
Lecture Notes on
Abstract Interpretation

15-411: Compiler Design
André Platzer

Lecture 28

1 Introduction

More information on abstract interpretation can be found in [CC92, CC77,
CC79] and [WM95, Chapter 10].

2 Abstract Interpretation

Abstract interpretation generalizes the theory of monotone frameworks
and dataflow analysis to a general principle of analyzing programs by defin-
ing an abstract semantics for it [CC92, CC77, CC79, WM95]. In order to
show the principle of abstract interpretation, without having to dig too
much into the details, we consider an example where we abstractly inter-
pret a program but still keep using monotone frameworks.

Suppose we want to check the property whether a variable x may be
0, which is a principle that can be useful for null pointer exception tests.
As domain L for this we just choose the Boolean lattice {true, , false}. The
operator

⊔
is just logical disjunction (∨). The flow relation is the forward

control flow. Initialization is false, say. Transfer functions at the nodes
make sense to choose from the constant functions true, false and the iden-
tity function id.

LECTURE NOTES

L28.2 Abstract Interpretation

x:=1

x:=1 x:=0 y:=0

y:=1

By fixed-point iteration on the above example we find that x = 1 is possible
after the program terminates. For a must analysis, instead, we would get
that x = 1 is not necessary.

For multiple variables, we can choose a cartesian product {true, false}n
of the Boolean lattice and use projections to coordinates as further transfer
functions for copying the value for y over to x at a move x := y.

Another example is an abstract interpretation that performs general
analysis for constant propagation. The property space has the form {x =
⊥, x =?}∪{x = v : v ∈ Z}, where⊥means is the bottom of the semilattice
for undefined, x =? means that x has nondeterministic values and x = v
for a number v means that we can be certain that x will always have value
v at this program point. Let’s look at an example. We initialize with no
information (⊥) at all points, except the program init block, where we start
with a nondeterministic initial value i =?:

{ i =? , j =? ,k=?}
i = 5 ; j = 0 ; k = 0 ;
{ i =⊥ , j =⊥ , k=⊥}
while (j <= i) {
{ i =⊥ , j =⊥ , k=⊥}
i = i + 2 ; k = k + j ; j = j + 1
{ i =⊥ , j =⊥ , k=⊥}
i = i − 2
{ i =⊥ , j =⊥ , k=⊥}

}
{ i =⊥ , j =⊥ , k=⊥}

Now we can execute the first line in the abstract semantics and then enter
the loop in the abstract semantics and execute the loop body once

{ i =? , j =? ,k=?}

LECTURE NOTES

Abstract Interpretation L28.3

i = 5 ; j = 0 ; k = 0 ;
{ i =5 , j =0 ,k=0}
while (j <= i) {
{ i =5 , j =0 ,k=0}
i = i + 2 ; k = k + j ; j = j + 1
{ i =7 , j =1 ,k=0}
i = i − 2
{ i =5 , j =1 ,k=0}

}
{ i =⊥ , j =⊥ , k=⊥}

With those abstract values, we will repeat the loop, but we have to merge
the previous information {i=5,j=0,k=0}with the current information {i=5,j=1,k=0}
and find a joint representation in the property space lattice by the

⊔
opera-

tor, giving {i=5,j=?,k=0}. Then we execute the loop body

{ i =? , j =? ,k=?}
i = 5 ; j = 0 ; k = 0 ;
{ i =5 , j =0 ,k=0}
while (j <= i) {
{ i =5 , j =? ,k=0}
i = i + 2 ; k = k + j ; j = j + 1
{ i =7 , j =? ,k=?}
i = i − 2
{ i =5 , j =? ,k=?}

}
{ i =⊥ , j =⊥ , k=⊥}

Again, merging the property values by the
⊔

operator and executing the
loop body gives

{ i =? , j =? ,k=?}
i = 5 ; j = 0 ; k = 0 ;
{ i =5 , j =0 ,k=0}
while (j <= i) {
{ i =5 , j =? ,k=?}
i = i + 2 ; k = k + j ; j = j + 1
{ i =7 , j =? ,k=?}
i = i − 2
{ i =5 , j =? ,k=?}

}
{ i =5 , j =? ,k=?}

LECTURE NOTES

L28.4 Abstract Interpretation

Here the property value at the loop entry didn’t change, so we can propa-
gate to the loop exit and the analysis terminates. Now we know, as good as
our abstract semantics could represent, what values the variables can have
at the various program points.

3 Abstract Interpretation by Example

Consider the following simple program

0
1 x = 1
2
3 while (x<1000) {
4
5 x = x + 1
6
7 }
8
9 y = x

A run in the concrete semantics of the above program would start with
the concrete state x = ⊥, y = ⊥ where the initial value of x, y in line 0
is unknown. The program would do 999 iterations through the loop after
which it terminates with the state y = x = 1000. Concrete execution just
does not help much for static analysis of programs in general, because we
won’t know the dynamic data until runtime.

Instead, let us consider an abstract run in an abstract semantics where
variables take on intervals as values (due to Cousot and Cousot [CC77]):

L = {[a, b] : a, b ∈ N ∪ {+∞,−∞}}

To unify notation, we write [−∞, 5] for the left-open interval (−∞, 5] here.
Now a run of the above program in the interval abstract domain gives after
1 iteration

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1, 1], y = [−∞,∞]}
5 x = x + 1
6 {x = [2, 2], y = [−∞,∞]}

LECTURE NOTES

Abstract Interpretation L28.5

7 }
8
9 y = x

and after 2 iterations

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1, 2], y = [−∞,∞]}
5 x = x + 1
6 {x = [2, 3], y = [−∞,∞]}
7 }
8
9 y = x

and after 3 iterations

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1, 3], y = [−∞,∞]}
5 x = x + 1
6 {x = [2, 4], y = [−∞,∞]}
7 }
8
9 y = x

We could keep on iterating, but this takes an awfully large number of iter-
ations to figure out, since the loop count is 1000. If the bound is not com-
putable statically, we do not even know how often to iterate. But we can
iterate until we reach a fixedpoint. And we can also speed up convergence
by jumping ahead in the lattice using a widening operator ∇ : L× L→ L.
For intervals let us jump ahead to ±∞ whenever our interval bounds are
not inclusive:

[a, b] ∇ [a′, b′] :=

[{
a if a ≤ a′

−∞ otherwise

}
,

{
b if b′ ≤ b

+∞ otherwise

}]

So in the 4th iteration, instead of doing a standard iteration, let us widening
for computing line 4 from the previous two values [1, 3]∇ [1, 4]:

LECTURE NOTES

L28.6 Abstract Interpretation

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1,∞], y = [−∞,∞]}
5 x = x + 1
6 {x = [2,∞], y = [−∞,∞]}
7 }
8
9 y = x

In iteration 5, we obtain precise information by intersection with the guards

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 while (x<1000) {
4 {x = [1, 999], y = [−∞,∞] s i n c e x = [1,∞] ∩ [1, 999] = [1, 999]}
5 x = x + 1
6 {x = [2, 1000], y = [−∞,∞]}
7 }
8 {x = [1000, 1000], y = [−∞,∞] s i n c e x = [2, 1000] ∩ [1000,∞] = [1000, 1000]}
9 y = x

10 {x = [1000, 1000], y = [1000, 1000]}

What we want the widening operator∇ to satisfy is that it is like a union
(∪) but could be a bigger element of the lattice:

x ≤ x∇y y ≤ x∇y

We also want iterated uses of the widening operator to become a fixedpoint
eventually. That is

x0∇x1∇x2∇x3∇ . . .

is a finite sequence, for any xi ∈ L.
When widening was too aggressive, a dual operator called narrowing

∆ : L×L→ L can be used as well. It is supposed to be like an intersection
(∩) but could be bigger:

x ∩ y ≤ x∆y

We also want iterated uses of the widening operator to become a fixedpoint
eventually. That is

x0∆x1∆x2∆x3∆ . . .

LECTURE NOTES

Abstract Interpretation L28.7

is a finite sequence, for any xi ∈ L.
This seems very powerful and it is, as a framework for static program

analysis. The particular abstract domain of intervals alone, however, is in-
sufficient. A simple variation of the above example shows that the example
is misleading and real programs more complicated:

0 {x = [−∞,∞], y = [−∞,∞]}
1 x = 1
2 {x = [1, 1], y = [−∞,∞]}
3 y = 1
4 {x = [1, 1], y = [1, 1]}
5 while (x<1000) {
6 {x = [1, 999], y = [1,∞] s i n c e x = [1,∞] ∩ [1, 999] = [1, 999]}
7 x = x + 1
8 {x = [2, 1000], y = [1,∞]}
9 y = y + 1

10 {x = [2, 1000], y = [2,∞]}
11 }
12 {x = [1000, 1000], y = [1,∞] s i n c e x = [2, 1000] ∩ [1000,∞] = [1000, 1000]}

But the abstract interpretation framework still applies. Abstract domains
that can handle the above example need correlations of variables, i.e, they
need to capture variable correlations like 0 ≤ y− x ≤ 1. Difference-bounds
matrix [Min01] are a fast abstract domain for this purpose. General con-
vex polyhedra can be useful too. This is possible but out of scope for this
lecture.

References

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In POPL, pages 238–252, 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In POPL, pages 269–282, 1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and
application to logic programs. J. Log. Program., 13(2&3):103–179,
1992.

LECTURE NOTES

L28.8 Abstract Interpretation

[Min01] Antoine Miné. A new numerical abstract domain based on
difference-bound matrices. In Olivier Danvy and Andrzej Filin-
ski, editors, PADO, volume 2053, pages 155–172. Springer, 2001.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, 1995.

LECTURE NOTES

	Introduction
	Abstract Interpretation
	Abstract Interpretation by Example

