
Lecture Notes on
Loop-Invariant Code Motion

15-411: Compiler Design
André Platzer

Lecture 17

1 Introduction

In this lecture we discuss an important instance of Partial Redundancy
Elimination (PRE) and aspects that will be the basis for almost every subse-
quent higher end optimizations. More information can be found in [App98,
Ch 18.1-18.3] and [Muc97].

2 Loop-Invariant Code Motion / Hoisting

Loop-Invariant code motion is one interesting form of partial redundancy
elimination (PRE) whose purpose it is to find code in a loop body that pro-
duces the same value in every iteration of the loop. An expression is loop
invariant if its value does not change while running the loop. This code can
be moved out of the loop so that it is not computed over and over again,
which would be a waste of computation resources. It is an undecidable
question if a fragment of a loop body has the same effect with each iteration,
but we can easily come up with a reasonable conservative approximation.

The computation d = a ⊕ b (for an operator ⊕ ∈ {+,−, ∗}) is loop-
invariant for a loop if

1. a, b are numerical constants,

2. a, b are defined outside the loop
(for non-SSA this means that all reaching definitions of a, b are outside
the loop), or

LECTURE NOTES



L17.2 Loop-Invariant Code Motion

3. a, b are loop invariants
(for non-SSA this means that there is only one reaching definition of
a, b and that is loop-invariant).

The above informal description is actually imprecise, because we surely
also want to detect d = 5 + b as loop invariant if b is loop invariant, be-
cause b = a ∗ 2 with an a that has been defined outside the loop (SSAically
speaking). These are mixed reasons for believing in d being loop invari-
ant, which are not captured by the description above. In order to be more
precise and more exhaustive at detecting invariants, we use the following
rules for marking an expression e as invariant, written inv(e):

n literal

inv(n)
LI0

def(l, xi) l outside loop

inv(xi)
LIo

inv(a)
inv(b)

inv(a⊕ b)
LI

Loop-invariant computations can easily be found by using these rules re-
peatedly until nothing changes anymore. Loop-invariance is a basic con-
cept required for many subsequent advanced analyses. On SSA, a variable
is loop invariant if it does not have a Φ-function at the loop entries, but it
may still be loop invariant for other indirect reasons. For example, if SSA
is not minimal, there could be a number of superfluous Φ-functions that all
need to be identified as loop invariant.

SSA If we find a loop-invariant computation in SSA form, then we just
move it out of the loop to a block before the loop. When moving a (side-
effect-free) SSA loop-invariant computation to a previous position, nothing
can go wrong, because the value it computes cannot be overwritten later
and the values it depends on cannot have been changed before (and either
are already or can be placed outside the loop by the loop-invariance con-
dition). In fact, it’s part of the whole point of SSA do be able to do simple
global code motion and have the required dataflow analysis be trivial.

In order to make sure we do not needlessly compute the loop-invariant
expression in the case when the loop is not entered, we can add an extra
basic block around like for critical edges. This essentially turns

j = loopinv
while (e) {
S

}

LECTURE NOTES



Loop-Invariant Code Motion L17.3

into

if (e) { // pre-check to avoid new redundancies
j = loopinv
while (e) {

S
}

}

The transformation is often more efficient on the intermediate representa-
tion level. This, of course, depends on e being side-effect free, otherwise
extra precautions have to be done, like turning it into an if with a repeat
until inside.

Non-SSA For non-SSA form, we have to be much more careful when
moving a loop-invariant computation. See Figure 1.

a Good:

L0: d = 0
L1: i = i + 1
d = a ⊕ b
M[i] = d
if (i<N) goto L1
L2: x = d

b Bad:

L0: d = 0
L1: if (i>=N) goto L2
i = i + 1
d = a ⊕ b
M[i] = d
goto L1
L2: x = d

c Bad:

L0: d = 0
L1: i = i + 1
d = a ⊕ b
M[i] = d
d = 0
M[j] = d
if (i<N) goto L1
L2:

d Bad:

L0: d = 0
L1: M[j] = d
i = i + 1
d = a ⊕ b
M[i] = d
if (i<N) goto L1
L2: x = d

Figure 1: Good and bad examples for code motion of the loop-invariant
computation d=a⊕b in non-SSA. a: good. b: bad, because d used after
loop, yet should not be changed if loop iterates 0 times c: bad, because d
reassigned in loop body, thus would be killed. d: bad, because initial d
used in loop body before computing d=a⊕b.

Moving a loop-invariant computation d = a ⊕ b before the loop is still
okay on non-SSA if

LECTURE NOTES



L17.4 Loop-Invariant Code Motion

1. that computation d = a ⊕ b dominates all loop exists after which d is
still live (violated in Figure 1b),

2. and d is only defined once in the loop body (violated in Figure 1c),

3. and d is not live after the block before the loop (violated in Figure 1d)

Condition 2 holds by definition for SSA (single assignment). Condition
3 holds by definition of SSA as well, because d can only be defined once,
which is still in the loop body, and thus cannot possibly be live before. Con-
dition 1 holds on SSA as well, because even in unrelated parts of the SSA
graph, SSA will only assign to the same variable once. The node doesn’t
generally need to dominate all loop exits in SSA form. But if the variable
is live, then it will. A more general way of saying that is that, in SSA, the
definition of a variable dominates all its live uses as a property of SSA.

If variable d doesn’t dominate one of the loop exits (and thus, in SSA,
the variable is not live after it), then the loop-invariant code motion op-
timization will compute the expression in vain, which is still of form of
partial redundancy. But that still pays off since loops are meant to repeat,
so they are expected to repeat often and only exit occasionally. While-loops
more often violate condition 1, because the loop body doesn’t dominate the
statements following the loop. One way around that (minor) partial redun-
dancy introduced by loop invariant code motion is to turn while-loops into
repeat-until-loops by prefixing them with an if statement testing if they will
be executed at all. Turn

while (e) {
T
j = loopinv // does not dominate all loop exits
S

}

into

if (e) {
repeat {

T
j = loopinv // dominates all loop exits
S

} until (!e)
}

LECTURE NOTES



Loop-Invariant Code Motion L17.5

3 Finding Loops

In source code, loops are obvious. But how do we find them in an interme-
diate code representation? Initially, we can easily tag loops, because they
come from source code. Depending on the optimizations, this may become
a little more tricky, however, if previous optimizations aggressively shuf-
fled code around. More generally: how do find where the loops are in quite
arbitrary intermediate code graphs?

We have already seen dominators in the theory behind SSA construc-
tion. There, the dominance frontier gives the minimal φ-node placement.
Here we are not really interested in the dominance frontier, just in the dom-
inator relation itself. We recap

Definition 1 (Dominators) Node d dominates node n in the control-flow graph
(notation d ≥ n), iff every path from the entry node to n goes through d. Node d
strictly dominates node n in the control-flow graph (notation d > n), iff in addition
d 6= n. Node i is the (unique) immediate dominator of n (notation i = idom(n)),
iff i > n and i does not dominate any other dominator of n (i.e., there is no j with
i > j and j > n).

It is easy to see that idom(n) is unique just by the definition of dominators.
The dominator tree now is just the tree obtained by drawing an edge from

idom(n) to n for all n. When the control-flow graph has an edge from node
n back to a node h that dominates n (h ≥ n), then this edge is called a back
edge.

h

n

≥back edge

Near such a back edge there is a loop. But where exactly is it? The natural
loop for the back edge are all nodes a that the back edge start (h for header)
also dominates and that have a path from a to the back edge end n without
passing through h.

{a : h ≥ a, a→ s1 → s2 → ...→ sk → n with si 6= h}

Note that the header does not uniquely identify the loop, because the same
header node could be the target of multiple back edges coming from a

LECTURE NOTES



L17.6 Loop-Invariant Code Motion

branching structure into two natural loops. But the back edge uniquely
identifies its natural loop.

In loop optimization, it almost always makes sense to follow the golden
rule of optimizing inner loops first, because that’s where most of the time is
generally spent. That is, optimizations generally work inside-out (which is
depth-first search in the dominator relation). When the same header starts
multiple loops, we cannot really say which of those is the inner loop, but
have to consider all at once. If, instead, we have two loops starting at head-
ers h and h′ with h 6= h′ where h′ is part of the (natural) loop of h, then the
loop of h′ is an inner loop nested inside the outer loop at h. Many advanced
optimizations assume a well-behaved nesting structure of natural loops.

4 Strength Reduction

The basic idea of strength reduction is to replace computationally expen-
sive operations by simpler ones that still have an equivalent effect. The
primary application is to simplify multiplication by index variables to ad-
ditions within loops. This optimization is crucial for computers where ad-
dition is a lot faster than multiplication and can gain a factor of 3 for nu-
merical programs.

The simplest instance of strength reduction turns a multiplication op-
eration x ∗ 2n into a shift operation x � n. More tricky uses of strength
reduction occur frequently in loop traversals. Suppose we have a program-
ming language with two-dimensional array operations (or equivalent array
packing optimizations) occurring in a loop

for (i=0; i<n; i++)
for (j=0; j<m; j++)

... use a[i,j] ...;

The address arithmetic for accessing a[i,j] is more involved, because it uses
the base address a of the array and the size s of the base type to compute

a+ i ∗m ∗ s+ j ∗ s

This address computation needs 3 multiplications and 2 additions per ac-
cess. When accessing several array locations in the loop, this address arith-
metic quickly starts contributing significantly to the actual computation on
the base types.

Since the array is represented with row-major representation in C, pos-
sibly even contiguously in memory, one idea would be to just traverse the
memory linearly.

LECTURE NOTES



Loop-Invariant Code Motion L17.7

t ← a;
e ← a + n*m*s;
if (t >= e) goto E;
L:
use *t ...;
t ← t + s;
E:

This optimized version only needs one addition per loop. It is essentially
based on the insight that a[i+1,j] is the same memory location as a[i,j+m-
1]. The optimization we have used here assumes that i and j are not used
otherwise in the loop body, so that their computation can be eliminated.
Otherwise, they stay.

In order to perform this strength reduction, however, we need to know
which of the variables change linearly in the loop. It certainly would be
incorrect if there was a nonlinear change of i, like in i = i ∗ (i+ 1).

Quiz

1. inv(e) means that e is loop invariant. Will we detect all loop-invariant
e? Should we move all such e out of the loop? Could we move all such
e out of the loop?

2. What exactly is easier for loop-invariant code motion on SSA com-
pared to on nonSSA? Does the overhead for constructing SSA pay
off? When?

3. Should we move all e outside the loop when inv(e) holds and e is
side-effect free?

4. Give an example where loop-invariant code motion has a beneficial
effect. Modify this example in a very small way such that the same
loop-invariant code motion suddenly has a negative effect on perfor-
mance.

5. In C0, do headers uniquely identify their loop?

6. Give an example showing that optimizing inner loops first is a good
idea.

7. Give an example showing that optimizing inner loops can sometimes
be a bad idea.

LECTURE NOTES



L17.8 Loop-Invariant Code Motion

8. Are there situations where we need to optimize multiple loops jointly
at the same time or can we work on one loop at a time?

9. Are loop-invariants the only code we should move out of loops to
optimize?

10. Are there circumstances where we can optimize the code by moving
code into a loop as opposed to out of it?

11. If we have a loop-invariant expression depending on a non-loop in-
variant expression, can we safely move the loop-invariant expression
out of the loop?

12. Will the inv(e) analysis find all formulas e such that e is invariant
during loop execution? Does this solve the verification problem for
programs?

13. Consider the transformation from a while loop to a repeat until loop
with an if around. How many problems does that solve at the same
time?

14. When we have a side-effectfull expression computed out of a loop-
invariant expression, which one can we move out?

15. Given that loop invariant code motion has so many side conditions
(especially for nonSSA), should we do it at all?

16. Why can strength reduction have such a huge impact compared to
other optimizations? Give a natural practical example.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Muc97] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

LECTURE NOTES


	Introduction
	Loop-Invariant Code Motion / Hoisting
	Finding Loops
	Strength Reduction

