
15-411 Compiler Design: Lab 6 - Optimization

Fall 2011

Instructor: Andre Platzer
TAs: Josiah Boning and Ryan Pearl

Compilers due: 11:59pm, Tuesday, December 6, 2011
Term Paper due: 11:59pm, Thursday, December 8, 2011

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes the
option of implementing optimizations; other writeups detail the option of implementing garbage
collection or retargeting the compiler. The language L4 does not change for this lab and remains
the same as in Labs 4 and 5.

2 Requirements

You are required to hand in three separate items:

• The working compiler and runtime system that implement optimizing transformations.

• A performance benchmarking framework, and tests.

• A term paper describing and critically evaluating your project.

2.1 Compilers

Your compilers should treat the language L4 as in Labs 4 and 5. While we encourage you to continue
to support both safe and unsafe compilation, you may commit to one or the other compiler and
terminate with exit status 1 if l4c is called with the unsupported switch.

If you are implementing optimization for your L4 compiler, you have complete freedom which
ones to choose. The ones discussed in lecture so far and the textbook should be considered generally
important and constitute good choices. If you would like to specifically target safe compilation you
may pick array bounds check elimination and optimizations based on the induction variable of a
loop.

Grading criteria includes:

1. The correctness of the compiler (including the optimizations). Make sure that you do regres-
sion testing on all test cases accumulated through the semester.

1



2. The scope and complexity of the implemented optimization(s). You can implement several
widely simple, widely applicable optimizations such as the options in the lab 5 handout. It is
also acceptable to go for a few complex optimizations such as induction variable elimination
and array bounds elimination, or sparse conditional constant propagation.

3. The efficiency of the compiled code (as opposed to the compiler). Compiled binaries for any
of the test cases we have accumulated through the semester should be able to run in under
6 seconds. You should be able to measure (within reasonable bounds of experimental error)
that the compiled code is smaller and/or faster where the optimization is applicable, and does
not cause any significant performance regression where the optimization is not applicable.

4. The code quality of the optimization in terms of algorithm, readability, and modularity are
considered. Asymptotic complexity matters. We don’t necessarily require the fastest algo-
rithms that use complex imperative data structures. However, you should aim for quadratic
or sub-quadratic complexity in the size of the input code whenever possible.

5. The efficiency of the compiler (as opposed to the compiled code). We care about constant
factors to the extent that you should be able to compile any of the test cases we have accu-
mulated throughout the semester in under 20 seconds.

An overarching requirement is that you code should be documented. Without documentation,
we may not be able to evaluate the aforementioned – therefore internal documentation of your
sources may indirectly affect your grade.

2.2 Tests and Measurement Tools

An important aspect of optimization is correctly identifying opportunities for optimization and
verifying that your optimizations lead to improvement in the quality of code. Therefore, you will be
graded on these criteria. Opportunities for optimization may be present in common programming
paradigms, inefficiencies in code as it is written, or inefficiencies inserted by your compiler as a
part of reducing it from a more expressive language to a less expressive language. Obvious metrics
for performance are the number of cycles taken to finish running a test, and the size of the code
emitted by your compiler.

Keeping all of the mentioned factors in mind, you can use your own tools or repurpose freely
available tools to measure the quality of your optimizations. The timer handed out in lab 5 is naive,
but can be used as a starting point for more precise measurements. Whatever you do, document
your testing methodology and its effectiveness.

Your optimizations should be applicable to realistic code – not code contrived for the purpose
demonstrating one optimization or another. To this end, feel free to search through all of the test
cases that we have accumulated through this semester for programs that contain commonly used
data-structures and algorithms to assemble to performance test suite. You are not required to write
new performance test cases. However, if you write any and use them to collect measurements, please
hand them in. You may also consult the 15-122 course web page, for sample programs. In each
case, make sure that it is obvious from the file name or comments whether a test case is something
you newly created, or something you borrowed from previous test suites or other sources.

2



2.3 Term Paper

Your paper shold follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Description of Optimizations. This section should include a concise description of the opti-
mizing transformations you applied, as in Lab 5. Explain any change you needed to make
to your compiler to facilitate the addition of these optimizations, and describe any special
datastructures or algorithms you used.

3. Testing. Explain the methods you used to test your optimizations, and critically analyze the
effectiveness of your testing methodology.

4. Analysis. Based on the measurements you made, give a critical analysis of how well your
optimizations work, and what type of code it benefits.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5-10 pages of reasonably concise and interesting analysis to
present.

3 Deadlines and Deliverables

Project Proposal (due 11:59pm on Mon Nov 21)

Send an informal email to the course staff at 15411@symbolaris.com declaring whether you elect
to do this project for lab 6.

3.1 Compiler Files (due 11:59pm on Tue Dec 6)

There is no plan to automatically grade your compilers on autolab. Nevertheless, as for all labs,
the files comprising the compiler should be collected in a directory compiler/ which should contain
a Makefile. Important: You should also update the README file and insert a roadmap to your
code. This will be a helpful guide for the grader.

Issuing the shell command

% make l4c

should generate the appropriate files so that

% bin/l4c --safe -On <args>
% bin/l4c --unsafe -On <args>

will run your L4 compiler in safe and unsafe modes, respectively. You can choose to support only
one of these modes. The -On flag will run optimization level n. It should accept n = 0, 1, or 2.

The command

% make clean

should remove all binaries, heaps, and other generated files.
All your material must be committed into lab6opt in the same way that you submitted your

compiler in previous assignments.

3



3.2 Tests and Measurement Tools (due 11:59pm on Tue Dec 6)

In a directory called bench/, include any tests that you used for the purpose of performance mea-
surements, and include the sources to any tools that you developed for the purpose of performance
testing. If you have any of your own tools, include a brief README file explaining how to build
and use your tools.

3.3 Term Paper (due 11:59 on Thu Dec 8)

Submit your term paper as a filed called <team>-opt.pdf via email to the course staff at 15411@symbolaris.com.

4 Notes and Hints

• Start small. If you optimize, make sure your instruction selection and register allocation are in
decent shape. Improving these is definitely a form of optimization and should be documented
in your term paper.

• Apply regression testing. It is very easy to get caught up in the race to faster code.

• Checkpoint frequently. A convincing term paper should compare before and after for your
optimizations, as well as compare to the reference implementation. In order to do this you
need to be able to run various versions of the compiler and collect statistics, so make sure
you can continue to run older versions. Hand in frequently. Also, it is quite possible you
may not be able to finish that last, grand optimization; having a decent prior hand-in is good
insurance.

• Read the assembly code. Just looking at the assembly code that your compiler produces will
give you useful insights into what you may need to optimize. You can also use the reference
compiler on the fish machines to produce C code corresponding to your test cases. Then, you
can use gcc on the C code and compare the performance.

4


