
15-411 Compiler Design: Lab 1

Fall 2011

Instructor: Andre Platzer
TAs: Josiah Boning and Ryan Pearl

Test Programs Due: 11:59pm, Tuesday, September 13, 2011
Compilers Due: 11:59pm, Tuesday, September 20, 2011

1 Introduction

Writing a compiler is a major undertaking. In this course, we will build not just one compiler,
but several! Each compiler will build on the previous one, so careful thought and design are very
important in the first labs. You will be re-using and re-writing code. To get you off to a good start,
we provide you with a compiler for a simple language called L1 . The compiler we have provided
targets a very simple “abstract assembly” language with an infinite number of registers and a very
simple instruction set which includes just arithmetic instructions. 1

For this project, your task is to extend this compiler to translate L1 source programs into target
programs written in actual x86-64 assembly language. To do this, the main changes that you will
have to make are modifying the instruction selector and adding a register allocator. It must be
possible to assemble and link the target programs (that is, the x86-64 assembly output from your
compiler) with our runtime environment using gcc, producing a standard executable.

Projects should be done either individually or in pairs. You are strongly encouraged to work
in teams of two. 2 Each team (or individual) is assigned a group name by the instructor. If you
do not yet have a group name, please contact the instructor as soon as possible. You will not be
able to download the starter code or hand in labs without accounts for the svn repository and the
Autolab grading system, so you must have a group name.

The first project is neither the most difficult nor the most time consuming assignment in the
course. The total amount of code you will have to write is not tremendously large. Nevertheless,
as this is your first attempt at working with the compiler code, there is a relatively large amount
of material to understand before you can get started, and you will also have to understand thor-
oughly the concepts of instruction selection and register allocation before attempting to implement
anything.

In particular, keep in mind that all of the following may consume a substantial amount of time:

• Sorting out administrative problems. Making sure that you have svn and autolab access.

1There are some limitations to the starter code we give you. Please consult the last section on Supported Pro-
gramming Languages for more on these.

2There are certain circumstances under which working individually may be impractical. Once again, please consult
the last section

1

• Getting to know your partner. Working with a partner is an important aspect of this class.
It is important to schedule time to work, find a preferred working environment, and develop
a good group dynamic early in the semester. We strongly suggest that you schedule time for
reading and discussing each other’s code at least twice weekly.

• Reading and possibly porting the entire starter code so that you understand every bit of
what your compiler is doing. This is essential, because you will be editing every stage of the
compiler in future labs, which will include any starter code that we distribute to you.

• Getting used to the libraries available for your programming language of choice. The libraries
that your compiler depends on will likely include a parser combinator, LL(1) parser generator
or LALR(1) parser generator, and possibly a separate lexer generator. Please make sure that
you can find the specification documents for the libraries you use.

• Last, but certainly not the least, generating code requires attention to detail. Please be
prepared to read through the Intel Developer Manuals for precise behaviour of the instructions
you will emit, and the GNU assembler documentation for the syntax that you should use.

To emphasize again, all the projects in this course are cumulative. Therefore, falling behind in
Lab 1 would be disastrous. Please get an early start, and remember that we’re here to help.

2 L1 Syntax

The compilers we provide to you translate source programs written in L1 . The syntax of L1 is
defined by the context-free grammar shown in Figure 1. The language is a fragment of the C0
introductory programming language, and is similar to the “straight-line programs” language from
Chapter 1 of the textbook.

Lexical Tokens

The concrete syntax of L1 is based on ASCII character encoding.

Whitespace and Token Delimiting

In L1 , whitespace is either a space, horizontal tab (\t), vertical tab (\v), carriage return (\r),
linefeed (\n), or formfeed (\f) character in ASCII encoding. Whitespace is ignored, except that it
terminates tokens. For example, += is one token, while + = is two tokens.

Comments

L1 source programs may contain C-style comments of the form /* ... */ for multi-line comments
and // for single-line comments. Multi-line comments may be nested (and of course the delimiters
must be balanced).

2

〈program〉 ::= int main () { 〈stmts〉 }

〈stmts〉 ::=

| 〈stmt〉 〈stmts〉

〈stmt〉 ::= 〈decl〉 ;

| 〈simp〉 ;

| return 〈exp〉 ;

〈decl〉 ::= int ident

| int ident = 〈exp〉

〈simp〉 ::= 〈lvalue〉 〈asnop〉 〈exp〉

〈lvalue〉 ::= ident

| (〈lvalue〉)

〈exp〉 ::= (〈exp〉)

| 〈intconst〉

| ident

| 〈exp〉 〈binop〉 〈exp〉

| - 〈exp〉

〈intconst〉 ::= decnum (in the range 0 ≤ intconst ≤ 231)

| hexnum (in the range 0x00000000 - 0xffffffff)

〈asnop〉 ::= = | += | -= | *= | /= | %=

〈binop〉 ::= + | - | * | / | %

The precedence of unary and binary operators is given in Figure 2.
Non-terminals are in 〈brackets〉.
Terminals are in bold.

Figure 1: Grammar of L1

3

Operator Associates Class Meaning

- right unary unary negation

* / % left binary integer multiplication, division, modulo

+ - left binary integer addition, subtraction

= += -= *= /= %= right binary assignment

Figure 2: Precedence of operators, from highest to lowest

<ident> ::= [A-Za-z_][A-Za-z0-9_]*

<num> ::= <decnum> | <hexnum>

<decnum> ::= 0 | [1-9][0-9]*

<hexnum> ::= 0[xX][0-9a-fA-F]+

<unop> ::= ! | ~ | - | *

<binop> ::= + | - | * | / | % | << | >>

| < | > | == | != | & | ^ | | | && | || | >= | <=

<asnop> ::= = | += | -= | *= | /= | %= | <<= | >>=

<postop> ::= -- | ++

Figure 3: Lexical Tokens

Reserved Keywords

The following are reserved keywords and cannot appear as a valid token in any place not explicitly
mentioned as a terminal in the grammar.

struct typedef if else while for continue break

return assert true false NULL alloc alloc_array

int bool void char string

Many of these keywords are unused in L1 . However, the specification treats these as keywords
to maintain forward compatibility of valid C0 programs. For the purposes of L1 , main shall also
be treated as a keyword, since the language has no other concept of functions or function names.

Other Tokens

L1 also treats certain strings as tokens even though they never appear as terminals in the grammar.
We do this in order to maintain forward compatibility with the remaining labs and C0. The tokens
are listed in Figure 3.

Note that postop has higher precedence than unop. Therefore, we should first attempt to lex
consecutive occurrences of - as the postfix decrement.

4

3 L1 Static Semantics

The L1 language does not have a very interesting type system. Most constraints imposed by the
type system are for the time being imposed by the grammar instead.

Declarations

Though declarations are a bit redundant in a language with only one type and no interesting control
flow construct, we require every variable in the function to be declared (with the correct type, in
this case int) before being used, altough statements and declarations can be mixed. We do this to
ensure that the valid L1 programs are forward compatible with respect to future labs, and C0.

Initialization Checking

Programs that attempt to reference a variable before assigning to it should cause the compiler to
generate a compile-time error message.

Return Checking

C0 requires that every control flow path in a function should be able to return. To maintain forward
compatibility, we require that L1 programs contain a return statement, but not necessarily only
once or at the last statement.

4 L1 Dynamic Semantics

Statements have the obvious operational semantics, although there are subtleties regarding the
evaluation of expressions. Each statement is executed in turn. To execute a statement, the expres-
sion on the right-hand side of the assignment operator is evaluated, and then the result is assigned
to the variable on the left-hand side, according to the type of assignment operator. The meanings of
the special assignment operators are given by the following table, where x stands for any identifier
and e for any expression.

x += e ≡ x = x + e
x -= e ≡ x = x - e
x *= e ≡ x = x * e
x /= e ≡ x = x / e
x %= e ≡ x = x % e

The result of executing an L1 program is the value of the expression in the program’s return

statement.

Integer Operations

The integers of this language are in two’s complement representation with a word size of 32 bits.
Addition, subtraction, multiplication, and negation have their meaning as defined in arithmetic
modulo 232. In particular, they can never raise an overflow exception.

Decimal constants c in a program must be in the range 0 ≤ c ≤ 231, where 231 = −231 according
to modular arithmetic. Hexadecimal constants must fit into 32 bits.

5

The division i/k returns the truncated quotient of the division of i by k, dropping any fractional
part. This means it always rounds towards zero.

The modulus i % k returns the remainder of the division of i by k. The modulus has the same
sign as i, and therefore

(i/k) ∗ k + (i % k) = i

Division i/k and modulus i % k are required to raise a divide exception if either k = 0 or the
result is too large or too small to fit into a 32 bit word in two’s complement representation.

Fortunately, this prescribed behavior of integer operations coincides with the hardware behavior
of appropriate instructions.

5 Project Requirements

For this project, you are required to hand in a complete working compiler for L1 that produces
correct target programs written in Intel x86-64 assembly language. In addition to the code generator
and the register allocator, you are also expected to modify the provided lexer so that it takes the
reserved keywords and other lexical tokens into account.

We also require that you document your code. Documentation includes both inline documenta-
tion and a README document which explains the design decisions underlying the implementation
along with the general layout of the sources. If you use publicly available libraries, you are required
to indicate their use and source in the README file. If you are unsure whether it is appropriate
to use external code, please discuss it with course staff.

When we grade your work, we will use the gcc compiler to assemble and link the code you
generate into executables using the provided runtime environment on the lab machines.

Your compiler and test programs must be formatted and handed in via Autolab as specified
below. For this project, you must also write and hand in at least six test programs, two of which
must fail to compile, two of which must generate a runtime error, and two of which must execute
correctly and return a value.

Test Files

Test files should have extension .l1 and start with one of the following lines

//test return i program must execute correctly and return i
//test exception n program must compile but raise runtime exception n
//test error program must fail to compile due to an L1 source error

followed by the program text. The only exception defined in L1 is SIGFPE (8), which is raised
upon division by zero or division overflow. All test files should be collected into a directory test/

(containing no other files) and submitted via the Autolab server.
This semester, 15-411 is using the new Autolab2 infrastructure. The Autolab handin for this

course can be found at https://autolab.cs.cmu.edu/15411-f11

The reference compiler may display a warning on //test error if your test case accidentally
exercises a language feature that might be a part of a future lab or C0. Please do not ignore this
warning. Do not hand in tests that cause this warning.

6

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. Even though your code will not be
read for grading purposes, we may still read it to provide you feedback. The README file will be
crucial information for that purpose.

Issuing the shell command

% make l1c

should generate the appropriate files so that

% bin/l1c <args>

will run your L1 compiler. If your compiler detects any (compile-time) errors in the source program,
it should exit with a non-zero return code. If compilation succeeds and target code is generated,
the compiler should then exit with a return code of 0. The command

% make clean

should remove all binaries, heaps, and other generated files.

Runtime Environment

Your target code will be linked against a very simple runtime environment. The runtime contains
a function main() which calls a function _l1_main and then prints the returned value. If your
compiler generates a target file called foo.s, it will be linked with the runtime into an executable
using the command gcc foo.s l1rt.c. This means that your compiler must generate target code
for a function called _l1_main, and that the return statement at the end of the L1 source program
should be compiled into an x86 ret instruction. According to the calling conventions, the register
%eax must hold the return value.

Using the Subversion Repository

The recommended method for handout and handin is the course subversion repository.
The handout files for this course can be checked out from our subversion repository via

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f11/groups/<team>

where <team> is the name of your team. You will find materials for this lab in the lab1 subdirec-
tory. Or, if you have checked out 15411-f11/groups/<team> directory before, you can issue the
command svn update in that directory.

Handins to Autolab will be done via svn. The glue between svn and Autolab is still in the
works; a lab writeup with more detail in this section will be released when everything is ironed out.

7

Uploading tar Archives

Until svn/Autolab integration works, you will be able to hand in your tests and code by uploading
tar archives from the Autolab server. We expect Autolab to be operational well before you need to
hand anything in, so this should not be necessary. However, in the event of emergency:

For the test cases, bundle the directory tests as a tar file tests.tar with

% tar -cvf tests.tar tests/

to be submitted via the Autolab server.
For the compiler, bundle the directory compiler as a tar file compiler.tar. In order to keep

the files you hand in to a reasonable size, please clean up the directory and then bundle it as a tar
file. For example:

% cd compiler

% make clean

% cd ..

% tar -cvf compiler.tar --exclude .svn compiler/

to be submitted via the Autolab server. Please do not include any compiled files or binaries in your
hand-in file!

What to Turn In

You may turn in code and have it autograded as many times as you like, without penalty. In fact,
we encourage you to hand in to verify that the Autolab grader agrees with the driver results that
you use for development, and also as insurance against a last-minute rush. The last hand-in will
count.

Hand in on the Autolab server:

• At least 6 test cases, two of which successfully compute a result, two of which raise a runtime
exception, and two of which generate an error. The directory tests/ should only contain
your test files and be submitted via subversion as described above. The server will test your
test files and notify you if there is a discrepancy between your answer and the outcome of the
reference implementation. If you feel the reference implementation is in error, please notify
the instructors.

Test cases are due 11:59pm on Tue Sep 13.

• The complete compiler. The directory compiler/ should contain only the sources for your
compiler and be submitted via subversion as described above. The Autolab server will build
your compiler, run it on all extant test files, link the resulting assembly files against our
runtime system (if compilation is successful), execute the binaries, and finally compare the
actual with the expected results.

Compilers are due 11:59pm on Tue Sep 20.

8

6 Notes and Hints

We recommend reading lecture material on instruction selection and register allocation, and the
optional textbook if you require further information. The written homework may also provide some
insight into and practice with the algorithms and data structures needed for the assignment.

Register Allocation

We recommend implementing a global register allocator based on graph coloring. While this may
be not be strictly necessary for such a simple source language, doing so now will save work in later
projects where high-quality register allocation will be important. The recommended algorithm
is based on chordal graph coloring as presented in lecture and detailed in the lecture notes. We
recommend that you first implement register allocation without spilling, which would get almost
full credit since few programs will need more than the registers available on the x86-64 processor.

We do not recommend that you implement register coalescing for this lab, unless you already
have a complete, working, beautifully written compiler and some free time on your hands.

Code Generation

It is extremely important that register usage and calling conventions of the x86-64 architecture
are strictly adhered to by your target code. Failure to do so will likely result in weird, possibly
nondeterministic errors.

You can refresh your memory about x86-64 assembly and register convention using Randal
Bryant and David O’Hallaron’s textbook supplement on x86-64 Machine-Level Programming avail-
able from the resources page on the course website. The Application Binary Interface (ABI)
specification linked from the web page will also be important, if not now, then later in the course.
Finally, the processor manual contains useful on the details of the instructions. Note that we use
the GNU Assembler, which uses a different syntax than that given in the Intel manuals.

The tests will be run in the standard Linux environment on the lab machines; the produced
assembly code must conform to those standards. We recommend the use of gcc -S to produce
assembly files from C sources which can provide template code and assembly language examples.

Development Guidelines

• Format your code to a line width of no more than 100 characters.

• Tabs, if used at all, should format well with a width of 8. Some languages like ML do not
indent very well with tabs, so we recommend against tabs altogether.

• Use variable names consistently.

• Use comments, but do not clutter the code too much where the meaning is clear from context.

• Develop techniques for unit testing, that is, testing modules individually. This helps limit the
problem of nasty end-to-end bugs that are very difficult to track.

• Do not prematurely optimize. Write clear, simple code first and optimize only as necessary,
when bottlenecks have been identified. Compiler speed is not a grading criterion!

9

• Be clear about the data structures and algorithms you want to implement before starting to
write code.

• You may encounter performance problems in the course of your development. A profiler is
definitely a useful tool in identifying the bottlenecks in your compiler. However, you must be
careful in interpreting the information provided by the compiler. A particular pass in your
compiler might be taking too long either because you inefficiently implemented it, or because
it is inherently a hard problem, and a previous pass generated an unusually large input for
subsequent passes.

• Do not prematurely generalize. Solve the problem at hand without looking ahead too much at
future labs. Such generalizations are unlikely to simplify later coding because it is generally
very difficult to anticipate what might be needed. Instead, they may make the present code
harder to follow because of unmotivated pieces. We recommend that you take this chance to
gain experience in incremental software development, which is quite orthogonal to modular
software development.

7 Supported Programming Languages

This course does not require students to use any specific programming language to implement
their compilers. However, we cannot support every programming language in existence. We have
distributed starter code for Standard ML, Haskell, Scala, and Java. We strongly recommend
that students who are well versed in a functional language take that option, because a language
that supports algebraic datatypes and pattern matching allows for significantly more compact and
readable code for programs that do a lot of symbol processing. If you would like to verify this
claim, feel free to compare the volume of starter code in Java to that of the SML or Haskell code.

Students wishing to use other programming languages are encouraged to consult the starter code
for other languages ahead of time and adapt the necessary starter code and build infrastructure.
Please contact the course staff for any technical support.

If you wish to use a programming language that is significantly more verbose than Standard
ML, we STRONGLY recommend that you find a partner in order to avoid being overwhelmed by
the sheer volume of code. Sources of verbosity may include the lack of algebraic datatypes, lack of
a module system, explicit memory management, poor support for parser generators, etc.

Please remember that your code will be the basis for future labs, and that you are working
with a partner. This means your code must be readable. This also means that the code should
be broken up along natural module boundaries. Finally, be careful in choosing your programming
language, because you effectively commit to using it for the rest of the semester.

10

