
Lecture Notes on
Monotone Frameworks

15-411: Compiler Design
André Platzer

Lecture 27

1 Introduction

More information on dataflow analysis and monotone frameworks can be
found in [NNH99]. More information on abstract interpretation can be
found in [CC92, CC77, CC79] and [WM95, Chapter 10].

2 Monotone Frameworks

Even though all of them are different, the forward/backward may/must
dataflow analysis are nevertheless very similar. They all follow a more
general pattern:

A◦(`) =

{
ι if ` ∈ E⊔
{A•(`′) : (`′, `) ∈ F} otherwise

A•(`) = f`(A◦(`))

where, depending on the specific analysis:

• the operator
⊔

is either
⋃

for information from any source or
⋂

for
information joint to all sources

• the flow relation F is either the forward control flow or the backward
control flow

• the initialization setE is either the initial block or the set of final nodes

• ι specifies the starting point of the analysis at the initial or final nodes

LECTURE NOTES

L27.2 Monotone Frameworks

• f` is the transfer function for the node, which, in the previous exam-
ples is always of the special form

f`(X) = (X \ kill(`)) ∪ gen(`)

More formally, the property that we are analyzing is part of a property space
L. This space L could be the set of all sets of variables ℘(V ars), if we
are looking for the set of all live variables. Or, for available expressions,
it could be the set of all sets of expressions ℘(Expr) ordered by ⊇. Or,
in fairly advanced analyses, we might even be tempted to try the set of
all mappings V ars→ Z2 from variables to intervals, if we are trying to
find interval bounds for each variable. The latter scenario is more difficult,
though.

For the property space and the way how property values flow through
the control flow, we need a number of assumptions for the above approach
to work.

Definition 1 A monotone framework consists of

1. a Noetherian complete semi-lattice L: a set L with a partial order v
that is complete, i.e., such that each subset Y ⊆ L has a least upper
bound

⊔
Y . A lattice is Noetherian iff it satisfies the condition that each

ascending chain
a1 v a2 v a3 v ...

is finite, i.e., there is an n such that an = an+1 = an+2 =

2. a set F of monotone functions f : L→ L that contains the identify function
id : L → L; a 7→ a and is closed under composition, i.e., if f, g ∈ F then
the composition f ◦ g ∈ F . A function f : L→ L is monotone iff

a v b implies f(a) v f(b)

A “distributive” framework is a monotone framework where each f ∈ F is
distributive (or, more precisely, a homomorphism)

f(a t b) = f(a) t f(b)

Note that we use the binary operator notation a t b as an abbreviation for
the more verbose

⊔
{a, b}. In addition, we denote the least upper bound

⊔
∅

of the empty set ∅ ⊆ L by ⊥, which is the least element of semi-lattice L.

LECTURE NOTES

Monotone Frameworks L27.3

Definition 2 The analysis equations corresponding to a monotone framework are

A◦(`) =
⊔
{A•(`′) : (`′, `) ∈ F} t

{
ι if ` ∈ E
⊥ if ` 6∈ E

(1)

A•(`) = f`(A◦(`)) (2)

Table 1: Dataflow analysis examples as monotone frameworks

L v
⊔
⊥ ι E F

For-may: Reach def ℘(Lbl) ⊆
⋃
∅ Lbl init flow

For-must: Available expr ℘(Exp) ⊇
⋂

Exp ∅ init flow
Back-may: Live variables ℘(V ar) ⊆

⋃
∅ ∅ final flow−1

Back-must: Very busy expr ℘(Exp) ⊇
⋂

Exp ∅ final flow−1

f`(l) = (l \ kill(`)) ∪ gen(`)
F = {f : L→ L : f(l) = (l \ kill) ∪ gen for some kill, gen}

3 Solving Monotone Framework Equations as Least
Fixed Points

A simple way of solving the analysis equations of a monotone framework
works by iteratively updating the left hand side of (1) to match the right
hand side of (1) until nothing changes anymore. This is the worklist algo-
rithm1:

W := F // working l i s t
for ` ∈ F ∪ E

i f (` ∈ E) then A◦[`] := ι e lse A◦[`] := ⊥
for (`′, `) ∈W

W := W \{(`′, `)}
i f f`′(A◦[`

′]) 6v A◦[`] then
A◦[`] := A◦[`] t f`′(A◦[`′])
W := {(`, `′′) : (`, `′′) ∈ F} ∪ W

end for

1Also called “Maximum” Fixed Point, which is rather confusing for a least fixed point.

LECTURE NOTES

L27.4 Monotone Frameworks

Does this algorithm solve the equations (1)? This algorithm computes the
least fixed point of (1), because it starts at the bottom ⊥ of the semi-lattice
and successively follows the fixed point condition. It also always termi-
nates. Let’s convince ourselves why.

Theorem 3 (Kleene fixed point theorem) If L is a complete partial order and
f : L → L is a Scott-continuous function (i.e.,

⊔
f(Y) = f(

⊔
Y) for every

subset Y ⊆ L with a supremum
⊔
Y ∈ L), then the least fixed point µf of f is

µf =
⊔
{fn(⊥) : n ∈ N}

The Kleene fixed point theorem is very useful, because it shows that successive
iteration like we are doing in the worklist algorithm really yields the least
fixed point. Yet are we in a position to use the theorem? It doesn’t quite
look like it. We have montone transfer functions but need Scott-continuous
functions. Every Scott-continuous function f : L→ L is monotone:

a v b ⇒
⊔
{f(a), f(b)} = f(

⊔
{a, b}) = f(b) ⇒ f(a) v f(b)

But in monotone frameworks, we deal with monotone functions f : L→ L
and need to know whether they are Scott-continuous. Now fortunately, the
semi-lattice L underlying monotone frameworks is actually Noetherian.
Thus, if we start with any set Y ⊆ L and want to compare

⊔
f(Y) and

f(
⊔
Y), we first note that Y cannot contain an infinite ascending chain

but can only contain a finite ascending chain:

a1 v a2 v a3 v ... v an

Now by monotonicity of f we know

f(a1) v f(a2) v f(a3) v ... v f(an)

Thus, ⊔
{f(a1), . . . , f(an)} = f(an) = f(

⊔
{a1, . . . , an})

The same argument holds for all ascending chains in Y . The ends of
all those finite ascending chains have least upper bounds, because L is
a lattice. Because L is Noetherian, even those extensions can only give
finite ascending chains.

The only trouble is that the function f we are using in the algorithm
to form a fixed point is not just one of the transfer functions f`, which we

LECTURE NOTES

Monotone Frameworks L27.5

know to be monotone. The overall function f is not a transfer function
but really

f(Z)(`) :=
⊔
{f`′(Z(`′)) : (`′, `) ∈ F} t

{
ι if ` ∈ E
⊥ if ` 6∈ E

To be precise, let’s represent the function of ` as a relation instead:

f(Z) :=
{(
`,
⊔
{f`′(Z(`′)) : (`′, `) ∈ F}

)
: ` ∈ E ∪ F

}
t {(`, ι) : ` ∈ E} t {(`,⊥) : ` ∈ F \ E}

Now this function is more complicated because it has the nodes ` and `′

as extra arguments, so the domain is a slightly different one and things
become more complicated. Nevertheless, the principles above still apply
and we can see that f is monotone, because the result only increases at
every point if the input increases.

Why does the worklist algorithm terminate? That’s easy to see if the
semi-lattice L is finite, because there can only be finitely many monotone
changes to the sets then. What if the property space L is infinite? Well the
algorithm still terminates, because A◦[`] increases at its assignment, and it
can only increase to a finite ascending chain, not an infinite one, because L
is Noetherian.

References

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In POPL, pages 238–252,
1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of pro-
gram analysis frameworks. In POPL, pages 269–282, 1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and
application to logic programs. J. Log. Program., 13(2&3):103–179,
1992.

[NNH99] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program
Analysis. Springer, 1999.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, 1995.

LECTURE NOTES

	Introduction
	Monotone Frameworks
	Solving Monotone Framework Equations as Least Fixed Points

