is a dependency LδtL′ between two statements writing
to uniform array access L : A[Mi+ c] = ... and reading from uniform array
access L′ : ...A[Mi + c′] with Mi + c ≺ Mi + c′ then the uniform distance
d := c − c′ is called dependency distance. This distance only makes sense in
the case of uniform access, because the difference is not a constant vector

LECTURE NOTES

Cache Iteration & Data Dependencies L23.5

otherwise. The data dependency vector says from which direction d data is
needed to compute the new values. For example,

for (i 1 = o1 ; i 1 < n1 ; i 1 ++)
for (i 2 = o2 ; i 2 < n2 ; i 2 ++)

for (i 3 = o3 ; i 3 < n3 ; i 3 ++)
. . .

for (in = on ; in < nn ; in ++) {
A[M i + c] = A[M i + c ′] + 5

}

has dependency distance d := c− c′.
If loop ik runs forward (e.g., via ik++) and the dependency distance is

of the form

d =

0
...
0
dk
...
dn

for some dk > 0

then the loop ik carries that data dependency, because the write intoA[Mi+
c] writes into a memory location that will only be read at A[Mi+ c′] later.

Loop ij can be parallelized if the dependency distances d of all data
dependencies satisfy

dj = 0 or dk 6= 0 for some k < j

Then such a dependency either has no data dependency (dj = 0) or, if
dk > 0, depends on data from a past iteration of an outer loop k, and thus,
from an iteration of the outer loop that will already have completed (or, if
dk < 0 on data that has never been changed before loop k even ran).

The signs in loop carrying and parallelization checks flip accordingly
for loops with reverse iteration order (e.g., ik-=4).

If these assumptions are met, we can parallelize loop ij , for instance us-
ing SSE3 vector processing instructions. See Chapter 4 of http://www.
intel.com/Assets/PDF/manual/248966.pdf. SSE3 works on var-
ious subdivisions of 128 bit data. Automatic vectorization using single
instruction multiple data (SIMD) is one very important reason why Intel
compilers often achieve better performance compared to gcc.

LECTURE NOTES

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

L23.6 Cache Iteration & Data Dependencies

5 Data Dependencies and Loop Optimizations

Data dependencies need to be respected in loop optimizations. The follow-
ing loop uses data from the past iteration:

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] = A[i1 −1, i 2 +1]+5

i1

i2

1 2 3 4

1

2

3

4

Dependency distance vector d=(1,-1)

for (i 2 =1; i2 <=4; i 2 ++) / / swap
for (i 1 =1; i1 <=4; i 1 ++)

A[i1 , i 2] = A[i1 −1, i 2 +1]+5

i1

i2

1 2 3 4

1

2

3

4

Dependency distance vector d=(-1,1)
When swapping the loops, however, we
violate the data dependency, which now
depends on data from a future iteration.

Note that the loop iteration order in the right example would useful
for caches, because the consecutive items in cache lines are accessed sub-
sequently, so there is a good cache hit rate. In the example on the left,
elements in the cache line are accessed only very late, i.e., after walking all
values of i2. For large matrices (here it’s just 4) this means that the data
will have been cleared from the cache again before accessing the second
element in the cache line.

LECTURE NOTES

Cache Iteration & Data Dependencies L23.7

Data dependencies also limit parallelization and vectorization

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] = A[i1 −2, i 2]−5

i1

i2

1 2 3 4

1

2

3

4

Dependency distance vector d=(2,0)
Because of the above data dependencies, the i2 loop can be parallelized,

but the i1 loop cannot be parallelized.

6 SIMD Vectorization and SSE / MMX

We briefly sketch how powerful vectorization can be once all proper data
dependencies have been found out. For more information see Chapter 4
of http://www.intel.com/Assets/PDF/manual/248966.pdf. Vec-
torization turns a series of sequential instructions operating on scalars into
a single instruction operating on multiple data (SIMD). Vectorization, of
course, requires that the loop has been transformed with all previous tech-
niques to make sure that all data dependencies are compatible with vec-
torization. This is essentially equivalent to the data dependency check for
parallelization.

Intel’s Streaming SIMD Extensions (SSE) require data to be aligned at
addresses divisible by 16 bytes. See newer SSE for more flexible and general
vector instructions. For instance, the following loop with 4 iterations

f l o a t ∗A, ∗B , ∗C;
for (i n t i = 0 ; i < 4 ; i ++)

LECTURE NOTES

http://www.intel.com/Assets/PDF/manual/248966.pdf

L23.8 Cache Iteration & Data Dependencies

C[i] = A[i] + B [i]

can be implemented in a vectorized form

MOVAPS xmm0, A
ADDAPS xmm0, B
MOVAPS C, xmm0

this depends on knowing that A,B,C do not have other aliases in the loop. It
also depends on knowing that the length of the arrays A,B,C is a multiple of
128bits. Otherwise either loop peeling can be used to handle the remainder
or array padding to fill up the array with irrelevant 0 data.

Another consideration for transforming data layout for SIMD usage is
that an array of structs is less useful than a struct of arrays, because, in a
struct of arrays, the data of one field is layed out contiguously in mem-
ory, enabling SIMD processing. In contrast, an array of structs may have
scattered access in memory.

A more fancy way to do SIMD computation with conditional branching
is to use mask for implementing conditional effects per element in a single
vector sweep:

short A[] , B [] ,C[] ,D[] , E [] ;
for (i n t i =0 ; i<N; i ++)

i f (A[i] > B [i])
C[i] = D[i]

e lse
C[i] = E [i]

compiles into

XOR eax , eax ; SSE4 . 1 process 8 s h o r t s a t once
L :MOVQ xmm0, [A+eax]

PCMPGTW xmm0, [B+eax] ; gt compare mask
MOVDQA xmm1, [E+eax]
PBLENDV xmm1, [D+eax] ,xmm0
MOVDQA [C+eax] ,xmm1
ADD eax , 16
CMP eax ,N
JLE L

Vectorization depends crucially on checking that all data dependencies
even allow parallelization/vectorization. It also depends on having loop
counts that fit to the size supported by the vector architecture in the CPU.
The basic principle is to simply split the loop into blocks, i.e., to iterate over

LECTURE NOTES

Cache Iteration & Data Dependencies L23.9

blocks that are exactly of the size that fit into the vector registers. We will
return to this question in lecture 25.

Some of the MMX/SSE extensions can also be used to simply have more
registers available for computations.

Quiz

1. What changes with 4-way associative cache instead of a directly mapped
cache? Give an example showing whether the cache miss rates are
better or whether they can still be as bad as this lecture showed.

2. Why is the data dependency vector only defined for uniform array
access? Is that an oversight?

3. Write down an explicit optimization (for common cases) that makes
use of SSE3 instructions to optimize loops. Which side conditions do
you need to check? How can you make them easier compared to the
general case?

4. How do you recognize perfectly nested loops by analysis of your in-
termediate language?

5. How does induction variable analysis simplify for SSA?

6. Should your intermediate language representation have the for loop
as a primitive? Should it have the while loop as a primitive? Should
it insist on (conditional) gotos as the only way to represent looping
behavior? Discuss benefits and disadvantages for various phases of
your compiler.

7. Which of the dependencies (all 4 combinations of read/write after
write/read) does your compiler have to worry about and for which
purpose?

8. Should compiler writers try to convince chip designers to produce
fully associative caches to make loop cache optimizations easier?

9. Why did the dependency distance vector flip by swapping loops. It’s
still the same dependency, right? Why should the vector be different
after a swap?

LECTURE NOTES

L23.10 Cache Iteration & Data Dependencies

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

LECTURE NOTES

	Introduction
	The Importance of Cache Optimization
	Data Dependencies
	Loop Iteration Vectors
	Data Dependencies and Loop Optimizations
	SIMD Vectorization and SSE / MMX

