
Lecture Notes on
Array-Bounds Checks

15-411: Compiler Design
André Platzer

Lecture 19

1 Introduction

Related information can be found in [App98, Ch 18.4], from which this
lecture derives.

2 Array-Bounds Checks

In unsafe languages like C, the compiler does not have to take any precau-
tions against array access out of bounds, because C does not define what
happens in that case. Thus, it’s not the compiler’s fault if weird things hap-
pen, and every implementation is automatically declared to conform to the
C standard.

For type-safe programming languages like C0, array access must be
guarded with array-bounds checks in order to make sure that the imple-
mentation complies with the type-safety requirements. Array access out of
bounds and null pointer dereferences are essentially the only parts of C0
that need special attention, since overflows are taken care of by the CPU.

While C0 programmers will appreciate the reduced annoyance coming
from reliable type-compliance, they still have to pay the price of increased
execution overhead coming from the dynamic array checks. This effect is
particularly drastic in JVM implementations. It might sound tempting to
rely on turning off runtime checks when the program is delivered. But that
would require a lot more quality assurance than is usually done, because
production-quality programs often still contain bugs.

Yet a smart compiler can take care of the array-bounds checks and op-
timize some of those away. Either optimize them away entirely if the array

LECTURE NOTES

L19.2 Array-Bounds Checks

declaration can be found locally, or at least use loop-invariant code motion
to optimize repeated array-bounds checks away.

The easiest and most common instance of loop-invariant code motion
for array access is the following.

for (i n t i = L ; i < U; i ++) {
check (a , i)
use a [i]
/ / no d e f i n i t i o n s o f i o r a or U

}

We explicitly write check(a, i) here for the action of checking if the array ac-
cess a[i] is safely within the array bounds. We pursue two ways on how to
optimize array bounds checks. Either moving them out of the loop by loop-
invariant code motion to reduce the number of times that array bounds
need to be checked during a program run, or removing the array bounds
checks altogether, because its outcome can be determined statically. By
moving the array access check out of the loop, the above program can be
optimized to the following program that has no array access checks within
the loop body anymore:

check (a , L) / / l o op−i n v a r i a n t c o d e mot ion
check (a ,U−1) / / l o op−i n v a r i a n t c o d e motion , but why okay ?
for (i n t i = L ; i < U; i ++) {

use a [i]
/ / no d e f i n i t i o n s o f i o r a or U

}

The reason why this is okay is that i changes monotonically from L to U.
Here it even changes linearly because i is an induction variable, which can
be determined by the analysis from last time. The other condition is that
the array that a refers to is loop-invariant and U is loop-invariant. A third
condition is that only the increments by exactly 1 justify that a[U − 1] will
actually be the last array access requiring bounds checks. That could be a
different element if the loop step is i+=2. Thus, making optimizations of
array-bounds checks work correctly requires some effort and side condi-
tions to be checked.

More generally, what are the conditions that we need to ensure in order
for this array-bounds check optimization to work? Consider a loop in inter-
mediate representation. One option is to require the following conditions:

LECTURE NOTES

Array-Bounds Checks L19.3

1. There is a loop end check statement. That is, there is an induction
variable j and a loop-invariant U at a node L1 of the form (or similar
forms like U ≤ j)

L1: if (j ≥ U) goto Lexit

where Lexit is out of the loop and U loop-invariant.

2. There is a statement L2 that checks the range of an induction variable
k, e.g., compared to an array size N . That is a statement of the form

L2: if (0 ≤ k < N) goto L3 else goto L4

where N is loop-invariant and L1 > L2 (dominates), and k is an in-
duction variable coordinated with j. That is, (k − bk)/ak = (j − bj)/aj
stays true during the loop. This holds for the variables introduced
by strength reduction based on the same basic induction variable; see
[App98, Ch 18.3] for details.

3. k increases when j increases, i.e., their linear terms satisfy aj/ak > 0.
Where the induction variables satisfy j = aj ∗ i+bj and k = ak ∗ i+bk.
A similar optimization applies for aj/ak < 0.

4. No nested loop defines k.

Under which circumstances can we remove the check in L2?

Lower bounds optimization First, consider the lower bound part 0 ≤
k of the check. We can easily remove the 0 ≤ k check if the all (loop-
invariant) increments ck (for k = k + ck) of k in the loop body are ck ≥ 0.
Because then, only non-negative values can be added to k (if it is a basic
induction variable), which will stay non-negative if it has been initially. In
this situation, we can move the lower bound check in front of the loop. We
could even optimize that away if another analysis can determine that the
initial value k0 of k before the loop is k0 ≥ 0, but this saving is less crucial.

If k is a derived induction variable (by k = ak ∗ i + bk) from the (say
basic) induction variable i, then this increment principle translates to: all
increments i = i+ ci have a sign such that ak ∗ ci ≥ 0.

For arbitrary loop-invariant ak and ci, we need to dynamically check
before the loop whether

if (ak ∗ ci ≥ 0) then goto optimizedLoop else

LECTURE NOTES

L19.4 Array-Bounds Checks

If ak and ci are constants, this check can be performed at compile-time by
constant folding. Otherwise, the check has to be deferred to a runtime
check for non-negativity of k0 ≥ 0 and ck ≥ 0 for all increments in the loop
prefix as indicated above. In some cases, this check may conservatively fail
even if the program would otherwise run normally, just because the nega-
tive increments are unreachable. This aggressive optimization, thus, needs
to fall back to the old loop with check statements in the loop body if the
check in the loop prefix fails so that the optimized check-free loop cannot
be executed.

if (ak∗ci ≥ 0) then goto optimizedLoop else goto oldLoop

Upper bounds optimization How can we remove the check k < N in L2?
What we can use is the knowledge that j < U has been true after L1 (unless
the jump left the loop, which does not affect the loop body statements).
Since j is coordinated with k, we can translate this to a bound on k. The
variables are coordinated by (k − bk)/ak = (j − bj)/aj . But, in addition, k
might have changed since L1, so we need to track the changes. If it cannot
change by too much and we manage to relate U to N , then it works. Let
K be the sum of all (loop-invariant) increments that are added to k on any
path between L1 and L2 that does not pass through L1 twice (note that k is
not redefined in any nested loop). We want to make sure that k < N holds
at L2 so that this range check is unnecessary. If we knew that k < N −K
at L1, then we also knew k < N at L2, because K is an upper bound on the
maximum increment from L1 to L2. Because k is coordinated with j, i.e.,
(k − bk)/ak = (j − bj)/aj , the test k < N −K at L1 is equivalent to

(j − bj) ∗ ak/aj + bk < N −K

This, in turn, is equivalent to

j < aj/ak ∗ (N −K − bk) + bj

if j increases when k increases, i.e., aj/ak > 0 (otherwise the < inequality
flips to a > inequality if aj/ak < 0). Since j < U is checked at L1 and the
loop exits if this fails, we know that k < N will be true at L2 if the following
sufficient check holds

U ≤ aj/ak ∗ (N −K − bk) + bj

This test only consists of loop-invariant expressions. It can thus checked
dynamically in the loop prefix

LECTURE NOTES

Array-Bounds Checks L19.5

if (U ≤ aj/ak∗(N−K − bk) + bj) then goto optimizedLoop else goto oldLoop

By further analysis, this check can also be evaluated statically by constant
folding and arithmetic (if sufficiently many parts of it are constant).

Another common special case is when N and U are the same variable
(e.g., array length), K = 0, and the induction variables coevolve, because
aj = ak and bj = bk. Then the test is trivially true.

In general, for removing array bounds checks, it makes sense to track
the possible variable ranges, e.g., by advanced dataflow analysis.

3 Loop Unrolling

Another useful loop optimization is loop unrolling, which unrolls the loop
body k times. In addition to the reduced amount of time that may be
wasted with program counter jumps, loop unrolling may also enable smarter
scheduling of instructions. Consider, how instructions may be scheduled
for a program computing the scalar product of two vectors a and b.

r = 0
i = 0

L : t1 = 4∗ i
i = i + 1
ta = M(a + t1)
tb = M(b + t1)
nop // wait f o r load
p = ta ∗ tb
i f (i<n) goto l // already s t a r t executing , done l a t e r
nop
r = r + p // done in 9 c y c l e s

The loop needs 9 cycles to execute. After loop unrolling once, we obtain
the following instruction schedule

r = 0
i = 0

L : t1 = 4∗ i
j = i + 1
t1 ’ = 4∗ j
t a = M(a + t1)
tb = M(b + t1)
ta ’ = M(a +t1 ’)

LECTURE NOTES

L19.6 Array-Bounds Checks

tb ’ = M(b +t1 ’)
p = ta ∗ tb
p ’ = ta ’∗ tb ’
i = i + 2
r = r + p
i f (i<n) goto l // already s t a r t executing , done l a t e r
r = r + p ’
nop // done in 14 c y c l e s

This loop needs 14 cycles to execute, but, of course, its progress is twice as
fast, because it only needs half the number of loop iterations than before.
Note that we also need extra postprocessing for odd n after the loop, but
not within the loop.

Loop unrolling just works by copying the loop body and changing the
back edges in the first body to jumps to the second body. Yet loop unrolling
is not always useful; see Figure 1.

L1 : x = ∗ i
s = s + x
i = i + 4
i f (i<N) goto L1 (e lse goto L2)

L2 :

unrolling still has the same number of branchings and edges:

L1 : x = ∗ i
s = s + x
i = i + 4
i f (i<N) goto L1 (e lse goto L3)

L3 : x = ∗ i
s = s + x
i = i + 4
i f (i<N) goto L3 (e lse goto L2)

L2 :

Figure 1: Pretty pointless loop unrolling

If, instead, we know that i is a (basic) induction variable, and that ev-
ery increment i = i + ci of i strictly dominates all loop back edges, then
we know that all of those increments will be executed in every loop repe-
tition. Let C be the sum of all these loop increments. Then we know that

LECTURE NOTES

Array-Bounds Checks L19.7

each loop body execution that leads to a repetition will increase i by ex-
actly C (assuming no inner loop changes i). Hence, we can adapt the loop
repetition check by multiples r ∗ C of C when unrolling r times.

For example, see the following optimization of the program in Figure 1,
where C = 4 and r = 2. The loop suffix starting at L2 takes care of odd iter-
ations of the loop (loop peeling). In fact, the last instruction could even be
removed with some arithmetic reasoning, because we have only unrolled
once here.

i f (i<N−8) goto L1 e lse L2
L1 : x = ∗ i

s = s + x
x = ∗ (i + 4)
s = s + x
i = i + 8
i f (i<N−8) goto L1 (e lse goto L2)

L2 : x = ∗ i / / l o o p p e e l i n g p o s t p r o c e s s i n g
s = s + x
i = i + 4
i f (i<N) goto L2 (e lse goto L3) / / remove i f r =2 u n r o l l i n g s

L3 :

Simple loops can be rolled out completely. But the resulting loop body still
needs to fit into the instruction cache.

Quiz

1. Formulate a version of array-bounds check optimization that works
when aj/ak < 0.

2. Formulate a simpler version of array-bounds check optimization that
is easier to implement and works for common cases of loops only.

3. How does array-bounds check optimization simplify in SSA form?

4. To what extent and under which assumptions is array-bounds check
optimization consistent with the language semantics? What happens
if it moves the order of exceptions around? Is the resulting memory
state identical for each of those exceptions? How does the technique
with checking in the preheader and, when in doubt, running the un-
optimized loop change this?

LECTURE NOTES

L19.8 Array-Bounds Checks

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

LECTURE NOTES

	Introduction
	Array-Bounds Checks
	Loop Unrolling

