
Lecture Notes on
Induction Variables

15-411: Compiler Design
André Platzer

Lecture 18

1 Introduction

More information can be found in [App98, Ch 18.1-18.3] and [Muc97].
Last lecture, we have seen strength reduction. In order to perform

strength reduction, however, we need to know which of the variables change
linearly in the loop. These are called induction variables.

2 Induction Variables

Once we have identified a loop (e.g., natural loop), one of the central ques-
tions about it is, which variables are induction variables of the loop. In
for-loops, there are syntactical indicators if the step is of the form i++. But
that alone does not make i a proper induction variable, because there could
be further assignments to i. Furthermore, other variables could effectively
be induction variables, even if they are not written in the step part of a
for-loop. Finally, induction variables are also of interest for while or repeat-
until loops, where they are not identified syntactically. Consequently, we
need an analysis to identify induction variables.

Generally, we will consider variables to be induction variables if their
value is linear in the number of loop iterations. We call a variable i a basic
induction variable if the only assignments to i in the loop body are of the
form i = i + c (or i = i − c) for a loop-invariant expression c. We call
variable j a derived induction variable if it only assumes values of the form
j = aj ∗i+bj for a basic induction variable i and loop-invariant expressions
aj , bj . Of course, it is again undecidable whether a variable only assumes
those values, so we will confine ourselves to just finding some cases where

LECTURE NOTES



L18.2 Induction Variables

s = 0
i = 0
l1: if (i ≥ n) goto l2
j = 4*i // derived j=4*i+0
k = j + a // derived k=1*j+a=(1*4)*i+a
x = M(k)
s = s + x
i = i + 1 // basic
goto l1
l2:

Figure 1: Example computing sum of 32bit array contents

we can show that i is a basic induction variable or a derived induction
variable, respectively.

In fact, both basic and derived induction variables are linear functions
of the basic induction variable. All of them have the form j = aj ∗ i + bj
(where i = 1 ∗ i + 0 is a special case).

There are several ways to find a derived induction variable j in a loop.
We show one way following [App98]. Variable j is a derived induction
variable if it is only defined once in the loop body with a definition j =
aj ∗ k + bj for a (derived or basic) induction variable k and loop-invariant
expressions aj , bj . If this variable k is a derived induction variable then we
also require that its (unique) definition in the loop body is the only def-
inition of k reaching the definition of j and that the corresponding basic
induction variable i for k is not redefined on any path between the respec-
tive definitions of j and k.

l : j = i± c
¬inv(c)

¬IV (j)
BIV1

l : j = i± c
¬IV (i)

¬IV (j)
BIV2

l : j = aj ∗ i± bj
¬inv(aj) ∨ ¬inv(bj)

¬IV (j)
IV1

l : j = aj ∗ i± bj
¬IV (i)

¬IV (j)
IV2

LECTURE NOTES



Induction Variables L18.3

l : j = Φ(i1, . . . , in)
¬inv(ik)
¬IV (ik)

¬IV (j)
ΦIV

For IV1 and IV2, the case where aj does not appear (corresponding to aj =
1) actually includes BIV1 and BIV2 as a special case. But only the latter
would be called basic induction variables. There also is a rule that if a
variable i changes in any other way (e.g., i = x ∗ y or i = f(x, y)), then
it is not an induction variable. We do not write this one down explicitly,
because induction variable analysis is usually only pursued for variables
that only change by linear and Φ functions anyhow.

For computing induction variables, we proceed as follows. We first just
assume that all variables were induction variables. Then we successively
throw candidates out that do not match the conditions. That is, we saturate
the list of induction variables by saturating the database according to the
rules above. For SSA programs, this is particularly easy.

S = set of all variables
repeat until fixedpoint:

remove j from S if j not computed as one of the forms
basic:

j = i ± c for an i ∈ S and a loop-invariant c
derived:

j = aj∗i ± bj for an i ∈ S and loop-invariant aj , bj
flow:

j = Φ(i1, . . . , in) and each ik loop-invariant or ∈ S

But on SSA, it turns out that induction variables are associated with a
strongly connected component beginning with a Φ-function for that vari-
able. Hence, implementations often first compute strongly connected com-
ponents (subgraphs from which every node can reach every other) by Tar-
jan’s algorithm and then consider one strongly connected component at a
time.

3 Strength Reduction for Induction Variables

If we have found a basic induction variable i that is initialized to i0 before
the loop and a derived induction variable j, then we can replace j by a new
induction variable j′ as follows. Then we replace the loop

LECTURE NOTES



L18.4 Induction Variables

i = i0
while (e) {

...
j = aj*i + bj
... j ...
i = i+c
... j ...

}

according to the strength reduction optimization by

i = i0
j’ = aj ∗ i0 + bj
while (e) {

...
j = j’ // j updates by shadow j′

... j ...
i = i+c
j’ = j’ + aj∗c // increment j′ at every change of i
... j ...

}

After every assignment to the basic induction variable i, we increment the
new variable j′. And the (single) assignment j = aj ∗ i + bj gets replaced
by j = j′. Note that aj ∗ c can either be computed by constant folding
or is loop-invariant and can be moved outside. Finally, we can rely on
copy propagation to optimize j away as much as possible. We can also use
reassociation and constant folding to accumulate successive increments of
j′ within the loop body into one assignment if that is permitted.

Figure 2 on p 5 shows the result of strength reduction optimization of
Fig. 1 on p 2. Note that the variable j′ is quite useless, because its only
purpose has become to assign to itself. This is what the neededness analysis
from lecture 5 on dataflow analysis can figure out and eliminate j′. The
only use of j′ is to define itself and it’s dead after the loop too.

4 Almost Useless Variables

If the induction variable i is still used in the loop body or loop test e then the
assignments to i can either be kept, or, instead, uses of i can be recomputed
from j and replaced by (j − bj) div aj . The latter really only makes sense

LECTURE NOTES



Induction Variables L18.5

s = 0
i = 0
j’ = 0 // j’ not needed => dead
k’ = a
l1: if (i ≥ n) goto l2
j = j’ // dead
k = k’
x = M(k)
s = s + x
i = i + 1
j’ = j’ + 4 // not needed
k’ = k’ + 4
goto l1
l2:

Neededness analysis removes useless j′. Copy propagation of k = k′ gives

s = 0
i = 0
k’ = a
l1: if (i ≥ n) goto l2
x = M(k’)
s = s + x
i = i + 1 // almost useless
k’ = k’ + 4
goto l1
l2:

Figure 2: Example from Figure 2 after strength reduction for j and k.

LECTURE NOTES



L18.6 Induction Variables

when this division can be simplified arithmetically. At least we know that
j changes in multiples of aj .

In Figure 2 (bottom) there is an almost useless variable i. The reasoning
is by using that k is derived from j by k = ak ∗ j+bk, which is derived from
i by j = aj ∗ i + bj . Consequently,

i = (j − bj) div aj = (((k − bk) div ak)− bj) div aj

Thus, i ≥ n is equivalent to

(((k − bk) div ak)− bj) div aj ≥ n

Inserting the relations from Fig. 1, we get

(((k − a) div 1)− 0) div 4 ≥ n

i.e.
(k − a) div 4 ≥ n

this is equivalent to the following, because we know that k will only change
in multiples of its linear factor 4

k − a ≥ 4 ∗ n

i.e.,
k ≥ 4 ∗ n + a

This 4 ∗ n + a is a loop-invariant expression that can be computed before
the loop.

After optimizing the almost useless variable i away, we get Figure 3.
Remaining issues to deal with are showing that the transformed loop

exit check will not decide different than the original code due to arithmetic
overflows. This hinges on the fact that modular integer arithmetic defines a
ring, but in the presence of division it is a bit more involved. The other issue
is that the transformations above would have flipped the direction from ≥
to ≤ if aj < 0, and would have flipped once more if ak < 0. For constants,
this is easy to decide. For loop invariant expressions, this can sometimes
be decided at compile time and sometimes not. The general way to go is to
compile the code for both comparisons and check the signs before the loop
to either jump into the loop that uses ≥ comparison for exit or to the code
that uses ≤ comparison. We will come back to this issue in a later lecture.

LECTURE NOTES



Induction Variables L18.7

s = 0
k’ = a
e = 4*n + a
l1: if (k’ ≥ e) goto l2
x = M(k’)
s = s + x
k’ = k’ + 4
goto l1
l2:

Figure 3: Strength reduced example from Figure 2 after eliminating the
almost useless variable i.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Muc97] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

LECTURE NOTES


	Introduction
	Induction Variables
	Strength Reduction for Induction Variables
	Almost Useless Variables

