
Lecture Notes on
Register Allocation

15-411: Compiler Design
Frank Pfenning, André Platzer

Lecture 3

1 Introduction

In this lecture we discuss register allocation, which is one of the last steps
in a compiler before code emission. Its task is to map the potentially un-
bounded numbers of variables or “temps” in pseudo-assembly to the ac-
tually available registers on the target machine. If not enough registers
are available, some values must be saved to and restored from the stack,
which is much less efficient than operating directly on registers. Regis-
ter allocation is therefore of crucial importance in a compiler and has been
the subject of much research. Register allocation is also covered thor-
ougly in the textbook [App98, Chapter 11], but the algorithms described
there are complicated and difficult to implement. We present here a sim-
pler algorithm for register allocation based on chordal graph coloring due to
Hack [Hac07, HGG06] and Pereira and Palsberg [PP05]. Pereira and Pals-
berg have demonstrated that this algorithm performs well on typical pro-
grams even when the interference graph is not chordal. The fact that we
target the x86-64 family of processors also helps, because it has 16 general
registers so register allocation is less “crowded” than for the x86 with only
8 registers (ignoring floating-point and other special purpose registers).

Most of the material below is based on Pereira and Palsberg [PP05]1,
where further background, references, details, empirical evaluation, and
examples can be found.

1Available at http://www.cs.ucla.edu/˜palsberg/paper/aplas05.pdf

LECTURE NOTES

http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf

L3.2 Register Allocation

2 Building the Interference Graph

Two variables need to be assigned to two different registers if they need to
hold two different values at some point in the program. This question is un-
decidable in general for programs with loops, so in the context of compilers
we reduce this to liveness. A variable is said to be live at a given program
point if it will be used in the remainder of the computation. Again, we will
not be able to able to accurately predict at compile time whether this will
be the case, but we can approximate liveness through a particular form of
dataflow analysis discussed in the next lecture. If we have (correctly) ap-
proximated liveness information for variables then two variables cannot be
in the same register wherever their live ranges overlap, because they may
both be then used at the same time.

In our simple straight-line expression language, this is particularly easy.
We traverse the program backwards, starting at the last line. We note that
the return register, %eax, is live after the last instruction. If a variable is live
on one line, it is live on the preceding line unless it is assigned to on that
line. And a variable that is used on the right-hand side of an instruction is
live for that instruction.2

As an example, we consider the simple straight-line computation of the
fifth Fibonacci number, in our pseudo-assembly language. We list with
each instruction the variables that are live before the line is executed. These
are called the variables live-in to the instruction.x

live-in

f1 ← 1 ·
f2 ← 1 f1
f3 ← f2 + f1 f2, f1
f4 ← f3 + f2 f3, f2
f5 ← f4 + f3 f4, f3
%eax ← f5 f5

%eax return live-in after end

The nodes of the interference graph are the variables and registers of the
program. There is an (undirected) edge between two nodes if the corre-
sponding variables interfere and should be assigned to different registers.

2Note that we do not always have to put the same variable in the same register at all
places, but could possibly choose different registers for the same variables at different in-
structions (given suitable copying back and forth). But SSA already takes care of this issue
as we will see later.

LECTURE NOTES

Register Allocation L3.3

There are never edges from a node to itself, because, at any particular use,
variable x is put in the same register as variable x. We distinguish the two
forms of instructions.

• For an t ← s1 ⊕ s2 instruction we create an edge between t and any
different variable ti 6= t live after this line, i.e., live-in at the successor.
t and ti should be assigned to different registers, because otherwise
the assignment to t could destroy the proper contents of ti.

• For a t ← s instruction (move) we create an edge between t and any
variable ti live after this line different from t and s. We omit the po-
tential edge between t and s because if they happen to be assigned
to the same register, they still hold the same value after this (now re-
dundant) move. Of course, there may be other occurrences of t and s
which force them to be assigned to different registers.

For the above example, we obtain the following interference graph.

f1 f2 f3 f4 f5 %eax

Here, the register %eax is special, because, as a register, it is already pre-
defined and cannot be arbitrarily assigned to another register. Special care
must be taken with predefined registers during register allocation; see some
additional remarks in Section 9.

3 Register Allocation via Graph Coloring

Once we have constructed the interference graph, we can pose the register
allocation problem as follows: construct an assignment of K colors (rep-
resenting K registers) to the nodes of the graph (representing variables)
such that no two connected nodes are of the same color. If no such color-
ing exists, then we have to save some variables on the stack which is called
spilling.

Unfortunately, the problem whether an arbitrary graph is K-colorable is
NP-complete for K ≥ 3. Chaitin [Cha82] has proved that register allocation
is also NP-complete by showing that for any graph G there exists some
program which has G as its interference graph. In other words, one cannot
hope for a theoretically optimal and efficient register allocation algorithm
that works on all machine programs.

Fortunately, in practice the situation is not so dire. One particularly
important intermediate form is static single assignment (SSA). Hack [Hac07]

LECTURE NOTES

L3.4 Register Allocation

observed that for programs in SSA form, the interference graph always has
a specific form called chordal. Coloring for chordal graphs can be accom-
plished in time O(|V | + |E|) (hence at most quadratic in size) and is quite
efficient in practice. Better yet, Pereira and Palsberg [PP05] noted that as
much as 95% of the programs occurring in practice have chordal interfer-
ence graphs anyhow. Moreover, using the algorithms designed for chordal
graphs behaves well in practice even if the graph is not quite chordal,
which will just lead to unnecessary spilling, not incorrectness. Finally, the
algorithms needed for coloring chordal graphs are quite easy to implement
compared, for example, to the complex algorithm in the textbook. You are,
of course, free to choose any algorithm for register allocation you like, but
we would suggest one based on chordal graphs explained in the remainder
of this lecture.

4 Chordal Graphs

An undirected graph is chordal if it does not contain subgraphs with cycles
of length >3. That is, the graph is chordal if every cycle with 4 or more
nodes has a chord, that is, an edge not part of the cycle connecting two
nodes on the cycle. Consider the following three examples:

a b

d c

a b

d c

a b

e

d c

a b

d c
not chordal chordal not chordal chordal

Only the second and fourth are chordal (how many cycles need to be checked
for chords?). In the other two, the cycle abcd does not have a chord. In par-
ticular, the effect of the non-chordality is that a and c as well as b and d,
respectively, can safely use the same color, unlike in the chordal case.

On chordal graphs, optimal coloring can be done in two phases, where
optimal means using the minimum number of colors. In the first phase we
determine a particular ordering of the nodes in which we proceed when
coloring the nodes. This order is called simplicial elimination ordering. In
the second phase we apply greedy coloring based on this order. These are
explained in the next two sections.

LECTURE NOTES

Register Allocation L3.5

5 Simplicial Elimination Ordering

A node v in a graph is simplicial if its neighborhood forms a clique, that
is, all neighbors of v are connected to each other, hence all need different
colors. An ordering v1, . . . , vn of the nodes in a graph is called a simplicial
elimination ordering if every node vi is simplicial in the subgraph v1, . . . , vi.
Interestingly, a graph has a simplicial elimination ordering if and only if it
is chordal. That is, we will not be making a suboptimal decision on those
graphs by pretending that all previously occurring neighbors need to be
assigned different colors. Furthermore, the number of colors needed for a
chordal graph is at most the size of its largest clique.

We can find a simplicial elimination ordering using maximum cardinality
search, which can be implemented to run in O(|V | + |E|) time (so at most
quadratic in the size of the program). The algorithm associates a weight
wt(v) with each vertex which is initialized to 0 updated by the algorithm.
The weight w(v) represents how many neighbors of v have been chosen
earlier during the search. We write N(v) for the neighborhood of v, that is,
the set of all adjacent nodes.

If the graph is not chordal, the algorithm will still return some order-
ing although it will not be simplicial. Such an ordering from a non-chordal
graph can still be used correctly in the coloring phase, but does not guar-
antee that only the minimal numbers of colors will be used. Essentially,
for non-chordal graphs, generating an elimination ordering in the way de-
scribed here amounts to pretending that all nodes of the neighborhood are
in conflict, which is conservative but suboptimal. For chordal graphs the
assumption is actually justified and the correctly allocated registers are also
optimal.

Algorithm: Maximum cardinality search
Input: G = (V,E) with |V | = n
Output: A simplicial elimination ordering v1, . . . , vn
For all v ∈ V set wt(v)← 0
Let W ← V
For i← 1 to n do

Let v be a node of maximal weight in W
Set vi ← v
For all u ∈W ∩N(v) set wt(u)← wt(u) + 1
Set W ←W \ {v}

LECTURE NOTES

L3.6 Register Allocation

In our example,

f1 f2 f3 f4 f5 %eax

if we pick f1 first, the weight of f2 will become 1 and has to be picked
second, followed by f3 and f4. Only f5 is left and will come last, ignoring
here the node %eax which is already colored into a special register. It is easy
to see that this is indeed a simplicial elimination ordering.

In contrast, f2, f4, f3, . . . is not, because the neighborhood of f3 in the
subgraph f2, f4, f3 does not form a clique. Indeed, when giving arbitrary
(let’s say different) colors to f2 and f4 in this order, they would require f3
to assume a third color, which is suboptimal.

6 Greedy Coloring

Given an ordering, we can apply greedy coloring by simply assigning col-
ors to the vertices in this order, always using the lowest available color.
Initially, no colors are assigned to nodes in V . We write ∆(G) for the maxi-
mum out-degree of a node in G. The algorithm will always assign at most
∆(G) + 1 colors. If the ordering is a simplicial elimination ordering, the
result is furthermore guaranteed to be optimal, i.e., use the fewest possible
colors.

Algorithm: Greedy coloring
Input: G = (V,E) and ordered sequence v1, . . . , vn of nodes.
Output: Assignment col : V → {0, . . . ,∆(G)}.
For i← 1 to n do

Let c be the lowest color not used in N(vi)
Set col(vi)← c

In our example, we would just alternate color assigments:

0 1 0 1 0

f1 f2 f3 f4 f5 %eax

Of course, %eax is represented by one of the colors. Assuming this color is
0 and %edx is the name of register 1, we obtain the following program:

LECTURE NOTES

Register Allocation L3.7

%eax ← 1
%edx ← 1
%eax ← %edx + %eax
%edx ← %eax + %edx
%eax ← %edx + %eax
%eax ← %eax // redundant self move

It should be apparent that some optimizations are possible. Some are
immediate, such as the redundant move of a register to itself. We discuss
another one called register coalescing in Section 8.

7 Register Spilling

So consider that we have applied the above coloring algorithm and it turns
out that there are more colors needed than registers available. In that case
we need to save some temporary values. In our runtime architecture, the
stack is the obvious place. One convenient way to achieve this is to simply
assign stack slots instead of registers to some of the colors. The choice of
which colors to spill can have a drastic impact on the running time. Pereira
and Palsberg suggest two heuristics: (i) spill the least-used color, and (ii)
spill the highest color assigned by the greedy algorithm. For programs with
loops and nested loops, it may also be significant where in the programs the
variables or certain colors are used: keeping variables used frequently in
inner loops in registers may be crucial for certain programs.

Once we have assigned stack slots to colors, it is easy to rewrite the code
using temps that are spilled if we reserve a register in advance for moves
to and from the stack when necessary. For example, if %r11 on the x86-64
is reserved to implement save and restore when necessary, then

t ← t + s

where t is assigned to stack offset 8 and s to %eax can be rewritten to

%r11 ← 8(%rsp)
%r11 ← %r11 + %eax
8(%rsp) ← %r11

Sometimes, this is unnecessary because some operations can be carried
out directly with memory references. So the assembly code for the above
could be shorter

LECTURE NOTES

L3.8 Register Allocation

ADDL %eax, 8(%rsp)

although it is not clear whether and how much more efficient this might be
than a 3-instruction sequence

MOVL 8(%rsp), %r11
ADDL %eax, %r11
MOVL %r11, 8(%rsp)

We recommend generating the simplest uniform instruction sequences for
spill code.

Extensions Heuristic factors that are used for register allocation espe-
cially for breaking ties in deciding which temps to spill into the memory
include

• values that rematerialize easily, i.e., that can be recomputed easily
(say with 1 or 2 instructions) from other registers or at least loaded
from or recomputed easily from few memory accesses. When rema-
terializing from memory, the placement of the instruction needs to be
scheduled appropriately for cache and pipeline efficiency reasons.

• values that (approximately) will not be used quickly again when fol-
lowing the (likely) control flow, counting loop bodies as “closer” than
loop exits.

• values that interfere with many others.

Especially on SSA programs, deciding on register spilling can sometimes
be more efficient before final register allocation, which can help the inter-
play with instruction selection. On SSA programs, register allocation can
be done without explicitly constructing the interference graph (based on a
postfix order of the dominance tree). The reason is that the central SSA rela-
tion called dominance tree defines a simplicial elimination order by doing
a prefix traversal order of the dominance tree, such that register allocation
is immediate. It, thus, makes sense to reconsider register allocation and in-
terference graph construction for possible simplifications in case you later
choose to implement SSA.

8 Register Coalescing

After register allocation, a common further optimization is used to elim-
inate register-to-register moves called register coalescing. Algorithms for

LECTURE NOTES

Register Allocation L3.9

register coalescing are usually tightly integrated with register allocation. In
contrast, Pereira and Palsberg describe a relatively straightforward method
that is performed entirely after graph coloring called greedy coalescing.

Greedy coalescing follows the principle

1. Consider each move between variables t ← s occurring in the pro-
gram in turn.

2. If t and s are the same color, the move can be eliminated without
further action.

3. If there is an edge between them, that is, they interfere, they cannot
be coalesced.

4. Otherwise, if there is a color c which is not used in the neighborhoods
of t and s, i.e., c 6∈ N(t)∪N(s), and which is smaller than the number
of available registers, then the variables t and s are coalesced into a
single new variable u with color c. Then create edges from u to any
vertex in N(t) ∪N(s) and remove t and s from the graph.

Because of the tested condition, the resulting graph is still K-colored, where
K is the number of available registers. Of course, we also need to eventu-
ally rewrite the program appropriately to maintain a correspondence with
the graph.

This simple greedy coalescing will eliminate the redundant self move
in the example above. Optimal register coalescing can be done using a
reduction to integer linear programming, which can be too slow.

9 Precolored Nodes

Some instructions on the x86-64, such as integer division IDIV, require
their arguments to be passed in specific registers and return their results
also in specific registers. There are also call and ret instructions that
use specific registers and must respect caller-save and callee-save register
conventions. We will return to the issue of calling conventions later in the
course. When generating code for a straight-line program as in the first lab,
some care must be taken to save and restore callee-save registers in case
they are needed.

First, for code generation, the live range of the fixed registers should be
limited to avoid possible correctness issues and simplify register allocation.

LECTURE NOTES

L3.10 Register Allocation

Second, for register allocation, we can construct an elimination order-
ing as if all precolored nodes were listed first. This amounts to the ini-
tial weights of the ordinary vertices being set to the number of neighbors
that are precolored before the maximum cardinality search algorithm starts.
The resulting list may or may not be a simplicial elimination ordering, but
we can nevertheless proceed with greedy coloring as before.

10 Summary

Register allocation is an important phase in a compiler. It uses liveness
information on variables to map unboundedly many variables to a finite
number of registers, spilling temporaries onto stack slots if necessary. The
algorithm described here is due to Hack [Hac07] and Pereira and Pals-
berg [PP05]. It is simpler than the one in the textbook and appears to per-
form comparably. It proceeds through the following passes:

1. Build the interference graph from the liveness information.

2. Order the nodes using maximum cardinality search.

3. Color the graph greedily according to the elimination ordering.

4. Spill if more colors are needed than registers available.

5∗ Coalesce non-interfering move-related nodes greedily.

The last step, coalescing, is an optimization which is not required to gen-
erate correct code. Variants such as a separate spilling pass before coloring
are described in the references above can further improve the efficiency of
the generated code.

On chordal graphs, which come from SSA programs and often arise
directly, register allocations is polynomial and efficient in practice. Optimal
register coalescing and optimal spilling, however, are still NP-complete.
Even when using heuristics, register allocation may consume the most time
during a compiler run.

Quiz

1. Why does register allocation take such a long time? It is polynomial
isn’t it?

LECTURE NOTES

Register Allocation L3.11

2. Is it safe to restrict the interference graph definition for the instruction
t← s1 ⊕ s2 to the case where t is live after that line?

3. What is the advantage of working with the intuition “overlapping
live ranges” compared to the construction given in section 2?

4. Does it make a difference where we start our register allocation, i.e.,
where we start the construction of a simplicial order?

5. Is register allocation for programs with mixed data types more diffi-
cult than for programs with uniform types? Why or why not?

6. Why is chordality of a graph interesting for register allocation?

7. Why should one worry about allocating half registers of lower data
width? Isn’t accessing words out of double words etc. inefficient? Is
accessing bytes out of words inefficient?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Cha82] Gregory J. Chaitin. Register allocation and spilling via graph
coloring. In Proceedings of the Symposium on Compiler Construction,
pages 98–105, Boston, Massachusetts, June 1982. ACM Press.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD
thesis, Universität Karlsruhe, October 2007.

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register al-
location for programs in SSA-form. In Alan Mycroft and An-
dreas Zeller, editors, CC, volume 3923 of LNCS, pages 247–262.
Springer, 2006.

[PP05] Fernando Magno Quintão Pereira and Jens Palsberg. Register
allocation via coloring of chordal graphs. In K.Yi, editor, Proceed-
ings of the Third Asian Symposium on Programming Languages and
Systems (APLAS’05), pages 315–329, Tsukuba, Japan, November
2005. Spinger LNCS 3780.

LECTURE NOTES

	Introduction
	Building the Interference Graph
	Register Allocation via Graph Coloring
	Chordal Graphs
	Simplicial Elimination Ordering
	Greedy Coloring
	Register Spilling
	Register Coalescing
	Precolored Nodes
	Summary

